




The ABS601 Series of AC-DC power supplies provides up to 600 W of regulated output power through a wide input voltage range 85 – 305 VAC in a single output of 24 VDC or 48 VDC.

The ABS601 Series comes in a 4.92 x 9.86 x 2.36 inch form factor with a full set of protection features.

The ABS601 Series is available in an aluminium extruded chassis having fins for an optimal heat dispersion via natural convection. The input / output connections are fixed to the chassis through water tight glands, which combined with the sealed enclosure, give the power supply an IP66/67/68 ingress protection grade.

The -SL option offers a 5 V<sub>DC</sub> stand-by output and a set of control signals: +/- remote sense, remote On/Off (-PS\_Inhibit), power good (PS\_Ok), I-share (ISHARE1+V\_SLOGIC).

The ABS601 Series complies with the latest international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).



- Sealed enclosure, IP66/67/68 Ingress Protection grade
- High efficiency up to 94% (50% to 100% load)
- Low stand-by power consumption (< 0.35 W)
- Universal input voltage range 85 305 VAC
- Input inrush current limiting <30 A
- 800 W peak power (up to 10 s)
- Single 24, 48 VDC voltages
- Active PFC, EN61000-3-2 compliant (Class C, >25% load)
- Low earth leakage current (typ. <400 µA, 264 VAC, 60 Hz)
- Over temperature, OV, OC and SC protections.
- Stand by +5 V, 1.5 A output.
- Remote On / Off signal
- IT approval to IEC/EN 60950-1and IEC/EN 62368-1
- LED lighting approval to UL 8750
- UV resistant input / output cables
- Overall dimensions 125.0 x 250.5 x 60.0 mm (4.92 x 9.86 x 2.36 in)
- RoHS 3 compliant (Directive 2015/863/EU)

#### **Applications**

- Video Wall Display and SSL Lighting
- Industrial Process Control and Automation
- Telecommunications / Broadcasting
- Harsh environment supply









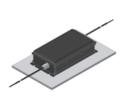




# 1. MODEL SELECTION

| MODEL NUMBER   | PACKAGE & COOLING                                         | INPUT VOLTAGE<br>RANGE<br>[VAC] | NOM. OUTPUT<br>VOLTAGE<br>[VDC] | MAX. OUTPUT<br>POWER<br>[W] | MAX. OUTPUT<br>CURRENT<br>[A] | DIMENSIONS              |
|----------------|-----------------------------------------------------------|---------------------------------|---------------------------------|-----------------------------|-------------------------------|-------------------------|
| ABS601-1T24    | Sealed Chassis<br>Natural Convection                      | 85 - 305                        | 24                              | 600                         | 25                            |                         |
| ABS601-1T24-SL | Sealed Chassis Natural Convection + Control Signals       | 85 - 305                        | 24                              | 600                         | 25                            | 125.0 x 250.5 x 60.0 mm |
| ABS601-1T48    | Sealed Chassis<br>Natural Convection                      | 85 - 305                        | 48                              | 600                         | 12.5                          | 4.92 x 9.86 x 2.36 in   |
| ABS601-1T48-SL | Sealed Chassis<br>Natural Convection<br>+ Control Signals | 85 - 305                        | 48                              | 600                         | 12.5                          |                         |

