

STM32WL MCU series wireless System-on-Chip

Long-range communications

The STM32 MCU & MPU portfolio

5 product ranges

3,300+ part numbers

A long-range System-on-Chip solution

One die, many loT possibilities

The integration pyramid

4

Make the choice of the STM32WL series

The 8 key points that make the difference

The STM32WL ecosystem is growing

Deep integration for a wide range of applications

4 modulations - many protocols

STM32WL sub-GHz - portfolio

Ideal for multiple applications in the LPWAN market

 Worldwide compatibility 150 to 960 MHz Linear Range Multiprotocol capable • ST Longevity commitment program: continuous supply for 10 years Utilities Industrial IoT Up to +22 dBm output power for wide coverage 571132111 • -148 dBm sensitivity with LoRa: Robust **RF** Link Reduced BOM cost Smart Smart Aq **Cities & buildings Unique-IDs** for enhanced traceability ٠ Down to 390 nA mode with RTC and 32KB of RAM for extended Battery lifetime Small form factor with UFBGA 5x5 package Logistics **Smart Home**

- Only 5 µs wake up time for best latencies
- Only 4.82 mA as LoRa Rx consumption for battery optimization

- Link budget > **160 dB** = Very long ranges
- Excellent battery lifetime: Only 15 mA for LoRa Tx consumption @ 10 dBm
- PCROP, ECC, TRNG, PKA, for best design robustness

- Down to 71 µA/MHz in run mode for efficient action
- < 1 µA stop mode with full RAM for battery life optimization
- 12-bit ADC & DAC for mixed applicative use cases

A higher level of integration

STM32WLEx line - a rich feature set

KEY FEATURES

- Arm® Cortex®-M4 & DSP up to 48 MHz
- Up to 256 Kbytes of flash memory and 64 Kbytes of SRAM

• sub-GHz radio

- Multimodulation: LoRa, (G)FSK, (G)MSK, BPSK
- 2 embedded power amplifiers:
 - 1 output up to +15 dBm
 - 1 output up to +22 dBm
- LoRa RX sensitivity: -148 dBm (SF12, BW=10.4kHz)
- RX: 4.82mA and TX: 15mA (at 10dBm) / 87mA (at 20dBm) [3.3V]

Ultra-Low Power consumption

- < 71µA/MHz Active mode (3V RF OFF)
- 1 µA Stop2 mode with RAM retention
- 390 nA Standby mode with RTC
- 31 nA Shutdown mode
- Peripherals

.

- 3xI²C, 2xUSART, 1xLP-UART, 2xSPI
- 7x timers + 2x ULP Comparators
- 1.8 to 3.6V voltage range (DC/DC, LDO)
- -40 to up to +105°C temperature range

13

Control Power supply 1.8 to 3.6 V w/ DCDC+ LDO POR/PDR/PVD/BOR Crystal oscillators 32 MHz (Radio + HSE) 32.768 KHz (LSE)	Arm [®] Cortex [®] -M4 DSP 48 MHz Nested vector interrupt controller (NVIC) Memory protected unit (MPU) JTAG/SW debug	Memory Up to 256-Kbyte Flash Up to 64-Kbyte SRAM CM4 or CM0 Boot Lock Boot loader Hide protect Timers
48 MHz ± 1% acc. over V and T(°C) RTC/AWU/CSS	2x DMA 7 channels Radio	1 x 32-bit timer 3x 16-bit timers 3x III P 16-bit timers
PLL SysTick timer	LoRa®, (G)FSK, (G)MSK, BPSK	Analog
2 watchdogs (WWDG/IWDG) 43 GPIOs	+15dBm & +22dBm Power Outputs -148 dBm sensitivity (LoRa)	1x 12-bit ADC SAR 2.5 Msps 12-bit DAC
Cyclic redundancy check Voltage scaling (2 modes)	150 MHz to 960 MHz	2x ULP comparators Temperature sensor
Security AES 256-bit + TRNG + PCROP Tamper detection Secure Areas Secure FW Install Debug control Boot Selection Secure Sub-GHz, MAC Layer, SFI Key Management Services	Arm [®] Cortex [®] -M0+ 48 MHz Nested vector interrupt controller (NVIC) Memory protected unit (MPU) SW debug	Connectivity 2x SPI, 3x I2C 2x USART LIN, smartcard, IrDA, Modem control 1x ULP UART

