

# **Polymer CAPACITORS**

Speed up your Design – The next Stage of Low ESR

### **KEY BENEFITS:**

- High Miniaturization Potential
- No DC Bias Effect & No Voltage Derating
- No Capacitance Drift
- Long Lifetime & High Reliability













# Low ESR saves space and cost, reduces design complexity

Polymer Capacitors have excellent frequency characteristics. Thanks to their ultra-low ESR values, polymer capacitors exhibit low impedance near their resonance point which reduces AC ripple in power circuits. Polymer capacitors are also very stable, showing no capacitance drift over temperature and no DC bias - this stability simplifies the design process. Polymer Capacitors are very efficient, since they are available in very small case sizes, which significantly contributes to a compact design and cost saving.

| FEATURES                                                                             |                                 | POLYMER            |   |                      |     |                    |                       |
|--------------------------------------------------------------------------------------|---------------------------------|--------------------|---|----------------------|-----|--------------------|-----------------------|
|                                                                                      | Lytic                           | Hybrid, 9<br>POS   |   | OS-(                 | CON | MLCC               | Mn02 Tantal           |
| Ripple Current                                                                       | medium                          | high               | ✓ | high                 | ✓   | high               | medium                |
| ESR                                                                                  | medium                          | low                | ✓ | low                  | ✓   | low                | medium                |
| Voltage Derating                                                                     | no                              | no                 | ✓ | no                   | ✓   | not specified      | yes                   |
| Capacitance<br>(against DC Bias)                                                     | stable                          | stable             | ✓ | stable               | ✓   | decrease           | stable                |
| Capacitance<br>(against Frequency)                                                   | decrease                        | stable             | ✓ | stable               | ✓   | stable             | decrease              |
| Capacitance<br>(against Temperature)                                                 | unstable                        | stable             | ✓ | stable               | ✓   | decrease           | stable                |
| Estimated Lifetime                                                                   | limited                         | long               | ✓ | long                 | ✓   | long               | long                  |
| Typical Lifetime<br>(at 85°C)                                                        | 5-7 years                       | 10 years           | ✓ | 10 years             | ✓   | not specified      | not specified         |
| Lifetime Calculation Formular                                                        | 10°C reduction<br>→ 2x lifetime | 10°C re<br>→ 2x li |   | 20°C red<br>→ 10x li |     | Failure Rate       | Failure Rate          |
| Initial Leakage Current                                                              | low                             | low                | ✓ | med                  | ium | low                | low                   |
| ex.: Input, 28V line, 100kHz<br>→ capacitor requirements:<br>35V, 22uF, 2Arms ripple | 2pcs<br>Ø10x10.2mm              | 1p<br>7.3x4.3x     |   | 1p<br>0 5 x          |     | 4 pcs<br>6.1x5.3mm | 4pcs<br>7.3x4.3x4.3mm |
|                                                                                      |                                 | , in               |   | 0.500                |     | ****               | 9999                  |

# Polymer Capacitors for demanding applications

### **Higher Voltage**

## **OS**-CON\*



#### High Ripple Current · High Capacitance

- Voltage Range: 2 to 100 VDC
- Capacitance Range: 4.4 to 2700 μF • Temperature Range: -55°C/+125°C
- Endurance\*\*: 2000h at 125°C
- ESR: Down to 5 mΩ
- Ripple Current: up to 7.2Arms
- Size: Ø 4 mm to 10 mm
- Height: 5.5 mm to 13 mm

## **Hybrid** (Polymer & Electrolyte)





### High Temperature · Low Leakage Current

- Voltage Range: 25 to 80 VDC
- Capacitance Range: 10 to 560 µF • Temperature Range: -55°C/+150°C
- Endurance: 1000h at 150°C





- ESR: Down to 11 mΩ
- Ripple Current: up to 4.0 Arms
- Size: Ø 5 mm to Ø 10 mm
- Height: 5.8 mm to 16.5 mm

## **Lower Height**

# SP-Cap



#### Super Low ESR · Low Profile · No Voltage Derating · No Ignition

- Voltage Range: 2 to 6.3 VDC
- Capacitance Range: 2.2 to 820 μF
- Temperature Range: -40°C/+125°C
- Endurance\*\*: 1000h at 125°C
- ESR: Down to 3 mΩ
- Ripple Current: up to 10.2Arms
- Size (L x W): 7.3 x 4.3 mm
- Height: 1.1 mm to 2.0 mm

## POSCAP



### Small Case Sizes · High Capacitance · No Voltage Derating · No Ignition

- Voltage Range: 2 to 35 VDC
- Capacitance Range: 3.9 to 1500 μF
- Temperature Range: -55°C/+125°C
- Endurance\*\*: 1000h at 125°C
- ESR: Down to 5 mQ

- Ripple Current: up to 4.4 Arms
- Size (L x W): 3.5 x 2.8 mm 7.3 x 4.3 mm
- Height: 1.1 mm to 4.0 mm

<sup>\*</sup> Automotive grade product available, please contact Panasonic

# \*\*Endurance - Long lifetime & high reliability

### SP-CAP, POSCAP

| 125°C / 4000 h |           |            |  |  |  |
|----------------|-----------|------------|--|--|--|
| 125°C →        | 4,000 h   | 0.5 years  |  |  |  |
| 115°C →        | 8,000 h   | 0.9 years  |  |  |  |
| 105°C →        | 16,000 h  | 1.8 years  |  |  |  |
| 95°C →         | 32,000 h  | 3.7 years  |  |  |  |
| 85°C →         | 64,000 h  | 7.3 years  |  |  |  |
| 75°C →         | 128,000 h | 14.6 years |  |  |  |
|                |           |            |  |  |  |

Arrhenius formula 10°C temperature reduction, lifetime is 2x longer  $L_x = L_0 \ x \ 2^{-\frac{T_0 - T_x}{10}}$ 

The above are reference examples. For detailed lifetime calculation, please contact Panasonic.

#### OS-CON

|         | 125°C / 1000 h |            |  |
|---------|----------------|------------|--|
| 125°C → | 1,000 h        | 0.1 years  |  |
|         |                |            |  |
| 105°C → | 10,000 h       | 1.1 years  |  |
|         |                |            |  |
| 85°C →  | 100,000 h      | 11.4 years |  |

To: Maximum operating temperature (°C)

Tx: Temperature in actual use (°C)

Lo : Guaranteed life at maximum temperature in use (h) Lx : Life expectance in actual use (temperature Tx) (h)

\* With max. Ripple Current applied \*

# **Anti-Vibration SMD Hybrid & Lytic Capacitors**





#### **ANTI-VIBRATION FEATURES:**

- Excellent Anti-Vibration Performance withstands 30G
- Drop-shock resistant
- No significant change when dropped from a height of 1.2 m
- Available for all SMD Hybrid & Lytic Capacitor series with ≥ Ø 6mm

PIEU/PCC/