# 2. INPUT SPECIFICATIONS


| PARAMETER                                    | DESCRIPTION / CONDITION                                                                                                                            |                                                     | MIN            | NOM             | MAX                  | UNIT             |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|-----------------|----------------------|------------------|
| AC Input Voltage                             | PS starts and operates at 85 $V_{\text{AC}}$ at                                                                                                    | all load conditions                                 | 85             | 100-277         | 305                  | $V_{\text{RMS}}$ |
| DC Input Voltage                             |                                                                                                                                                    |                                                     | 170            | -               | 300                  | $V_{DC}$         |
| Input Frequency                              | 440 Hz with reduced PFC and outp Consult factory for details.                                                                                      | ut power rating.                                    | 47             | 50/60           | 63                   | Hz               |
| Input Current                                | RMS at 180 V <sub>AC</sub> , maximum load, 50 RMS at 85 V <sub>AC</sub> , maximum load, 50 /                                                       |                                                     | -              | -               | 4.0<br>8.5           | Α                |
| Inrush Current                               | Cold start, 25 °C ambient, full load                                                                                                               | 115 V <sub>AC</sub><br>230 V <sub>AC</sub>          | -              | -               | 20<br>30             | Α                |
| Fusing                                       | High breaking, 10 A, 250 V on each                                                                                                                 | AC lines.                                           | -              | -               | 10                   | Α                |
|                                              | At 115 V <sub>AC</sub>                                                                                                                             | 20% rated load<br>50% rated load<br>100% rated load | 89<br>93<br>92 | -<br>-<br>-     | -                    |                  |
| Efficiency                                   |                                                                                                                                                    | 10070 Tated Todd                                    | J.E            |                 |                      | %                |
|                                              | At 230 / 277 V <sub>AC</sub>                                                                                                                       | 20% rated load<br>50% rated load<br>100% rated load | 90<br>94<br>94 | -<br>-<br>-     | -<br>-<br>-          |                  |
| Input Power Consumption                      | Power on, 115 $V_{AC}$ , no load<br>Power on, 230 $V_{AC}$ , no load<br>Stand by, 115, 230 $V_{AC}$ , no load                                      |                                                     | -              | -<br>-<br>-     | 5<br>4<br>0.35       | W                |
| Power Factor                                 | From 50 to 100% of rated load, 230                                                                                                                 | ), 115 $V_{AC}$ , 50 / 60 Hz input voltages.        | 0.90           | -               | -                    | -                |
| THDi                                         | From 50 to 100% rated load, 115, 2                                                                                                                 | 30, 277 V <sub>AC</sub> 50 / 60 Hz.                 | -              | -               | 20                   | %                |
| Harmonic Current<br>Fluctuations and Flicker | Complies with EN 61000-3-2 at 230<br>Complies with EN 61000-3-2 Class<br>Complies with EN 61000-3-3 at nor                                         | C at 230 V <sub>AC</sub> , 50/60 Hz, >150 W load.   |                |                 |                      |                  |
| Earth Leakage Current                        | Normal conditions 115 $V_{\text{RMS}}$ , 60 Hz 230 $V_{\text{RMS}}$ , 50 Hz 264 $V_{\text{RMS}}$ , 60 Hz 277 $V_{\text{RMS}}$ , 60 Hz (worst case) |                                                     | -<br>-<br>-    | 170<br>290<br>- | -<br>-<br>460<br>490 | μА               |



