## 

# Single Pair Ethernet (SPE)



SPE overview Background and key characteristics

## Introduction to Single Pair Ethernet (SPE)

- Ethernet is one of the most widely used networking standards, defined by the IEEE 802.3 Ethernet working group
- Extensively developed to provide higher bandwidth over short distances in a 4-pair cable
- IoT applications in process, factory and building automation demand simpler Ethernet networking and require lower data rates
- SPE is a new IEEE 802.3 standard enabling Ethernet connectivity and integrated power over a single twisted pair, over long distances
- Key features of SPE:
  - simplified Ethernet connectivity from 10Mbps to 1Gbps
  - 10Mbps data rate over 1000m distance
  - lower cost, smaller, more robust cabling and connectors
  - power over Data Lines (PoDL) or hybrid power/data
  - point to point / multidrop configurations





## The need for SPE in Industrial IoT applications

- Ethernet is widely used in industrial and building automation environments, but is not widely deployed to edge devices
- Legacy fieldbus systems are typically preferred to connect edge devices due to their simpler, lower cost implementations
- SPE reduces the cost & complexity of connecting edge devices, enabling the advantages of Ethernet connectivity to edge sensors and actuators
- SPE enables a simpler network, removing the requirement for gateways and translators between the industrial network and its edge devices
- SPE connectors and cables are lightweight, robust and smaller size than traditional Ethernet options



SPE standards Specifications, roadmap & SPE Industrial Partner Network

## Current IEEE 802.3 Standards for SPE



10Mbps data rates over 1000m distances enable wide IIoT device deployment

## Future IEEE 802.3 standards for SPE



Future developments will enable increased speeds and cable lengths over a single twisted pair

## Adoption timeline of SPE

- Early adoption cases include the addition of new sensor and actuator nodes and the migration of legacy fieldbus networks to SPE
- An Ethernet based standard removes the requirement for gateways between nodes and the TCP/IP network
- Provision of power over SPE cabling enables wide deployment of new nodes
- Higher data rates will accelerate deployment of SPE in preference to and alongside other industrial Ethernet options



## **SPE Connector Standards**

- For all industrial use cases the IEC 63171-6 connector must be used for the cabling infrastructure according to ISO/IEC 11801-3 and TIA 42
- The standard specifies SPE interfaces from an IP20 interface up to several IP65/67 M8 and M12 versions

| IEC | 63171 | Connectors for electrical and electronic equipment – shielded or unshielded free and fixed or balanced single-pair data transmission with current carrying capacity; <b>General requirements</b><br><b>Note:</b> Up to 2500MHz (ffs), current carrying cap classes I (2A at 60°C) / II (4A at 60°C) | connectors for<br>and tests | <b>48B/2776/CDV</b><br>2020-01-17 |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
|     | -1    | Part 1: Detail specification for 2-way, shielded or unshielded, free and fixed connectors:<br>mechanical mating information, pin assignment and additional requirements for <b>type 1</b> /<br><b>Copper LC Style</b><br><b>Note:</b> Up to 600MHz, up to 1,4A at 60°C                              | Contraction of the second   | Published<br>2020-04-14           |
|     | -2    | Part 2: Detail specification for 2-way, shielded or unshielded, free and fixed connectors:<br>mechanical mating information, pin assignment and additional requirements for <b>type 2</b><br><b>Note:</b> Up to 600MHz ffs, class II current carrying capability                                    |                             | 48B/2786/CDV                      |
|     | -4    | Part 4: Detail specification for 2- way, shielded or unshielded, free and fixed connectors:<br>mechanical mating information, pin assignment and additional requirements for <b>type 4</b><br><b>Note:</b> Up to 3000MHz ffs, <b>current carrying cap class II</b>                                  |                             | <b>48B/2724/CD</b><br>48B/2795/CC |
|     | -5    | Part 5: Detail specification for circular connectors with up to 8 ways, shielded or unshielded, free and fixed connectors: mechanical mating information, pin assignment and additional requirements for type 5<br>Note: Up to 600MHz ffs, current carrying cap class II                            |                             | <b>48B/2733/CD</b><br>48B/2805/CC |
|     | -6    | Part 1: Detail specification for 2-way and 4-way (data/power), shielded, free and fixed connectors for transmission capability and power supply capability with frequencies up to 600MHz<br>Note: Up to 4A / 8A at 60°C                                                                             | Č(                          | Published<br>2020-01-20           |

## **SPE Industrial Partner Network**

- Committed to enabling the deployment of SPE
- Provides the technologies, standardisation and guidance for the development of Industrial IoT applications
- Supports the development of the T1 Industrial interface according to IEC 63171-6



SPE networking Point to Point, Multidrop, PoDL and hybrid data/power

## Industrial SPE Network Options



## **SPE** Architectures



**Power** One PD powered by one PSE (PoDL)

Data

Point-to-point

#### Line topology (daisy-chaining)



**Power** Cascaded PDs powered by one PSE

#### Data

Multiple SPE nodes in series either through

- 1. Integrated switches per node
- 2. Multidrop



#### Star topology (distribution)



#### Power

Downstream PDs powered by switch

#### Data

Downstream SPE nodes connected to switch / multiple PHYs

## IP65/67 M8 Hybrid (4-Pin Data/Power) Connector





- Standardized in IEC 63171-6
- Enables powering of cascaded devices
- Provides up to 8A (power pins)
- Hybrid cable AWG18/AWG22 (power/data

#### PoDL vs. separate Power

PoDL

- + Lower cable weight
- + Smaller and cost-effective cable
- Point-to-point only
- Low noise limits for power signal
- Special circuitry required



Separate Power

+ Higher currents / power

- Higher cable weight

- Cable costs

+ Support of multiple topologies

Ø1 (Power)



Line topology (daisy-chaining)

Node 2

Node 1





# SPE Solutions IEC 63171-6 connectors and cables

## TE Connectivity SPE IP65/67 M8 Hybrid T1 Roadmap



## TE Connectivity SPE T1 IP20 Roadmap



Female Right-Angle FI Female Socket, Straight FI Male Plug, Straight Female Vertical Connectors Cable Plug, Male Cable Assembly, Straight Male-to-Male Straight & Cable Assemblies, Various Configurations Cable Plug, Male Male-to-Female Straight & Female Angled Cable Assemblies Cable Socket, Static Cables, High-Flex, Female Straight **Drag-Chain Cable Options** Cable Assembly, Male-to-Male Angled & Male-to-Female Angled

## Get started today

- Sample kits available now to develop SPE
  IIoT applications
- Discuss your design requirements with our engineers
- Visit the Avnet Abacus <u>Single Pair Ethernet</u> web page for further technical information, white papers and webinars

#### Engineering Services

#### Ask an expert

Have a question? Our regional technical specialists are on hand to help

# GET IN TOUCH

#### **Engineering samples**

## Single-Pair Ethernet sample kits

Request a TE Connectivity Single-Pair Ethernet (SPE) sample kit to test with your IIoT designs.



REQUEST NOW