
Layerscape FRWY-LS1046A BSP User
Guide
Supports: FRWY-LS1046A BSP v0.1

NXP Semiconductors Document Number: FRWY-LS1046ABSPUG

User's Guide Rev. 0.1, 18 April 2019

Contents

Chapter 1 Introduction.. 4
1.1 Reference documentation...5

Chapter 2 Release Notes...6
2.1 Summary of overall features.. 6
2.2 Component location... 7
2.3 Feature Support Matrix.. 7
2.4 Known issues...8

Chapter 3 FRWY-LS1046A BSP Overview... 9
3.1 FRWY-LS1046A BSP Quick Start.. 9

3.1.1 Introduction..9
3.1.2 Host system requirements... 9
3.1.3 Download and assemble FRWY-LS1046A BSP images.. 10
3.1.4 Deploy FRWY-LS1046A BSP images on board... 11

3.1.4.1 FRWY-LS1046A reference information... 12
3.1.4.2 Option 1: Deploy FRWY-LS1046A BSP images using removable storage device........................ 27
3.1.4.3 Option 2: Deploy BSP images directly to storage device on a board..29

3.2 How to build FRWY-LS1046A BSP with Flexbuild..29
3.3 Secure boot..35

3.3.1 Hardware Pre-Boot Loader (PBL) based platforms...35
3.3.1.1 Introduction...35
3.3.1.2 Secure boot process...36
3.3.1.3 Pre-boot phase... 37
3.3.1.4 ISBC phase.. 38

3.3.1.4.1 Flow in the ISBC code... 38
3.3.1.4.2 Super Root Keys (SRKs) and signing keys..38
3.3.1.4.3 Key revocation... 39
3.3.1.4.4 Alternate image support.. 39
3.3.1.4.5 ESBC with CSF header...39

3.3.1.5 ESBC phase...40
3.3.1.5.1 Boot script... 41

3.3.1.6 Next executable (Linux phase)... 45
3.3.1.7 Product execution... 46

3.3.1.7.1 Introduction.. 46
3.3.1.7.2 Chain of Trust with confidentiality...47

3.3.1.8 Troubleshooting.. 51
3.3.1.9 CSF Header Data Structure... 51
3.3.1.10 ISBC validation error codes.. 60
3.3.1.11 ESBC Validation Error Codes... 64
3.3.1.12 Trust Architecture and SFP information.. 65

3.3.2 Code Signing Tool...65
3.3.2.1 Key generation... 66

3.3.2.1.1 gen_keys... 66
3.3.2.1.2 gen_otpmk_drbg..68
3.3.2.1.3 gen_drv_drbg.. 69

3.3.2.2 Header creation... 70
3.3.2.2.1 uni_pbi.. 70
3.3.2.2.2 uni_sign...72

Contents

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
2 NXP Semiconductors

3.3.2.3 Signature generation..76
3.3.2.3.1 gen_sign... 78
3.3.2.3.2 sign_embed.. 79

3.3.3 Procedure to Run Secure Boot... 80
3.3.3.1 Prepare board for secure boot..80
3.3.3.2 Running secure boot on target platforms... 81
3.3.3.3 Steps to run Chain of Trust with confidentiality.. 82

3.4 FRWY-LS1046A BSP memory layout.. 83
3.5 Build tools.. 84

Chapter 4 Linux kernel.. 86
4.1 Configuring and building Linux kernel..88
4.2 Device Drivers..90

4.2.1 Enhanced Secured Digital Host Controller (eSDHC).. 90
4.2.2 Dual Universal Asynchronous Receiver/Transmitter (DUART).. 92
4.2.3 Quad Serial Peripheral Interface (QSPI)...97
4.2.4 Universal Serial Bus Interfaces... 99

4.2.4.1 USB 3.0 Controller (DesignWare USB3)..99
4.2.5 Real Time Clock (RTC)..101
4.2.6 PCI Express Interface Controller .. 104

4.2.6.1 PCIe Linux Driver... 104
4.2.6.2 PCIe Advanced Error Reporting User Manual... 107
4.2.6.3 PCIe Remove and Rescan User Manual..109