STM32WL5x line - a rich feature set Dual-core and enhanced security

KEY FEATURES

- Arm® Cortex®-M4 & DSP up to 48 MHz
- Up to 256 Kbytes of Flash and 64 Kbytes of SRAM
- Arm® Cortex®-M0+ up to 48 MHz

• sub-GHz Radio

- Multi-modulation: LoRa, (G)FSK, (G)MSK, BPSK
- 2 embedded power amplifiers:
 - 1 output up to +15 dBm
 - 1 output up to +22 dBm
- LoRa RX sensitivity: -148 dBm (SF12, BW=10.4kHz)
- RX: 4.82mA and TX: 15mA (at 10dBm) / 87mA (at 20dBm) [3.3V]

Ultra-Low Power consumption

- < 71µA/MHz Active mode (3V RF OFF)
- 1 µA Stop2 mode with RAM retention
- 390 nA Standby mode with RTC
- 31 nA Shutdown mode

• Peripherals

- 3xl²C, 2xUSART, 1xLP-UART, 2xSPI
- 7x timers + 2x ULP Comparators

Advanced security features

- 1.8 to 3.6V voltage range (DC/DC, LDO)
- -40 to up to +105°C temperature range

14

A flexible power scheme

Flexible power scheme FlexPowerControl

Benchmark scores

 \rightarrow CoreMark score = 162

→ ULPBbench score ≈ 204

Ultralow power platform

High efficiency

RF

Capable

Typ with LDO @ V_{DD} = 3 V @ 25 °C

Flexible power scheme matching your application needs

LPWAN made easy through ultra-low-power trade-offs

Efficient power management stop mode comparison

Flexible peripherals: power mapping

		STOP0	STOP1	STOP2		
Consumption (without real-time clock)		Typ, 25 °C, 3 V, LDO				
		400 µA	4.55 µA	1 µA		
Wake up time to	Flash	2.2 µs	5 µs	5.5 µs		
48 MHz	RAM	2.2 µs	5.1 µs	5.5 µs		
Wake up clock		≤ 48 MHz				
Regulato	or	Main or Low-Power regulator		Low-power regulator		
Periphera	Peripherals All		All	CSS, RTC, 3 tamper pins, 1x LPUART, 1x I ² C, VREFBUF, 2x COMP, 1x LPTIM, Dual-WDG, CRC, EXTI		

No impact on wake up time from embedded DCDC

Ultralow power & IoT-ready for worldwide applications

Best LoRa-enabled IP on the market

Transmission				
Parameter	Settings	Value		
ТХ	+10 dBm 868/915 MHz	15 mA DCDC		
TX	+20 dBm 868/915 MHz	87 mA DCDC		

Reception				
Parameter	Settings	Value		
LoRa sensitivity	BW_L = 10.4 kHz SF = 12	-148 dBm		
2-FSK Sensitivity	BR_F = 0.6 kb/s FDA = 0.8 kHz BW_F = 4 kHz	-125 dBm		
RX	FSK 4.8kb/s buck 100mA max	4.47 mA DCDC 8.18 mA LDO		
RX	LoRa [®] 125 kHz	4.82 mA DCDC 8.9 mA LDO		

Flexible power implementation

Tailor STM32WL to the requirements of IoT applications

STM32WL: no more TCXO!