#### 3. OUTPUT SPECIFICATIONS

| ## 10.5% set point accuracy ## 10.5% set point accuracy   CSL option    CSL option    Convection cooling (Refer to the de-rating curves below)   Peak (less than 10 s, after P_OK high)   Peak (less than 10 s, after P_OK high)   V1: 24 V <sub>DC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PARAMETER                             | DESCRIPTION / CONDITION                                                                            |    | MIN         | NOM | MAX  | UNIT      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|----|-------------|-----|------|-----------|
| V1 Output Current *   V1: 24 V <sub>DC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V1 Output Voltages                    | RS+ closed on +V1, RS- closed on V1 RTN, at 20% loa                                                | nd | -           |     | -    | V         |
| V1 Voltage Adjustment Range         Manually by push up and down buttons         -         ±5         -         %V1           V1 Line Regulation         V <sub>AC</sub> : 85 – 305 V <sub>RMS</sub> -         ±0.1         %V1           V1 Load-Line-Cross Regulation         V <sub>AC</sub> : 85 – 305 V <sub>RMS</sub> ; I1: 0 – 100%         -         -         ±2         %V1           V1 Ripple and Noise         Rated load, Peak-to-peak, 20 MHz BW. (100 nF ceramic, 10 μF tantalum at load)         -         -         1         %V1           V1 Ripple and Noise         Rated load, Peak-to-peak, 20 MHz BW. (100 nF ceramic, 10 μF tantalum at load)         -         -         1         %V1           V1 Ripple and Noise         25% load changes at 1 A/μs         24 V at 1000 μF load / lour > 2.5 A         -         -         ±5         %V1           V1 Start Sys         24 V at 1000 μF load / lour > 2.5 A         -         -         ±5         %V1           V1 Start-up Rise Time         85 < V <sub>IN</sub> < 305, any load conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V1 Output Power Rating *              |                                                                                                    | v) |             |     |      | W         |
| V1 Line Regulation V <sub>AC</sub> : 85 – 305 V <sub>RMS</sub> ; I1: 0 – 100% - ±0.1 %V1 V1 Load-Line-Cross Regulation V <sub>AC</sub> : 85 – 305 V <sub>RMS</sub> ; I1: 0 – 100% - ±2 %V1 V1 Ripple and Noise Rated load, Peak-to-peak, 20 MHz BW. (100 nF ceramic, 10 μF tantalum at load) - 1 1  %V1 Transient Response: 25% load changes at 1 A/μs V1, 5V <sub>SB</sub> 24 V at 1000 μF load / louτ > 2.5 A Voltage Deviation 48 V at 560 μF load / louτ > 0.1 A V1 Start-up Rise Time 85 <v<sub>IN&lt;305, any load conditions. 10 - 100 ms V1 Hold-up Time At nominal V<sub>IN</sub>, full load VS-Logic and I-Share signals connected together. 45.5 - 54.5 %I1 RS', RS' signals connected together and to the load V1 in regulation after de-asserting PS_Inhibit - 2 2050 ms V1 in regulation after AC is applied (worst case: 85 V<sub>AC</sub>) - 1500 Turn-on Overshoot V1, 5V<sub>SB</sub> 10 0 - A Maximum Load Capacitance ±3% set point accuracy, 20% load 5 V<sub>SB</sub> 0utput Voltage ±3% set point accuracy, 20% load 5 V<sub>SB</sub> 0utput Current - 1.5 A</v<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V1 Output Current *                   |                                                                                                    |    |             |     |      | Α         |
| V1 Load-Line-Cross Regulation V <sub>AC</sub> : 85 – 305 V <sub>PMS</sub> ; I1: 0 – 100% - ±2 %V1 V1 Ripple and Noise Rated load, Peak-to-peak, 20 MHz BW. (100 nF ceramic, 10 μF tantalum at load) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V1 Voltage Adjustment Range           | Manually by push up and down buttons                                                               |    | -           | ±5  | -    | %V1       |
| V1 Ripple and Noise   Rated load, Peak-to-peak, 20 MHz BW. (100 nF ceramic, 10 μF tantalum at load)   -   -   1   %V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V1 Line Regulation                    | V <sub>AC</sub> : 85 – 305 V <sub>RMS</sub>                                                        |    | -           | -   | ±0.1 | %V1       |
| 100 nF ceramic, 10 μF tantalum at load    Transient Response:   25% load changes at 1 A/μs     V1, 5V <sub>SB</sub>   24 V at 1000 μF load / l <sub>OuT</sub> > 2.5 A     Voltage Deviation   48 V at 560 μF load / l <sub>OuT</sub> > 1.25 A     5 V <sub>SB</sub> at 560 μF load / l <sub>OuT</sub> > 0.1 A     V1 Start-up Rise Time   85 <v<sub>IN&lt;305, any load conditions.   10</v<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V1 Load-Line-Cross Regulation         | V <sub>AC</sub> : 85 – 305 V <sub>RMS</sub> ; I1: 0 – 100%                                         |    | -           | -   | ±2   | %V1       |