4.2.7 CAAM Direct Memory Access (DMA).. 110
4.2.8 Networking.. 113

4.2.8.1 DPAA1-specific Software.. 113
4.2.8.1.1 DPAA Software Architecture Overview...113
4.2.8.1.2 Linux Ethernet... 140
4.2.8.1.3 Queue Manager (QMan) and Buffer Manager (BMan).. 173
4.2.8.1.4 Configuring DPAA Frame Queues... 228
4.2.8.1.5 Frame Manager... 237
4.2.8.1.6 Frame Manager Configuration Tool User Guide.. 298
4.2.8.1.7 Security Engine (SEC).. 377
4.2.8.1.8 Decompression/Compression Acceleration (DCE)..379

4.2.9 Security Engine (SEC)..381
4.2.10 Watchdog.. 394

Contents

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 3

Chapter 1
Introduction

About FRWY-LS1046A board support package (BSP)

The FRWY-LS1046A BSP is meant for Layerscape FRWY-LS1046A board, which is based on NXP LS1046A SoC.

It is a hybrid form of a Linux distribution because it combines the following major components to make a complete Linux system:

• NXP boot loader: U-Boot, based on denx.de plus patches

• NXP Linux kernel, based on kernel.org upstream plus patches

• User space components added by NXP

• Ubuntu standard user space file set (userland), including compilers and cross compiler

The use of Ubuntu userland is what makes the FRWY-LS1046A BSP a hybrid. Because NXP Arm SoCs are based on common
industry standards; therefore, programs, such as bash and thousands of other programs run without being recompiled.

The benefit of using Ubuntu userland is the easy availability of thousands of standard Linux user space packages. The FRWY-
LS1046A BSP is used in the same way as Ubuntu; however, the kernel, firmware, and some special NXP packages are managed
separately.

Accessing FRWY-LS1046A BSP

The FRWY-LS1046A BSP is distributed via www.nxp.com.

There are two ways to use the FRWY-LS1046A BSP, as an integration and as a source of individual components.

FRWY-LS1046A BSP as an integration

Using the above link, you can access the Flexbuild component. By cloning the Flexbuild component and running a script, you can
create and install FRWY-LS1046A BSP on a mass storage device as an integration. Now, you can use the BSP on a FRWY-
LS1046A board. You can build NXP components from source using a script, flex-builder, or install the components from their
binaries using another script, flex-installer.

FRWY-LS1046A BSP as components

The same link shows git repositories for individual components, for example the FRWY-LS1046A BSP Linux kernel. If you clone
and examine this git, you will see a conventional kernel source tree. You can compile the kernel using the make command as you
would compile a kernel.org kernel. However, you can also place a custom kernel fragment configuration file in the arch/arm64/
configs directory. See Linux kernel on page 86 for more details.

Having git access to components is helpful if you assemble your own Linux distribution or wish to form a hybrid with a userland
other than Ubuntu userland.

FRWY-LS1046A BSP git tags

The FRWY-LS1046A BSP git repositories use git tags to indicate component revisions that have been release-tested together.
Use the git tag command to examine them and choose a tag to check out.

FRWY-LS1046A BSP relies on mass storage devices

Ubuntu userland is very convenient for evaluation purposes because it allows you to add standard Ubuntu components that you
need, using the apt-get install command. It also provides native development tools. However, this richness means that the
user space file is large, too large for RAM disks. Therefore, you require to install the FRWY-LS1046A BSP on a mass storage
device, such as:

• Micro-SD card

• USB mass storage drive

Introduction

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
4 NXP Semiconductors

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=LAYERSCAPE-FRWYLS1046A-BSP

The FRWY-LS1046A BSP provides scripts that populate a mass storage device with the needed files. These scripts can run on
a Linux PC. A micro-SD card or USB flash drive is a removable storage device that can easily be moved between a Linux PC and
a FRWY-LS1046A board.