Minimize your BOM costs, maximize your revenues

Advanced features, security, and stacks

Safety and security

Secure your application with embedded safety & security

Extended security

Dual-core security features

•

•

Secure Key Management Services

- Store keys in a dedicated memory area
- Secure memory area size is programmable
- Any type of key or secure object can be stored

Secure download

Secure Firmware Install or Update

- Embedded Secure Firmware Install (SFI) to secure manufacturing from untrusted manufacturer
- Customizable In the-field update (SBSFU) to perform extremely secure upgrade of the platform

Secure Boot (Root of trust)

- Boot from the right secure memory location
- Each application firmware is authenticated before being executed

Firmware IP Protection

Authentication

Crypto

- Embedded HW crypto accelerators for high performances. Supports ECC signature generation and verification
- True Random Generator
- Software Crypto Library to support additionally DES/TDES, ARC4, HASH, Poly, CHACHA, MD5 etc.

STM32WL the most secure sub-GHz SoC

Security in every corner with a dual-core architecture

- Secure System Flash Area (SFI/RSS)
- Memory Privilege watermarking, controlled by Secure Areas for the Flash and SRAM areas + Hide Protected Area (HDPA)
- Cortex-M0+ SRAM execution prevention

- Secure Area-aware configurable peripherals :
 - AES, PKA, TRNG, SPI3
 - DMA/DMAMUX channels
- Security by Option Bytes

- Independent configurable debug access to CM4 and CM0+
- Customer Secure Boot can be protected against debug
- Cortex-M0+ debug:
 - Can be disabled by User Option.
 - Disabled when executing system Flash SFI/RSS services

Configurable Flash Interface

Secure Areas & Interrupt Controllers

Power Controller

Secure boot and chain of trust

Firmware start and execution are always trusted

- A secure Boot, locked and protected against debug, is executed first at reset
- Next steps are authenticated and certified (RF stack & User Application)
- Next execution steps can then be started in a trusted way

26

Bring more security to your LoRaWAN® apps

Your implementation, your choice

Secure Implementation

Standard Implementation

Security overview dual-core secure implementation example

6 security domains for hardware + software isolation

Dual-core firmware isolation example

How to ensure devices are IoT-ready with radio certification in mind

- Cortex-M4 (non-secure)
 - Non-secure / Open debug
 - Intended for Application Code
- Cortex-M0+ (secure)
 - Secure code & data / Closed debug
 - Intended for radio stack isolated from Application
 - Secure FW Upgrade included (with ST keys)
 - Key Management Services for Application side (CM4) (Customers Key)

Memory security & privilege access

Secure firmware development

Memor	ry Area	Core / DMA	M0+ Hide Protection Secure	M0+ Secure	M0+ UNPRIVILEGED	M4 Non-Secure	M4 Non-Secure UNPRIVILEGED	DMA Secure	DMA Secure UNPRIVILEGED	DMA Non-Secure	DMA Non-Secure UNPRIVILEGED
	X	Hide Protection Secure	\odot	⊗	⊗	⊗	\bigotimes	RW	⊗	⊗	⊗
	SRAM	Secure	\odot	\odot	\bigotimes	\bigotimes	\bigotimes	RW	\bigotimes	\bigotimes	\bigotimes
Flash	X	Secure UNPRIVILEGED	\odot	\odot	\odot	⊗	⊗	RW	R	⊗	⊗
		Secure UNPRIVILEGED	\odot	\odot	\odot	\bigotimes	\bigotimes	RW	RW	\bigotimes	\bigotimes
	SRAM	Non-Secure	RW	RW	\bigotimes	\odot	\bigotimes	RW	\bigotimes	RW	\bigotimes
		Non-Secure	RW	RW	RW	\odot	\odot	RW	RW	RW	RW