| $\begin{array}{c} V1,5V_{SB}\\ Voltage\ Deviation \end{array} \hspace{0.2cm} \begin{array}{c} 24V\ at\ 1000\ \mu F\ load\ /\ l_{OUT}>2.5\ A\\ 48V\ at\ 560\ \mu F\ load\ /\ l_{OUT}>2.5\ A\\ 5V_{SB}\ at\ 560\ \mu F\ load\ /\ l_{OUT}>0.1\ A \end{array} \hspace{0.2cm} \begin{array}{c} \\ V1\ Start\ up\ Rise\ Time \end{array} \hspace{0.2cm} \begin{array}{c} 24V\ at\ 1000\ \mu F\ load\ /\ l_{OUT}>2.5\ A\\ 5V_{SB}\ at\ 560\ \mu F\ load\ /\ l_{OUT}>0.1\ A \end{array} \hspace{0.2cm} \begin{array}{c} \\ V1\ Start\ up\ Rise\ Time \end{array} \hspace{0.2cm} \begin{array}{c} \\ 85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V1 Ripple and Noise                   |                                                                                                    |    | -           | -   | 1    | %V1       |
| V1 Hold-up Time At nominal $V_{IN}$ , full load 16 ms  Two units in parallel at I1 rated load.  V3-Logic and I-Share signals connected together. RS+, RS+ signals connected together and to the load  V1 in regulation after de-asserting PS_Inhibit - 2050 ms  Start-up Delay V1 in regulation after AC is applied (worst case: 85 $V_{AC}$ ) - 1500  Turn-on Overshoot - 100 %V1  Maximum Load V1, $5V_{SB}$ 0 - A  Maximum Load Capacitance V1, $5V_{SB}$ set point accuracy, 20% load 5 - V $5V_{SB}$ Output Voltage $\pm 3\%$ set point accuracy, 20% load 1.5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V1, 5V <sub>SB</sub>                  | 24 V at 1000 μF load / l <sub>OUT</sub> > 2.5 A<br>48 V at 560 μF load / l <sub>OUT</sub> > 1.25 A |    | -           | -   | ±5   |           |
| $V1 \ \text{Current Sharing Accuracy} \qquad \begin{array}{c} \text{Two units in parallel at } 11 \ \text{rated load.} \\ \text{VS-Logic and I-Share signals connected together.} \\ \text{RS}^*, \text{RS}^* \text{ signals connected together and to the load} \\ \text{V1 in regulation after de-asserting PS_Inhibit} & - & - & 450 \\ \text{V1 in regulation after AC is applied (worst case: 85 $V_{AC}$)} & - & - & 2050 \\ \text{SV}_{SB} \text{ in regulation after AC is applied (worst case: 85 $V_{AC}$)} & - & - & 1500 \\ \text{Turn-on Overshoot} & - & - & 10 & \% V1 \\ \text{Minimum Load} & V1, 5V_{SB} & 0 & - & - & A \\ \text{Maximum Load Capacitance} & V1: 24 V_{DC} & - & - & 16000 \\ \text{V1: } 48 V_{DC} & - & - & 16000 \\ \text{V1: } 48 V_{DC} & - & - & 8000 \\ \text{SV}_{SB} \ \text{Output Voltage} & \pm 3\% \ \text{set point accuracy, } 20\% \ \text{load.} & - & 5 & - & V \\ \text{5} V_{SB} \ \text{Output Current} & - & - & 1.5 & A \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V1 Start-up Rise Time                 | 85 <v<sub>IN&lt;305, any load conditions.</v<sub>                                                  |    | 10          | -   | 100  | ms        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V1 Hold-up Time                       | At nominal V <sub>IN</sub> , full load                                                             |    | 16          | -   | -    | ms        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V1 Current Sharing Accuracy           | VS-Logic and I-Share signals connected together.                                                   |    | 45.5        | -   | 54.5 | %I1       |
| Turn-on Overshoot         Minimum Load       V1, 5V <sub>SB</sub> 0       -       -       A         Maximum Load Capacitance       V1: 24 V <sub>DC</sub> V1: 48 V <sub>DC</sub> V | Start-up Delay                        | V1 in regulation after AC is applied (worst case: 85 V <sub>AC</sub> )                             |    | -<br>-<br>- |     | 2050 | ms        |
| Minimum Load V1, $5V_{SB}$ 0 A A Maximum Load Capacitance V1: $24V_{DC}$ $16000$ $\mu$ F $5V_{SB}$ Output Voltage $\pm 3\%$ set point accuracy, $20\%$ load 5 - $1.5$ A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turn-on Overshoot                     |                                                                                                    |    | -           | -   |      |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum Load                          | V1, 5V <sub>SB</sub>                                                                               |    | 0           | -   |      |           |
| 5 V <sub>SB</sub> Output Current - 1.5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum Load Capacitance              |                                                                                                    |    | -           |     |      | μF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 V <sub>SB</sub> Output Voltage      | ±3% set point accuracy, 20% load.                                                                  |    | -           | 5   | -    | V         |
| 5 V <sub>SB</sub> Load, line cross Regulation $V_{AC}$ : 85 – 305 V <sub>BMS</sub> ; I <sub>SB</sub> : 0 – 100% - ±5 %V <sub>SB</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 V <sub>SB</sub> Output Current      |                                                                                                    |    | -           | -   | 1.5  | Α         |
| 11107 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5V_{SB}$ Load, line cross Regulation | $V_{AC}$ : 85 – 305 $V_{RMS}$ ; $I_{SB}$ : 0 – 100%                                                |    | -           | -   | ±5   | $%V_{SB}$ |

