Designing with pressure sensors Solutions and technology from TE Connectivity

INTEL ABACUS

'Designing with pressure sensors' webinar

Thank you for joining this webinar presented by Luke Smith, Senior Product Manager, Avnet Abacus and Nicholas Argyle, applications Engineer at TE Connectivity.

- Short introduction to Avnet Abacus and TE Connectivity
- 40 minute technical presentation
- 10 minute Q&A session

The Avnet Abacus and TE Connectivity partnership

Avnet Abacus is part of Avnet, a leading global distributor of electronic components.

We specialise in interconnect, sensors, wireless, passive, power supplies and battery products.

Our extensive team of technical specialists offers design and solution support to engineers across Europe. TE Connectivity (TE) is a global technology leader, providing connectivity and sensor solutions

With the acquisition of Measurement Specialties (MEAS), a global designer and manufacturer of sensors and sensor-based systems, TE is one of the largest sensor companies in the world

INVNET ABACUS

Together we bring you a portfolio of high-performing Sensor solutions and associated technologies that enable you to transform concepts into smart connected designs across a wide range of applications

Designing with pressure sensors

The key themes we will cover in this webinar are:

- Pressure sensor base technologies an in depth look at the products, how they are constructed, their parameters and example products
- Choosing the right pressure sensor for your application Key points for consideration
- Configuring a sensor from the datasheet
- Customisation options, when an off the shelf solution will not suffice

Agenda

- 03 TESS Introduction
- 08 Pressure sensing
- 10 TE base technologies
- 12 MEMS (Micro-Electro-Mechanical Systems) Piezo-resistive pressure sensing
- 50 Microfused silicon strain gauge
- 54 Bonded foil strain gauge (BFSG)

TE Sensor Solutions (TESS) overview

PRODUCT PORTFOLIO KEY FACTS

- Portfolio includes technologies capable of measuring most physical characteristics
- Sensors used in virtually all end markets
- Specialises in custom sensing solutions
- Focus on highly engineered, applicationspecific solutions

KEY FACTS ABOUT SENSOR MARKET

- Global sensor market expected to grow from \$80B in 2014 to \$116B in 2019
- Sensors and connectors have common end market segments and customer base
- Sensor market is highly fragmented with few large incumbents
- Global trends of green, safe, connected and reliable systems are driving sensor and connector content growth

With a position in both sensors and connectors, TE will be able to lead in providing system-level solutions

TE Sensor Solutions worldwide resources

03.10.2017

TE Sensor Solutions – Industries & Technologies

Industries Served

- Aerospace and defence
- Appliances
- Automation and control
- Consumer
- Industrial
- Intelligent buildings
- Medical
- Oli and gas
- Test and measurement

Sensor types

- Digital component
- Flow, force, humidity
- Liquid level
- Photo optic
- Piezo film
- Position, pressure, temperature
- Rate and inertial
- Scanners and systems
- Torque, ultrasonic, vibration
- Water level

TE acquired brands

MEASUREMENT SPECIALTIES	INTERSEMA	PIEZOFILM SENSORS	YSI TEMPERATURE
IC SENSORS	ENTRAN	SCHAEVITZ SENSORS	RTD COMPANY
ELEKON	MACRO SENSORS	GENTECH	ATEXIS
ENCODER DEVICES	SENTELLIGENCE	FGP SENSORS	API TECHNOLOGIES CORP
HUMIREL	WEMA	VISYX	BETATHERM SENSORS
AST	PRESSURE SYSTEMS	HL PLANER TECHNIK	SENSOTHERM

CELESCO

03.10.2017

TE sensor portfolio overview

PRESSURE SENSORS & LOAD CELLS	TEMPERATURE, HUMIDITY, & HEATERS	POSITION, ROTARY, & TILT	VIBRATION & OPTICAL	PIEZOELECTRIC SENSORS
 MEMS Die and Oil filled MEMS Si Strain Gauge Altimeters & Barometers BFSG Technology 	 NTC Thermistor Platinum & Nickel RTD Thermocouple Non-contact IR PTC Heaters 	 LVDT/RVDT M-R Rotary Inclinometers AMR Magnetics Precision Resistive 	 Accelerometer Vibration Rate Gyros Tilt Visible & IR 	 Piezo Polymer Film Liquid Level Sensors Air Bubble Detectors Contact Microphones
i i i i i i i i i i i i i i i i i i i				These
* <u>*</u>				
1			1	