IoT protection ready (2/2) STM32WL countermeasures against attacks

	Attacks	Forms of attacks	STM32WL countermeasures
Advar	Non-Invasive Attacks	 Environment modification Temperature Voltage Clock Fault injection (glitches) Exploit debug features Side channel, power Analysis 	 Temperature sensor Power supply integrity monitor Clock security system Tamper pads Watchdog Memory ECC, Parity check RTC alarm, Backup registers, SRAM mass erase JTAG Read out protection BOOT from Flash only
Basic	Software Attacks	 Low Authentication / Encryption Extract keys Exploitation of applicative test features Malware / Virus Replay, privilege escalation 	 Key Storage (KS) RNG, Crypto accelerator, CRC Write memory protection (WRP) Read Out memory protection (RDP) Memory Protection Unit (MPU) Secure Areas Secure Boot (SB) Secure Firmware Update (SFU) Proprietary Code Read-Out Protection (PCROP) 96-bit ID

Security takeaways

2 independent cores for maximum flexibility

Application benefits

- ST Secure Firmware Install (SFI/RSS)
- Secure Boot (SB)
- Secure Firmware Update (SFU)
- Secure Key Management Services (KMS)
- Secure radio MAC layer communication
- Up to 6 Security domains
- Chain of trust

Customer benefits

- → Flexible Security implementation
- → IP protection
- ➔ Non cloneable device
- ➔ Trustability of the device, anti-hacking
- ➔ Trustable fleet maintenance

LoRaWAN - Chips & stacks delivery model

Open chips, takeaway stacks

Certified LoRaWAN stack

- Open stack
- Available from st.com/STM32CubeWL

Enjoy Sigfox wherever you are

An open SoC for a global network

Certified stack from RC1 to RC7

- + Monarch certified!
- Open stack
- Available from st.com/STM32CubeWL

STM32WL and W-MBUS

STM32WL is ideal for smart metering applications

STM32WL – W-MBUS Modes

STM32WL is ideal for smart metering applications

Note: 915MHz modes available on demand

From W-MBUS to W-MBUS-over-LoRaWAN

STM32WL for smart metering

STACKFORCE

- W-MBUS MAC and PHY can be replaced by LoRaWAN Mac and PHY
- W-MBUS benefits from LoRaWAN long-range capabilities and flexibility
- Mioty stack offer also available

STM32WL and Mesh

STM32WL and W-MBUS

STM32WL is ideal for smart metering applications 157 STACKFORCE STM32 Partner embedded.connectivity.solutions STM32WL STM32WL life.augmented Please contact Stackforce Sales Office to get W-MBUS stack for STM32WL

Authorized Partner

STM32WL and Mesh by embetech

Demo version available for Nucleo Boards

Please contact embetech Sales Office to get EmbeNET stack for STM32WL contact@embe.tech

STM32WL and FUOTA

Firmware Update Over The Air

STM32WL ecosystem

STM32WL reference designs best performance for your country regulation

life.guamente

RF integrated passive device (IPD) for STM32WL

Housed between STM32WL and the antenna, From discrete to RF IPD

life.augmented

RF IPD for STM32WL

Ready-to-use, between the STM32WL and the antenna

STM32WL IPD tailored for your needs

Pick-up your own IPD and start your wireless design

Select your IPD fine-tuned for your application

Power Frequency	22 dBm 864-928 MHz				15 dBm 864-928 MHz	
#PCB Layers	4 4 2 4		4 2		4	2
STM32WL BGA	BALFHB-WL-01D3			BALFHB-WL-04D3		
STM32WL QFN		BALFHB-WL-02D3 BALFHB-WL-03D3			BALFHB-WL-05D3	BALFHB-WL-06D
Power Frequency	17 dBm 470-530 MHz			STM32WL BGA	STM32WL5xJxlx STM32WLExJxlx	
#PCB Layers	4	4	4 2		STM32WL5xCxUx	
STM32WL BGA	BALFLB-WL-07D3			QFN	STWI5ZWLEXGXUX	
STM32WL QFN		BALFLB-WL-08D3	BALFLB-WL-09D3			

