

ISM330DHCX iNEMO™ inertial module

Evaluation tools and GUI for Machine Learning

ISM330DHCX quick prototype

Two solutions to capture and process data

STM32 Nucleo with Expansion board tool & Unicleo GUI

STWIN kit

STM32 NUCLEO with EXPANSION X-NUCLEO-IKS02A1

Software package:

UNICLEO GUI with X-CUBE-MEMS1
UNICO GUI for MLC development

STEVAL-STWINKT1

ISM330DHCX performance evaluation

Form Factor Tool & GUI to capture and process data

Professional MEMS motherboard

Evaluation board (adapter)

Professional MEMS motherboard STEVAL-MKI109V3

Software package: UNICO-GUI

Linux → STSW-MKI109L,

Mac OS X → STSW-MKI109M,

Windows → STSW-MKI109W

DIL24 adapter board STEVAL-MKI207V1 STEVAL-MKI210V1K

ISM330DHCX form factors & GUI Decision tree creation process

ISM330DHCX STM32 Nucleo with expansion board

ISM330DHCX Professional MEMS tool motherboard

ST sensor tools Decision tree creation process – Dataset & label

Logs generation in .csv files

Unico-GUI

→ MLC development tool

Label data

STEPS

- 1. Import .csv files in Unico
- 2. Assign label (class) to the files
- 3. When all files are imported, start MLC configuration: sensors setup (ODR, FS, etc), windows length, filters and features
- 4. Generation of .arff file

from Logs in .csv files to .arff file generation

ST sensor tools Decision tree creation process – build & embed

ST sensor tools Real-time test with trained decision tree

AlgoBuilder GUI – PC application

 AlgoBuilder is a graphical design tool to build and use algorithms

 AlgoBuilder GUI uses the outputs from MLC and FSM to allow you to build more complex projects

 An existing MLC / FSM configuration (.ucf file) can be implemented

Explore MLC examples and resources

Decision tree examples are available online at the dedicated GitHub project for Machine Learning Core

https://github.com/STMicroelectronics/STMems_Machine_Learning_Core

MEMS and sensors Community and Q&A

- MEMS and sensors Community
 - The latest information on MEMS product (HW, SW, tools) and reference designs
 - Join the community to...
 - ...share ideas and find sparks!
 - ...find potential customers

Q&A: Do you have a technical question?

MEMS and sensors Community and Q&A

- Join us in 3 steps!
 - 1. Register (if you do not already own an account)
 https://my.st.com/cas/login?service=https://my.st.com/content/my_st_com/en.html

2. Join MEMS and Sensor community becoming a follower https://community.st.com/s/group/0F90X000000AXsjSAG/mems-and-sensors

3. Post your company competence / competitive advantage!

Refer to the MEMS and Sensor community or Q&A section for questions and updates. Our experts are there to help you!

Thank you