03.10.2017

Pressure sensing

TE pressure sensor overview

IVNET ABACUS

03.10.2017

Pressure sensing TE base technologies

Base technologies

- 1. MEMS Piezo-Resistive
 - "Ultrastable™"
 - "Harsh Media" (media isolated)
- 2. MEMS Silicon strain gauge
 - "Microfused™ technology
- 3. Bonded foil strain gauge (BFSG)
 - Robust applications

03.10.2017

/VNET[°]ABACUS

MEMS (Micro-Electro-Mechanical Systems) Piezo-Resistive pressure sensing

Piezo-resistive sensor cross-section

Principle of measurement

mV pressure die have "ratio-metric" outputs

Resistance measurement

- The resistors are arranged in a Wheatstone bridge

Bending of membrane

Pressure difference between the top side and the vacuum reference (under side for differential sensors) will lead to displacement of membrane of typically 1.5 μm

Change of resistance

- The resistance of the Piezo resisters will change
- Typically 150mV full scale signal at 5V (1 bar / 14.5 PSI sensor)

Temperature Dependency

- The change in resistance is depending on the temperature → temperature calibration is needed
- Temperature information can be taken from sensor directly

Sensors measure extremely small stress!

0.1 mbar is equivalent to 0.1 nanometer of membrane deflection !

Pressure at sea level = 1013.25 mbar = 101.325 KPa

At sea level the atmospheric pressure decreases approx 0.1 mbar per 1 meter of altitude.

03.10.2017

IVNET ABACUS

Types of sensors – uncompensated (mV)

- Do NOT have temperature compensation and do not have a calibrated zero offset
- Ratio-metric output
- Wide zero offset tolerance (i.e -5 to 20mV) @ 5V
- Wide Span tolerance (i.e 50 to 200mV) @ 5V
- Low cost option
- Requires more external circuitry and set up

03.10.2017

IVNET ABACUS

Types of sensors – compensated and calibrated (mV)

- External compensation resistors to stabilise the output characteristics with variations in temperature
- Resistors mounted on ceramic hybrid (thermally stable) and laser trimmed
- Zero offset calibrated again via laser trimmed resistors. Small offset (i.e 0mV +/-2mV)
- Span adjusted for a tight tolerance. (i.e 100mV +/-2mV)

/VNET ABACUS

Types of sensors – amplified and digital

- Instrumentation Micro Controller / Asic is used to convert the mV signal into an Digital (I2C / SPI) signal.
- All compensation/Calibration is programmed in the Micro/Asic.
- Amplified can be Active output or D-A conversion.

Pressure sensing fundamentals

Pressure sensing fundamentals

SEALED GAGE Pressure Sealed atmospheric air

Board-mount pressure sensors

Pressure range

- 2 InH20 to 300 psi
- Gauge, Absolute, Differential, Compound Pressures

Packages

- Ceramic and plastic SMD
- Ceramic Leaded
- TO Cans

Outputs

- mV Output.
- mV Output, Temperature Compensated.
- Amplified. 0.5 to 4.5V.
- Digital Output.

/VNET ABACUS

connectivity

Board-mount pressure sensors

mV Uncompensated & Uncalibrated Sensors:

– MS1451

mV Compensated & Calibrated Sensors:

- $\quad 1210,\, 1220,\, 1230 \And 1240$
- 13, 23, 33, 43, 17, 27, 37 & 47 (TO8 package)
- MS4425 & 4426
- MS1471
- MS52xx & MS54xx.

Amplified Sensors:

- MS4515 & MS4525
- MS5525ASO (moulded package High quantity).

Board-mount pressure sensors

Digital Sensors (not including calibrated altimeters/barometers):

- MS4515DO & MS4525DO.
- MS5525DSO (moulded package high quantity)
- MS5803 (abs and gel fill).
- MS5837 (abs).

NVNET ABACUS

Board-mount pressure sensors applications

INVNET ABACUS

03.10.2017

Altimeters and barometers

Pressure range

- 10 mbar to 2000 mbar
- Absolute

Packages

- Ceramic SMD
- DFN
- QFN

Outputs

- mV Output, Uncompensated
- Digital Output, Calibrated and Temperature Compensated

Resolution

14 or 24 bits

Temperature Sensor

- Digital output
- -40 to +85°C

/VNET[°]ABACUS

Altimeters and barometers

- MS5607
- MS5611
- MS5637 (inc temp in device)
- MS5805 (Gel fill)
- MS8607 (inc humidity and temp in device)

NOTE: you can use ANY 1bar absolute sensor and calibrate into a altimeter/barometer

Altimeters and barometer applications

DISTRIPUTOR

Ultra stable pressure capsules

MEMS Die – Media isolated stainless pressure cell 70 mbar (1 psi) to 666 Bar (10K psi)

