

Page EEPROM

Pushing back the limits of Serial EEPROM

My smart device had more storage capacity and could last longer

This is where we come in

Going beyond today's market-standard 4Mbit EEPROMs

Introducing the Page EEPROM family

- Byte architecture
- Each byte is independent
- True Byte granularity (except ECCx4)

- Page architecture for competitive die size on high densities
- Byte on same page are tied together
- Page granularity & seamless Byte granularity thanks to smart page internal management

Page EEPROM – Functional perimeter

High density & performances for efficient management of mixed high data quantity

Communication speed

- Firmware upload/download for OTA and application start-up
- Data blocks and calibration tables fast access with Quad read
- Parameters easy to manage with byte flexibility

Page EEPROM extended features

Page EEPROM – Application benefits

Ultra-low power

- Very low operating consumption
- Current Peak Control

Manufacturing

- Program with buffer load
- Quad SPI 80Mhz Read

Boot code & FOTA

- Ultra Fast Erase
 Time
- Fast Program 512
 bytes

Data logging & event recording

- High cycling endurance
- Fast Byte write granularity

Robustness

- Prog/Erase status flag
- Read ECC flag

Page EEPROM Ultra-low power consumption

A power-saving design for intensive use, ideal for tiny IoT modules

The enabling features

- Wide power supply range
- Current Peak Control & output buffer strength trimming
- Very low operating consumption

Deep Power Down mode

What this means for designers

- → Direct battery plug-in
- → Fits application powered by small battery
- → Gain in read & write energy dissipation even for intensive use
- → Optimize idle mode consumption

Ultra-low power consumption

READ 256 bytes 1.8v at 4MHz

- Page EEPROM Read current = 500µA (1.8V 4Mhz)
 - Consumption divided by 5 vs Serial FLASH
- Current peak < 1mA

Consumption close to EEPROM 4Mbits

PROGRAM 256 bytes 1.8v at 4MHz

- Page Program consumption and peak < 2mA
- Page Program instruction faster than Serial Flash

High energy* reduction (x6 to x12)

Page EEPROM - Manufacturing

Page EEPROM helps save time & costs in the manufacturing process

The enabling features

- Initial state erased (FF)
- Program with buffer load
- Fast Erase chip, block, sector
- Write byte granularity
- Quad SPI 80Mhz Read

What this means for manufacturers

- → Ready to upload new data
- → Faster initial data upload
- → Faster rework
- → Easy update of traceability
- → Content verification

Manufacturing

Programming: 4Mbits of data at 5MHz

- Fast Page Program: 512 bytes in 1.2ms
- Buffer mode is x1.75 faster than Serial flash
 - Buffer mode hides SPI communication
 - Very efficient between 4MHz to 40Mhz
- To program 100k parts it takes:
 - ~ 33h with Page EEPROM
 - ~ 55h with serial Flash

One production day less

Page EEPROM Boot code & Firmware Over The Air

Reduced downtime, fast device availability

The enabling features

- Fast Wake up 30µs
- QSPI 80Mhz Read
- Erase Chip, Block, Sector
- Ultra Fast Erase Time
- Fast Program 512 bytes
- ECC

What this means for end users

- → Fast application setup
- → Fast download for Boot code
- → Flexible code erase for FOTA
- → Shorter downtime during FOTA
- → Fast code upload for FOTA
- → Code integrity & high reliability

Boot code & Firmware Over The Air

FOTA scenario: 8Mbits uploaded at 80MHz

Ultra fast erase:

- Page erase in 1.1ms
- Sector erase in 1.3 ms
- Block erase in 4 ms
- Chip erase in 15 ms

Program and Erases are both faster than Serial Flash

Application downtime highly reduced with Page EEPROM

Page EEPROM Robust data logging & event recording

Smarter, more accurate end applications

The enabling features

- High cycling endurance
- High retention after cycling + Error Correction Code
- Fast Byte write granularity

Fast Programming 512bytes

What this means for designers

- → High monitoring rate
- → Data integrity for intensive use

- → Easy datalogging without software emulation
- → Efficient event recording

Data logging & event recording

Datalogging frequency over a page for 10 years

- Page EEPROM high endurance:
 - 500k cycles per page (full T°)
 - x5 more cycling than Serial Flash

Easy update with page write instruction

Event Recording: 100 ms of programming at 80MHz

Fast program 512 bytes in 1.2ms

+25% data stored VS Serial Flash

Page EEPROM - Robustness

Product monitoring & data protection

Data integrity

Read ECC flag

Page EEPROM development tool

STM32 Nucleo expansion board X-NUCLEO-PGEEZ1

- based on M95P32-I in SO8 package
- Compatible with 64-or 144-pin Nucleo board
- Possibility to add a second memory
- Coming soon

Find out more

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