1.1 Reference documentation
The table below lists and explains the additional documents and resources that you can refer to for more information on the
LS1046A SoC and FRWY-LS1046A board.

Table 1. Reference documentation

Document Description Link / how to access

QorIQ LS1046A Reference Manual Provides a detailed description about the
QorIQ LS1046A multicore processor and
its features, such as memory map, serial
interfaces, power supply, chip features,
and clock information

LS1046ARM.pdf

Layerscape FRWY-LS1046A Board
Getting Started Guide

Describes the FRWY-LS1046A board
settings and explains steps to set up and
boot the board

FRWY-LS1046AGSG.pdf

Layerscape FRWY-LS1046A Board
Reference Manual

Provides a detailed description of the
FRWY-LS1046A board

FRWY-LS1046ARM.pdf

Reference documentation

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 5

https://www.nxp.com/webapp/Download?colCode=LS1046ARM&Parent_nodeId=1454450484961711127630&Parent_pageType=product
http://www.nxp.com/FRWY-LS1046A
http://www.nxp.com/FRWY-LS1046A

Chapter 2
Release Notes

2.1 Summary of overall features
Highlights

• Processor support

— LS1046A processor

• Board support:

— FRWY-LS1046A board

• Frequency support:

— Core: 1600 MHz, DDR: 2100 MT/s, platform: 600 MHz (default)

• SerDes protocol support:

— SerDes1: 0x3040

— SerDes2: 0x0506

• U-Boot

— TF-A boot

— Boot from QSPI NOR flash, micro-SD card

— A72 core, DDR4, clock

— UART, GIC, I2C, OCRAM

— PCIe-gen3 Root-Complex

— USB mass storage, NAND flash

— Networking support using QSGMII

— MDIO PHY support

• Linux: 4.14.83

— A72 core, DDR4

— SMP-boot

— Clock, UART

— GIC, I2C, OCRAM

— USB mass storage, micro-SD, NAND Flash

— QSPI access to NOR flash

— PCIe-gen3 Root-Complex

— Networking interfaces: QSGMII

— SEC, QDMA, eDMA

— MDIO PHY support

• Userspace components

— Flexbuild and toolchain

Release Notes

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
6 NXP Semiconductors

• Flexbuild

— Ubuntu userland 18.04

— gcc: Ubuntu/Linaro 7.3.0-16ubuntu3~18.04, glibc-2.27, binutils-2.30-0, gdb-8.1

2.2 Component location
The table below lists the locations of FRWY-LS1046A BSP release components.

Table 2. Component location

Component CAF location CAF branch CAF tag

linux https://source.codeaurora.org/
external/qoriq/qoriq-
components/linux/

linux-4.14-ls1046afrwy-early-
access

ls1046afrwy-early-access-
bsp0.1

u-boot https://source.codeaurora.org/
external/qoriq/qoriq-
components/u-boot/

ls1046afrwy-early-access ls1046afrwy-early-access-
bsp0.1

rcw https://source.codeaurora.org/
external/qoriq/qoriq-
components/rcw/

ls1046afrwy-early-access ls1046afrwy-early-access-
bsp0.1

atf https://source.codeaurora.org/
external/qoriq/qoriq-
components/atf

ls1046afrwy-early-access ls1046afrwy-early-access-
bsp0.1

cst https://source.codeaurora.org/
external/qoriq/qoriq-
components/cst

integration LSDK-18.12

eth-config https://source.codeaurora.org/
external/qoriq/qoriq-
components/eth-config

integration LSDK-19.03

dpdk https://source.codeaurora.org/
external/qoriq/qoriq-
components/dpdk

ls1046afrwy-early-access ls1046afrwy-early-access-
bsp0.1

2.3 Feature Support Matrix
The following tables show the features that are supported in this release.

Feature Description

Table continues on the next page...