<sup>\*</sup> Rated currents and combined power are referred to 55 °C ambient and  $V_{AC} \ge 180 V_{RMS}$ .





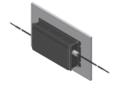



Figure 1. Mounting Orientation



#### 3.1 OUTPUT POWER DE-RATING CURVES

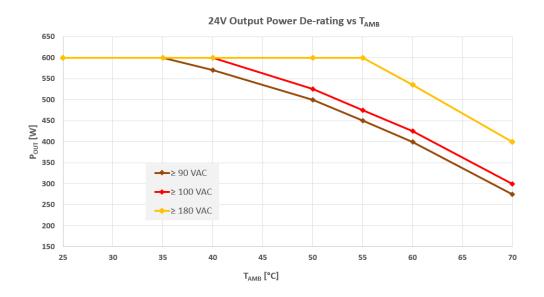
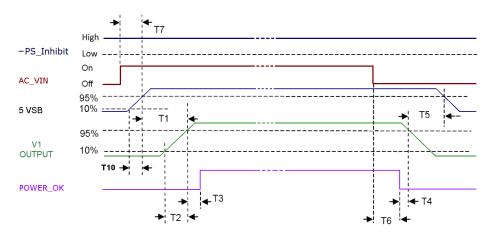





Figure 2. Power Derating Curves of ABS601 Series V1  $P_{OUT}$  to  $T_{AMB}$ 

Note: The de-rating curves are effective regardless mounting orientation




# 4. SIGNALS, CONTROLS & TIMING SPECIFICATIONS

Base signals and controls are accessible from signal connector P204.

| SIGNAL                  | DESCRIPTION / CONDITION                                                 | MIN | NOM | MAX  | UNIT |
|-------------------------|-------------------------------------------------------------------------|-----|-----|------|------|
| -PS_Inhibit             | Active low. Input low voltage                                           | 0   | -   | 1.5  | V    |
|                         | Input high voltage ( $I_{IN}$ = 300 $\mu$ A)                            | 3.5 | -   | 5.5  | V    |
|                         | V1 disabled when -PS_Inhibit is pulled low                              |     |     |      |      |
|                         | 5V <sub>SB</sub> not affected by -PS_Inhibit                            |     |     |      |      |
|                         | V1 enabled when -PS_Inhibit is floating or high                         |     |     |      |      |
| P_OK*                   | Logic level low (<10 mA sinking)                                        | -   | -   | 0.7  | V    |
|                         | Logic level high (100 μA sourcing)                                      | 2.4 | -   | 5.5  | V    |
|                         | Low to high time after V1 in regulation                                 | 40  | -   | 350  | ms   |
|                         | Power down warning time                                                 | 1   | -   | -    | ms   |
| 5V <sub>SB</sub> Output | Active and in regulation after a 85 <v<sub>AC&lt;264 is applied</v<sub> | -   | -   | 1500 | ms   |
|                         | 5V <sub>SB</sub> not affected by PS_Inhibit                             |     |     |      |      |

<sup>\*</sup> When V1 is On, a P\_OK low may indicates V1 under voltage condition. When two ABS601 operate in parallel, P\_OK low in one unit indicates that it is not sharing the expected amount of current (current sharing fault). A 10 k $\Omega$  internal pull up to 5V<sub>SB</sub> is used; do not add any other external pull up.