03.10.2017

Ultra stable pressure capsules

Model 82

- 19mm dia
- Low Pressure (down to 1psi)

Model 85

- 13mm dia
- Medium Pressure High Accuracy Model 86
- O-ring Mount
- Millivolt, Amplified or Digital outputs Model 89
- 8mm dia
- High Pressure (up to 5000psi)

Model 154N

- 19mm dia
- O-ring Mount

Model 86D

- O-ring Mount or w/fittings
- Differential Pressure

Medical applications

- Ventilators
- Oxygen concentrator
- Vaporisers
- Gas delivery (oxygen)
- Gas blenders
- CPAP
- Digital flow meters
- Nitric oxide therapy
- Drug delivery
- Inhalers (intelligent)
- Pressure therapy mattresses
- Wound therapy / drainage
- Blood pressure
- Altitude correction for gas flow

Industrial and HVAC applications

- Ink printing
- Data loggers
 - Water utility
 - Gas utility
- Gas sampling (inc portable)
- Air/Gas pressure control
- Filter / flow monitoring
- Pressure controllers
- Compressors
- Steel mills (roller pressure)
- Cryo systems
- Lab water level monitoring
- Diesel tank level monitoring
- Burner control
- Gas pressure leakage

IVNET ABACUS

Ultra stable pressure transmitters

Model US300

- Low cost
- Survive hostile media

Model U7100

- Small size
- Low pressure ranges available
 Model U5200
- Excellent performance
- Large number of std configurations
 Model U5300
- Best performance
- Rugged housing

Model D5100

- True differential measurement
- High level output

Ultra-stable pressure tx'er and capsule applications

03.10.2017

IVNET ABACUS

Submersible pressure / liquid level transducer

Packaging

- Designed for hostile environments
- 316 stainless steel or titanium
- Waterproof construction
- Moisture barrier in vent tube

Performance

- Up to ±0.25% accuracy
- Vented gauge or sealed gauge
- 5 to 50 psi ranges
- Available with nose cone
- Available with anti-fouling front end

Applications

- Liquid level in storage tanks
- Water level in reservoirs and lakes
- Sewage treatment
- Salt water and brine depth

/**V N E T**[°]**ABACUS**

AUTHORIZED DISTRIBUTO

Submersible pressure / liquid level transducer applications

IRRIGATION WATER LEVEL

SEWAGE TREATMENT

STORAGE TANK LEVEL

WATER QUALITY MONITORING

03.10.2017

Microfused Silicon strain gauge

Microfused[™] silicon strain gauge pressure sensor

3.5 BAR (50 PSI) TO 1K BAR (15K PSI)

03

Microfused pressure sensors

Pressure range

- 15 psi to 30,000 psi
- Gauge, absolute

Packages

- Threaded port (male & female)
- Hermetic front end
- Compensation and gain in package
 Outputs
- mV Output, uncompensated
- 0.5V to 4.5V compensated
- 1.0V to 5.0V compensated
- 4 to 20 mA compensated
- Cable or connector interface

Microfused pressure sensor applications

Bonded foil strain gauge (BFSG)

Bonded foil strain gauge (BFSG)

RANGES FROM 0 TO 5BAR, UP TO 7KBAR. VERY HIGH OVERPRESSURE.

INVNET ABACUS

- The principle of the transducer is a force-summing diaphragm coupled via a force rod (pushrod) to a straingauged double cantilever beam with integral isolation, forming a four-arm Wheatstone bridge in a very symmetrical manner.
- This sensor assembly transduces the force applied to the sensor diaphragm into a millivolt output.
- This construction has very high over pressure capabilities!

BFSG PRODUCTS

ANALOGUE SINGLE END MEASUREMENT:

- P700 (amplified, 4-20mA)
- P900 (amplified, 4-20mA)
- P981 (amplified, 4-20mA)
- P1200 (amplified, 4-20mA)
- P9000 (amplified, 4-20mA)
- P101 (mV, amplified)
- P105 (mV, amplified)
- P125 (mV, amplified)

Determining what pressure sensor to use

- What is the application?
- What is the media (dry gas / air or liquid)?
 - If liquid media isolated cells or transmitters (exception if moist liquid and for short duration, you can look at gel filled board mount sensor
 - If Air/Dry Gas any sensor
- What is the pressure range?
- Do you want to measure gage, absolute, differential or sealed gage?
- What is the required output (mV, amplified, digital or other)?
- Do you require board mount, media isolated cell or transmitter?
- What is the process connection (cells / transmitters i.e 1/4" BSP thread)?
- What electrical interface on the rear (cable, M10, other etc)?
- What is the required temp range (operating and compensated range)?
- Any IP rating (IP65, IP67 etc)?
- Quantity?