Component location

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 7

https://source.codeaurora.org/external/qoriq/qoriq-components/linux/
https://source.codeaurora.org/external/qoriq/qoriq-components/linux/
https://source.codeaurora.org/external/qoriq/qoriq-components/linux/
https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot/
https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot/
https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot/
https://source.codeaurora.org/external/qoriq/qoriq-components/rcw/
https://source.codeaurora.org/external/qoriq/qoriq-components/rcw/
https://source.codeaurora.org/external/qoriq/qoriq-components/rcw/
https://source.codeaurora.org/external/qoriq/qoriq-components/atf
https://source.codeaurora.org/external/qoriq/qoriq-components/atf
https://source.codeaurora.org/external/qoriq/qoriq-components/atf
https://source.codeaurora.org/external/qoriq/qoriq-components/cst
https://source.codeaurora.org/external/qoriq/qoriq-components/cst
https://source.codeaurora.org/external/qoriq/qoriq-components/cst
https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config
https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config
https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config
https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk
https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk
https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk

Table continued from the previous page...

QSPI • Read/write/erase

• Read in AHB mode

• Write in IP mode

• Erase size: 128 KB (U-Boot)

• Supported flash device: MT25QU512ABB8ESF-0SIT

UART • UART1 and UART2 verified

• Default frequency: 115.2 Kbit/s

DDR • Fixed settings

• Default frequency: 2100 MT/s

QSGMII • Four 1G Ethernet ports

NAND flash • Read/write/erase/file system support

Micro-SD • SD high speed (50 MHz) read/write/erase/file system
support

2.4 Known issues
The table below lists the known issues with the release. These are issues having no resolution currently. Workaround suggestions
are provided wherever possible.

Table 3. Known issues

ID Description

QLINUX-XXXXX

Release Notes

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
8 NXP Semiconductors

Chapter 3
FRWY-LS1046A BSP Overview

This section provides FRWY-LS1046A board-specific information on switch settings, U-Boot environment variable settings, and
supported binaries. It also provides details of memory layout.

For more information on the FRWY-LS1046A board, see Layerscape FRWY-LS1046A Board Getting Started Guide and
Layerscape FRWY-LS1046A Board Reference Manual.

3.1 FRWY-LS1046A BSP Quick Start

3.1.1 Introduction
The following sections describe the procedure to download and assemble FRWY-LS1046A BSP images and then to deploy these
images on the FRWY-LS1046A board. For more information on the different components of the board and on how to configure
and boot the board, see Layerscape FRWY-LS1046A Board Getting Started Guide.

3.1.2 Host system requirements
• Ubuntu 18.04 should be installed on the host machine

• If this requirement is not fulfilled, see “Emulate Ubuntu 18.04 environment using docker container” topic below

• For root users, there is no limitation for the build. For non-root users, obtain sudo permission by running the command
sudoedit /etc/sudoers and adding a line <user-account-name> ALL=(ALL:ALL) NOPASSWD: ALL in /etc/sudoers.

• To build the target Ubuntu userland for arm64/armhf arch, the user's network environment must have access to the remote
Ubuntu official server

Emulate Ubuntu 18.04 environment using docker container (optional)

If a Linux distribution other than Ubuntu 18.04 is installed on the host machine, perform the following steps to create an Ubuntu
18.04 docker container to emulate the environment:

1. Install docker on the host machine. See https://docs.docker.com/engine/installation/ for information on how to install docker
on the host machine.

2. To build the Ubuntu userland, the user must have sudo permission for Docker commands or the user must be added to a
group called “docker” as specified below:

a. Change current group to “docker”:

$ sudo newgrp – docker

User can run the command cut -d: -f1 /etc/group | sort to check if "docker" group is included in the

list of all the available groups.

 NOTE

b. Add your account to “docker” group:

$ sudo usermod -aG docker <accountname>
$ sudo gpasswd –a <accountname> docker

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 9

https://docs.docker.com/engine/installation/

c. Restart service:

$ sudo service docker restart

3. Log out from current terminal session, and then log in again to ensure user can run docker ps -a.

The user's network environment must have access to the remote Ubuntu official server.