#### AC/DC INPUT OFF-TO-ON AND ON-TO-OFF TIMINGS



| 5V <sub>SB</sub> On – V1 On           | 250 ms ≤ T1 ≤ 550 ms      |
|---------------------------------------|---------------------------|
| V1 rise time                          | 10 ms ≤ T2 ≤ 100 ms       |
| 5V <sub>SB</sub> rise time            | 3 ms ≤ T10 ≤ 40 ms        |
| V1 On - POWER_OK delay                | 200 ms ≤ T3 ≤ 350 ms      |
| Power down warning                    | T4≥1 ms                   |
| V1 Off – 5V <sub>SB</sub> Off         | T5≥0.5 s (V1 load > 25 W) |
| AC Off – POWER_OK low                 | T6≥15 ms                  |
| AC_On – 5V <sub>SB</sub> turn on time | T7 ≤ 1.5 s                |



# PS\_INHIBIT OFF-TO-ON AND ON-TO-OFF TIMINGS



| V1 rise time                     | 10 ms ≤ T2 ≤ 100 ms  |
|----------------------------------|----------------------|
| V1 On - POWER_OK delay           | 200 ms ≤ T3 ≤ 350 ms |
| Power down warning               | T4≥1 ms              |
| PS_Inhibit - POWER_OK low timing | T8 ≤ 2 ms            |
| PS_Inhibit - V1 On delay         | T9 ≤ 450 ms          |

### 5. PROTECTION SPECIFICATIONS

| PARAMETER                            | DESCRIPTION / CONDITION                                                                                                                                       | MIN               | NOM         | MAX               | UNIT                                              |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------------|---------------------------------------------------|
| Input Under Voltage                  | Auto-recovering                                                                                                                                               | 58                | 75          | 82                | $V_{AC}$                                          |
| Input Fuse                           | High breaking, 10 A, 250 V on L and L1.                                                                                                                       | -                 | -           | 10                | Α                                                 |
| Over Current                         | At nominal input voltages V1: Hiccup mode, auto-recovering (>10 s) V1: Hiccup mode, auto-recovering (<10 s) 5 V <sub>ss</sub> : Hiccup mode, auto-recovering: | 108<br>135<br>1.6 | -<br>-<br>- | 132<br>163<br>3.6 | %I1 <sub>Rated</sub><br>%I1 <sub>Rated</sub><br>A |
| Short Circuit                        | At nominal input voltages V1: Hiccup mode, auto-recovering. 5V <sub>SB</sub> : Hiccup mode, auto-recovering.                                                  | -                 | -           | -                 |                                                   |
| Over Voltage                         | V1, Power shut down, latch off.<br>12V <sub>SB</sub> , Hiccup mode, auto-recovering.                                                                          | 120<br>-          | -           | 145<br>150        | $%V_{NOM}$                                        |
| Over Temperature (on primary stage)  | Shut down, latch off.                                                                                                                                         | -                 | -           | -                 | °C                                                |
| Over Temperature (on secondary side) | Hiccup mode, auto-recovering.                                                                                                                                 | -                 | -           | -                 | °C                                                |
| Isolation: Primary-to-Secondary      | Reinforced                                                                                                                                                    | 5660<br>4000      | -           | -                 | $V_{DC}$ $V_{AC}$                                 |
| Isolation: Input-to-Earth            | Basic<br>Production tested at 2121 V <sub>DC</sub>                                                                                                            | 2121<br>1500      | -           | -                 | $V_{DC}$ $V_{AC}$                                 |
| Isolation: V1-to-5V <sub>SB</sub>    | Basic                                                                                                                                                         | 100               | -           | -                 | V <sub>AC</sub>                                   |
| Isolation: Output-to-Earth           | Basic                                                                                                                                                         | 1500              | -           | -                 | $V_{AC}$                                          |
| Equipment Protection Class           | Class I, compatible with BF (Body Floating) ME (Medical Equipment)                                                                                            |                   |             |                   |                                                   |