Configuring a sensor from the datasheet

ORDERING INFORMATION

4525DO	-	DS	3	Α	I.	004	G	Р	
Model	•	Package Style	Supply Voltage	Output Type	Interface Type	Pressure Range (psi)	Pressure Type	Pin Style	Option Type
MS4525DO		SS = Single Sideport DS = Dual Sideport TP = Top Port MM = Manifold Mount	3 = 3.3 Vdc 5 = 5.0 Vdc	A = 10% to 90% B = 5% to 95%	I = I ² C (Addr.0x28H) J = I ² C (Addr.0x36H) K = I ² C (Addr.0x46H) S = SPI (not available for 'L' pin style) 0 = I ² C (Addr.0x48H) : : 9 = I ² C (Addr.0x51H)	001 002 005 015 030 050 100 150	A = Absolute D = Differential G = Gage C = Compound V = Vacuum	P = Thru Hole S = J Lead L = In Line	Blank = No Option F = Gel Coating L = Low Power M = Gel Coating and Low Power

Example: 4525DO-DS3AI005DPL

Model 4525DO, Dual Sideport, 3.3V, 10-90%, I2C addr 0x28H, 5psi, Differential, Thru hole, Low power.

Value add – customisation

Board mount sensors:

- Special calibrations (i.e -30 to 200mBar) easier with Asic based sensors
- Different Ports mould tools required
- Gel coatings for media resistance

Media isolated sensors:

- Special threads. (quick connect etc)
- Potted rear electronics
- Cable length / type
- Connectors

Transmitters:

- Threads
- Cables
- Housing

Q&A and further resources

There will now be a 10-minute Q&A

Further resources – <u>click here to</u>:

- speak to one of our technical specialsits in your local language
- download the Avnet Abacus white paper Pressure sensors, design considerations and technology options
- read the TE sensor overview
- view a recording of this webinar (available 48 hours after the webinar)
- share the on-demand version with your colleagues
- Download the full slide deck, along with additional information we didn't have time to include

Thank you!

TE Connectivity and the TE connectivity (logo) are trademarks of the TE Connectivity Ltd. family of companies. Other logos, product and/or company names might be trademarks of their respective owners.

Appendix

Pressure sensor fundamentals

Pressure conversion units

	kPa	bar	psi	kgf/cm ²	mmH20	inH2O	ftH20	mmHg	inHg	torr
kPa	1	0,01000	0,14504	0,01020	101,972	4,01463	0,33455	7,50064	0,29530	7,50064
bar	100,000	1	14,5038	1,01972	10197,2	401,463	33,4552	750,064	29,5300	750,064
psi	6,89476	0,06895	1	0,07031	703,070	27,6799	2,30666	51,7151	2,03602	51,7151
Kgf/cm ²	98,0665	0,98067	14,2233	1	10000,0	393,701	32,8084	735,561	28,9590	735,561
mmH20	0,00981	0,00010	0,00142	0,00010	1	0,03937	0,00328	0,07356	0,00290	0,07356
inH20	0,24909	0,00249	0,03613	0,00254	25,4000	1	0,08333	1,86833	0,07356	1,86833
ftH2O	2,98907	0,02989	0,43353	0,03048	304,800	12,0000	1	22,4199	0,88267	22,4199
mmHg	0,13332	0,00133	0,01934	0,00136	13,5951	0,53524	0,04460	1	0,03937	1,00000
inHg	3,38639	0,03386	0,49115	0,03453	345,316	13,5951	1,13292	24,4001	1	25,4001
torr	0,13332	0,00133	0,01934	0,00136	13,5951	0,53524	0,04460	1,00000	0,03937	1

03.10.2017

- Offset is defined as the output of the sensor at it's minimum or reference pressure. NO pressure applied.
- For vented gauge / differential, the reference pressure is atmospheric pressure.
- For Absolute, the reference pressure is vacuum.

Very Important!! – Usually the first characteristic to check if there are issues.

SPAN IS DEFINED AS THE ALGEBRAIC DIFFERENCE BETWEEN THE OUTPUT AT ZERO PRESSURE AND THE OUTPUT AT FULL SCALE PRESSURE.

Examples:

Output at zero pressure = 1mV

Output at full scale pressure = 101mV

Span = 100mV

Output at zero pressure = 0.5V

Output at full scale pressure = 4.5V

Span = 4V.