4. Run flex-builder command for docker as given in the next section.

3.1.3 Download and assemble FRWY-LS1046A BSP images
In this BSP Quick Start Guide, the build framework Flexbuild is used. Flexbuild contains three scripts: flex-builder, flex-
installer, and flex-mkdistrorfs. In this section (“Download and assemble FRWY-LS1046A BSP images”), flex-builder is
used to generate a composite firmware image, boot partition, and Ubuntu userland.

In the next section, “Deploy FRWY-LS1046A BSP images on board", the script flex-installer is used to deploy complete BSP
image that includes composite firmware image, boot partation, and Ubuntu userland to a storage device (micro-SD).

The composite firmware image contains RCW, U-boot, FMan, and other components. Boot partition contains a Linux kernel image
and device tree blob. For a complete list of the boot partition components and the firmware components, see FRWY-LS1046A
BSP memory layout on page 83.

See Build tools on page 84 for more information on Flexbuild.

To download and assemble FRWY-LS1046A BSP images, perform the steps below:

1. Download the Flexbuild source tarball and set up Flexbuild environment:

a. Go to www.nxp.com and click the “Download” button to download Flexbuild source tarball, named
flexbuild_<version>.tgz. It is required to log in and sign a license agreement before downloading the tarball.

b. Set up Flexbuild environment:

$ tar xvzf flexbuild_<version>.tgz
$ cd flexbuild
$ source setup.env

c. Run the following two commands in addition to the above three commands only when building BSP in Docker
container:

$ flex-builder docker (this command emulates Ubuntu 18.04 environment on the host machine.)
$ source setup.env (again, set up the Flexbuild environment after entering Docker
container.)

2. Download prebuilt images for boot partition and NXP-specific components tarball:

a. Download composite firmware image:

wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/
firmware_ls1046afrwy_uboot_sdboot.img

b. Download prebuilt app components (for example, fmc, dpdk, openssl):

wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/app_components_LS_arm64.tgz

c. Download prebuilt images for boot partition and Arm modules:

wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/bootpartition_LS_arm64_lts_4.14.tgz
wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/lib_modules_LS_arm64_4.14.83.tgz

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
10 NXP Semiconductors

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=LAYERSCAPE-FRWYLS1046A-BSP

3. Generate FRWY-LS1046A BSP Ubuntu userland, untar the prebuilt components tarball, and merge them into target
userland.

a. Generate Ubuntu arm64 userland:

$ flex-builder -i mkrfs -a arm64

b. Extract app components:

$ tar xvzf app_components_LS_arm64.tgz -C build/apps

c. Extract kernel modules (for example, cryptodev):

$ sudo tar xvzf lib_modules_LS_arm64_<kernel_version>.tgz -C build/rfs/
rootfs_ubuntu_bionic_LS_arm64/lib/modules

d. Merge all components packages and kernel modules into target userland and compress ubuntu arm64 rootfs
as .tgz tarball:

$ flex-builder -i merge-component -a arm64
$ flex-builder -i compressrfs -a arm64

e. Exit, if using docker:

$ exit (optional, this command exits from docker when building in docker)

If the Linux host machine is in a subnet that needs HTTP proxy to access external Internet, then set environment

variables, http_proxy and https_proxy as follows:

Add the following proxy settings in ~/.bashrc
No authentication:
export http_proxy=http://<domain>:<port>
export https_proxy=http://<domain>:<port>

With authentication:
export http_proxy=http://<account>:<password>@<domain>:<port>
export https_proxy=http://<account>:<password>@<domain>:<port>

Set no_proxy variable to bypass proxy for some local servers:
export no_proxy="localhost,<local-server1>,<local-server2>"

 NOTE

Ubuntu userland is the only default file system that is system tested in the formal FRWY-LS1046A BSP release.

Although other userland images (such as Debian, CentOS, Buildroot-based tiny distro, and so on) can be generated

using the common FRWY-LS1046A BSP boot partition (containing the Linux kernel, DTBs, distro boot scripts, and

so on) by Flexbuild, that exercise is left to the user, and is not supported by NXP.