#### 6. ENVIRONMENTAL SPECIFICATIONS

| PARAMETER                                      | DESCRIPTION / CONDITION                                                                                                                                                                           | MIN             | NOM | MAX      | UNIT   |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|----------|--------|
| Operating Temperature Range                    | No de-rating up to 55°C, at ≥ 180 V <sub>AC</sub>                                                                                                                                                 | -30             | -   | 55       | °C     |
| Operating Temperature Range with Derating      | See derating curves and conditions in the Output Specification section                                                                                                                            | s _             | -   | 70       | °C     |
| Storage Temperature Transportation Temperature | As per IEC/EN 60721-3-1 Class 1K4<br>As per IEC/EN 60721-3-2 Class 2K4                                                                                                                            | -40             | -   | 85       | °C     |
| Humidity                                       | RH, Non-condensing Operating.<br>Non-operating                                                                                                                                                    | -               | -   | 90<br>95 | %<br>% |
| Operating Altitude                             |                                                                                                                                                                                                   | -               | -   | 5000     | m      |
| Shock                                          | EN 60068-2-27  Operating: Half sine, 30 g, 18 ms, 3 axes, 6x each (3 Non-Operating: Half sine, 50 g, 11 ms, 3 axes, 6x each (3                                                                    |                 |     |          |        |
| Vibration                                      | EN 60068-2-64 Operating: Sine, 10 – 500 Hz, 1 g, 3 axes, 1 oct/min., Random, 5 – 500 Hz, 0.02 g²/Hz, 1 g <sub>RMS</sub> , 3 Non-Operating: 5 – 500 Hz, 2.46 g <sub>RMS</sub> (0.0122 g²/Hz), 3 ax | 3 axes, 30 min. | Ŭ , |          |        |
| MTBF                                           | Full Load, 40 °C ambient<br>80% Duty cycle, Telcordia SR-332 Issue 2                                                                                                                              | 200000          | -   | -        | Hours  |
| Useful Life                                    | Nominal V <sub>IN</sub> , 80% load, 40 °C ambient (IPC9592)                                                                                                                                       | <del>-</del>    | 10  | -        | Years  |

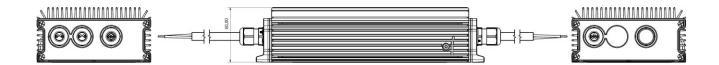
# 7. ELECTROMAGNETIC COMPATIBILITY (EMC) - EMISSIONS

| PARAMETER                          | DESCRIPTION / CONDITION                                                                                                             | STANDARD                                        | PERFORMANCE<br>CLASS |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|
| Conducted                          | 115, 230, 277 V <sub>RMS</sub> , Maximum load                                                                                       | EN 55032 (ITE)<br>EN 55011 (ISM)<br>FCC Part 15 | В                    |
| Radiated                           | The "SL" variant compliance to the Class B is conditioned by the use of a common ground plane between the power supply and its load | EN 55032 (ITE)<br>EN 55011 (ISM)<br>FCC Part 15 | В                    |
| Line Voltage Fluctuation & Flicker | At 20%, 50% and 100% maximum load<br>Nominal input voltages                                                                         | EN 61000-3-3                                    |                      |
| Harmonic Current Emission          | 230 VAC input voltage, 50 / 60 Hz<br>230 VAC 50 / 60 Hz, >150 W load                                                                | EN 61000-3-2<br>EN 61000-3-2                    | A, D<br>C            |

# 8. ELECTROMAGNETIC COMPATIBILITY (EMC) - IMMUNITY

| PARAMETER               | DESCRIPTION                             | / CONDITION                                                                                                                 | STANDARD                                                         | TEST LEVEL | CRITERIA                                          |
|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------|---------------------------------------------------|
|                         |                                         | ard for Industrial/IMS equipment                                                                                            | EN 55024<br>EN 61000-6-2                                         |            |                                                   |
| ESD                     | 15 kV air dischar<br>at any point of th | ge, 8 kV contact,<br>ne system.                                                                                             | EN 61000-4-2                                                     | 4          | Α                                                 |
| Radiated Field          | 10 V/m, 20-2700                         | MHz, 1 KHz, 80% AM.                                                                                                         | EN 61000-4-3                                                     | 3          | Α                                                 |
| Electric Fast Transient | ±2 kV on AC pov                         | ver port for 1 minute                                                                                                       | EN 61000-4-4                                                     | 3          | Α                                                 |
| Surge                   | ±2 kV line to line                      | ; ± 4 kV line to earth on AC power port                                                                                     | EN 61000-4-5                                                     | 4          | Α                                                 |
| Conducted RF Immunity   | 10 V <sub>RMS</sub> , 0.15-80           | MHz, 1 kHz, 80% AM                                                                                                          | EN 61000-4-6                                                     | 3          | Α                                                 |
| Dips and Interruptions  | 200 – 277 V <sub>AC</sub> :             | Drop-out to 0% for 10 ms<br>Dip to 40% for 5 cycles (100 ms)<br>Dip to 70% for 25 cycles (500 ms)<br>Drop-out to 0% for 5 s | EN61000-4-11<br>EN61000-4-11<br>EN61000-4-11<br>EN61000-4-11     |            | A<br>A<br>A<br>B                                  |
| Sipo and interruptions  | 100 – 127 V <sub>AC</sub> :             | Drop-out to 0% for 10 ms<br>Dip to 40% for 5 cycles (100 ms)<br>Dip to 70% for 25 cycles (500 ms)<br>Drop-out to 0% for 5 s | EN 61000-4-11<br>EN 61000-4-11<br>EN 61000-4-11<br>EN 61000-4-11 |            | A A (derate to 150 W)<br>A (derate to 400 W)<br>B |




Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

### 9. SAFETY AGENCIES APPROVALS

| CERTIFICATION<br>BODY      | SAFETY STANDARDS                                                                | CATEGORY                                                        |
|----------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|
| CSA / UL                   | CSA C22.2 No. 60950-1, UL 60950-1, UL 62368-1                                   | Audio Video and Information<br>Technology Equipment             |
| IEC IECEE CB Certification | UL8750, CSA C22.2 No 250.13<br>IEC/EN 60950-1, IEC/EN 62368-1                   | Lighting<br>Audio Video and Information<br>Technology Equipment |
|                            | Directive 2014/35/EU: Electrical Safety: Low Voltage electrical equipment (LVD) | Audio Video and Information<br>Technology Equipment             |
| CE                         | Directive 2014/30/EU: Electromagnetic Compatibility (EMC)                       |                                                                 |
|                            | Directive 2015/863/EU: RoHS 3                                                   |                                                                 |
|                            | Designed to meet IEC/EN/UL/CSA 61010-1 2nd edition                              |                                                                 |

# 10. MECHANICAL SPECIFICATIONS

| PARAMETER          | DESCRIPTION / CONDITION                          |
|--------------------|--------------------------------------------------|
| Weight             | 2770 g (6.11 lb)<br>2850 g (6.28 lb) – SL models |
| Overall Dimensions | 125.0 x 250.5 x 60.0 mm (4.92 x 9.86 x 2.36 in)  |



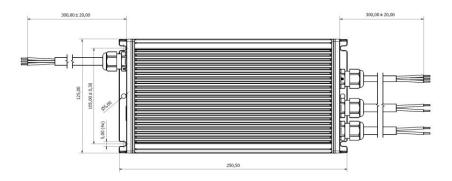
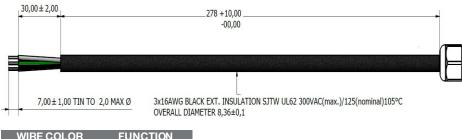
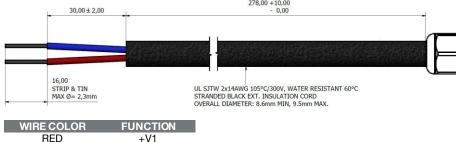
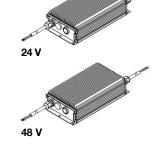




Figure 3. Mechanical drawing



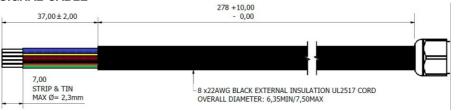

#### 11. CONNECTIONS AND PIN DESCRIPTION


#### **INPUT CABLE**



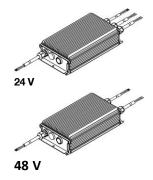
| WIRE COLOR | FUNCTION |
|------------|----------|
| BLACK      | Line     |
| GREEN      | PG       |
| WHITE      | Neutral  |

#### **OUTPUT CABLE**








WIDE OOL OD



| WIRE COLOR | FUNCTION    |
|------------|-------------|
| BLACK      | RTN         |
| RED        | +5 VSB      |
| BROWN      | RS-         |
| GREEN      | P_OK        |
| YELLOW     | - PSINHIBIT |
| GREY       | VS_LOGIC    |
| BLUE       | I SHARE 1   |
| WHITE      | RS+         |

FUNCTION



### For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.



Asia-Pacific +86 755 298 85888 Europe, Middle East +353 61 225 977

**North America** +1 408 785 5200