Download schematics and layout

STM32WL REFERENCE DESIGN

- Fast time to market
 FCC/CE certified open hardware
- Worldwide support: Optimized for frequency regulation
- Material available:
 Schematics & Layout

STM32WL reference designs

Get ready to start your LoRaWAN® application

Fast time to market FCC/CE certified open hardware

Worldwide support

Optimized for frequency regulation

Material available

- Supply and SMPS circuit
- RF matching circuit
- RF filtering circuit
- Discrete and IPD solution

STM32WL reference designs best performance for your country regulation

	Frequency & Output Power	[470:530 MHz] 17 dBm	[864:928 MHz] 15 dBm	[864:928 MHz] 22dBm	
UFBGA73 (5 x 5 mm)	UFBGA73		STDES-WL5I4SBB		
	UFQFPN48		STDES-WL5U4SBB		
UFQFPN48					

life.gugmented

 $(7 \times 7 \text{ mm})$

+169Mhz reference design : **STDES-WL5U4SHW**

STM32WL reference designs optimized to reduce your BOM cost

Save RX-TX Switch Cost Direct Tie Design			
[433 MHz]/15 dBm			
[864:928 MHz]/15 dBm	STDES-WESO4DED		
[470:530 MHz]/17 dBm	STDES-WI 5UADHR		
[864:928 MHz]/22 dBm	<u>01020-W2004DHD</u>		

Save PCB cost: 2-LAYER PCB Design			
[470:530 MHz]/17 dBm			
[864:928 MHz]/15 dBm	STDES-WL5U2SBB		
[864:928 MHz]/22 dBm			

STM32WL – ecosystem overview

Fully integrated into the rich and market-proven STM32 ecosystem

life.auamentec

Prototyping made as easy as 1,2,3

life.auamented

The STM32WL Nucleo-64 at a glance

NUCLEO-WL55JC1

868/915/923 MHz

NUCLEO-WL55JC2

433/470 MHz

STM32WL - certifications overview

Protocol and commercial certifications

Software development tools

A complete flow, from configuration to monitoring

STM32CubeMonitor

- Wireless features of STM32WL55
 - Multi-Modulation commands •
 - sub-GHz RF tests
 - Send Protocols commands •
 - Perform LoRaWAN/Sigfox tests •

- Suitable for STM32 Nucleo, or custom boards
- USB or UART to Virtual Com Port

Thinks BED Darking

Key takeaway: end-to-end ecosystem

STM32 Cube

Save on your application cost

Integrated functionalities helps you drop the BOM down

Optimization of the silicon cost

- Deep integration factor
- System-on-chip avoids to use a second radio
- Less external components
- Single 32 MHz crystal for CPU & embedded radio
- 32 kHz master clock output available
- Possibility to use a 32 MHz crystal (XO) instead of a temperature compensated crystal (TCXO)
- 2-layer PCB enablement with QFN package

\$)

Free ecosystem

- LoRaWAN[®] stack
- Sigfox stack
- STM32CubeMX
- STM32CubeMonitor
- STM32CubeProg

STM32 rolling longevity commitment

Longevity commitment is renewed every year

Starting in 2021

- STM32F1 (launched in 2007)
- STM32L1 (launched in 2009)
- STM32F2 (launched in 2010)

• ...

- STM32WB (launched in 2018)
- STM32G0 (launched in 2018)
- STM32G4 (launched in 2019)
- STM32WL (launched in 2020)

22 years of commitment

20 years of commitment

19 years of commitment

11 years of commitment

11 years of commitment

10 years of commitment

10 years of commitment

Releasing your creativity

STM32

<u>/STM32</u>

@ST_World

community.st.com

www.st.com/STM32WL

wiki.st.com/stm32mcu

github.com/STMicroelectronics

STM32 Wireless – Video Playlist

STM32WL blog article

TNOZVE DOG ATTOC

STM32WL Online Training

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