Linearity / static accuracy

- The linearity (often referred to as non-linearity) is a measure of the sensors' ability to provide an output that is directly / linearly proportional to the pressure input.
- It is generally specified as a deviation from a Best Fit Straight Line (BFSL or BSL), expressed as a percentage of full scale.
- You will often see this denoted as CNLH Combined Non-Linearity and Hysteresis or NLH or NLH&R (where R = Repeatability)
- Hysteresis is defined as an error that occurs when any single signal reading is approached from opposite directions. Hysteresis error is usually expressed as a percent of full-scale output.

Linearity / static accuracy

BEST FIT STRAIGHT LINE

/VNET[°]ABACUS

Thermal drift

IT IS IMPORTANT THAT THE OUTPUT OF PRESSURE SENSOR VARIES VERY LITTLE WITH A CHANGE IN TEMPERATURE.

Temperature errors

- Thermal compensation is the process used to minimize errors due to temperature.
- 'TEB' is a method of describing the thermal performance of a pressure sensor.
- In this case the sensor output remains within a specified 'band' over the compensated temperature range.
- TEB is known as Thermal Error Band and Total Error Band
- Total Error Band includes ALL errors zero and span settings, non-linearity and thermal errors. (Digital based sensors use TEB).

TEB

03.10.2017

IVNET ABACUS

Other terms

- Proof Pressure Pressure the sensor can be pressurised to without affecting the characteristics of the sensor (momentarily).
- Burst Pressure Point at which the sensor diaphragm will be damaged.
 - Note: between the proof and burst pressure is a undetermined area. Can not guarantee long term affects.
- Common mode pressure line pressure of the system.

Analogue and digital

ТҮРЕ	DEFINITION	EXAMPLES	WAVEFORMS	
ANALOG	Output is a voltage, current or resistance whose magnitude represents the sensor reading.	0-100mV 0.5V-4.5V 4-20mA 100k ohm	OUTPUT BISML (vood V)	
DIGITAL	Output is a series of 0's and 1's that form a binary word representing the sensor reading.	I ² C SPI RS-232 RS-485 Parallel data		
DIGITAL (TIME BASED)	Output is a digital signal with some timing feature that represents the sensor reading.	Frequency Out Pulse-width (PWM) Freq Shift (FSK) Sigma-delta (SDM)		

Anatomy of a digital sensor

- All the functions except the sensor (pressure die) are typically embedded on a single chip.
- A temperature sensor is often included on the uC chip.
- Firmware to operate all the functions must be developed.
- The firmware is stored in non-volatile memory in the uC chip.

03.10.2017

IVNET ABACUS

Common terminology in digital protocols

I ² C	Inter Integrated Circuit – A scheme where many devices can communicate digitally on a single pair of wires.
SPI	Serial Peripheral Interface – A scheme where many devices can communicate digitally on 4 wires. Faster than I^2C
Master	Usually a microcontroller that manages the communication with all the devices connected to an ${\rm I}^2{\rm C}$, SPI or any network
Slave	A device that is connected to the I ² C or SPI network, Examples are sensors, memory chips, displays, any peripheral
Bit	The smallest piece of digital information, usually represented by a "0" or a "1". "0" = 0V. "1" = Vdd
Byte	A collection of 8 bits. Represents 0 to 255 in decimal numbers (256 different readings).
Serial Data	Digital 1's & 0's sent on a 0 1010010110 line, one after another
Sleep Mode	The slave shuts down most internal operations and goes into a very low power condition, consuming microwatts & nanowatts

I2C communication

- Each Slave (Sensor) as a unique address. Selectable in datasheet.
- Master (uController) send a slave address and a request for data.
- All slaves hear the request. Only the addressed slave responds.
- The addressed slave sends out the requested data.
- The data travels on the SDA line in serial format (0's and 1's).
- The Master provides a clock signal (SCL) to control the timing of the data exchange.

03.10.2017

IVNET ABACUS

SPI communication

- The Master (uController) enables a slave (sensor) via the slave select line (SS1....SSn).
- The Master sends commands to the slave via the MOSI (master out, slave in) line.
- The slave responds via the MISO (master in, slave out) line.
- Communication between master and slaves can occur simultaneously.
- The Master provides a clock signal (SCL) to control the timing of the data exchange

03.10.2017

IVNET ABACUS

Digital sensor resolution

03.10.2017

SEVERAL FACTORS AFFECT THE RESOLUTION OF A DIGITAL SENSOR:

- The sensing element itself (mems die) has a basic analogue resolution (usually infinite).
- The number of bits used to represent the reading, determines resolution.
- Oversampling will improve the resolution and S/N ratio.

BITS	COUNTS
8	128
9	256
13	4092
16	32736