 NOTE

3.1.4 Deploy FRWY-LS1046A BSP images on board
This section assumes that the FRWY-LS1046A BSP images have been assembled according to the “Download and assemble
FRWY-LS1046A BSP images” section. You can choose one of the following two options to deploy FRWY-LS1046A BSP images
on the FRWY-LS1046A board depending on whether the host (Linux host machine) and/or target (FRWY-LS1046A board) is
present locally or is accessed remotely:

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 11

• Option 1 (when host and target are present locally): In this option, you can deploy the BSP images on the board using a
removable storage device, such as a micro-SD card. To deploy images, first connect the micro-SD card to Linux host
machine and deploy images on it. Then, remove the card from Linux machine and connect it to FRWY-LS1046A board.

• Option 2 (when host and/or target is accessed remotely): In this option, you need to deploy the BSP images directly to the
storage device attached/plugged-in to the board. For this option, a network connection to the board is required.

The deployment covers how to program FRWY-LS1046A BSP composite firmware for "QSPI NOR flash boot" and "micro-SD
boot". It also covers how to deploy boot partition images and Ubuntu userland on different storage media (micro-SD/USB).

Micro-SD/USB storage capacity must be at least 8 GB.

 NOTE

Table 4. FRWY-LS1046A BSP storage location

Boot source Composite firmware Kernel image and DTB Ubuntu rootfs

QSPI NOR flash QSPI NOR flash Micro-SD/USB Partition 2

"Boot Partition"

Micro-SD/USB Partition 3

"Rootfs Partition"Micro-SD Micro-SD "raw partition"

3.1.4.1 FRWY-LS1046A reference information
This section provides general information about FRWY-LS1046A board. The information may come in handy as a reference while
performing steps for deploying BSP images that are mentioned in sections that follow.

System memory map

Table 5. System memory map

Start address
(Hex)

Module name Size Accessible with x-bit addressing

32 36 40

00_0000_0000 Secure Boot ROM 1 MB Y Y Y

00_0010_0000 Extended Boot
ROM

15 MB Y Y Y

00_0100_0000 CCSR Register
Space

240 MB Y Y Y

00_1000_0000 OCRAM1 64 KB Y Y Y

00_1001_0000 OCRAM2 64 KB Y Y Y

00_1004_0000 Reserved 65408 KB Y Y Y

00_1100_0000 Reserved 16 MB Y Y Y

00_1200_0000 STM 16 MB Y Y Y

00_1300_0000 Reserved 208 MB Y Y Y

00_2000_0000 DCSR 64 MB Y Y Y

00_2400_0000 Reserved 448 MB Y Y Y

00_4000_0000 QuadSPI 512 MB Y Y Y

00_6000_0000 IFC region 1(0 -
512 MB)

512 MB Y Y Y

Table continues on the next page...

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
12 NXP Semiconductors

Table 5. System memory map (continued)

Start address
(Hex)

Module name Size Accessible with x-bit addressing

32 36 40

00_8000_0000 DRAM1 (0 - 2 GB) 2 GB Y Y Y

01_0000_0000 Reserved 0.0625 GB N Y Y

01_0400_0000 Reserved 3.9375 GB N Y Y

02_0000_0000 Reserved 1 GB N Y Y

02_4000_0000 Reserved 7 GB N Y Y

04_0000_0000 Reserved 0.25 GB N Y Y

04_1000_0000 Reserved 0.25 GB N Y Y

04_2000_0000 Reserved 0.25 GB N Y Y

04_3000_0000 Reserved 1.25 GB N Y Y

04_8000_0000 Reserved 2 GB N Y Y

05_0000_0000 QMAN S/W Portal 128 MB N Y Y

05_0800_0000 BMAN S/W Portal 128 MB N Y Y

05_1000_0000 Reserved 4 GB - 256 MB N Y Y

06_0000_0000 Reserved 0.5 GB N Y Y

06_2000_0000 IFC region 2 (512
MB - 4 GB)

3.5 GB N Y Y

07_0000_0000 Reserved 4 GB N Y Y

08_0000_0000 Reserved 2 GB N Y Y

08_8000_0000 DRAM2 30 GB N Y Y

10_0000_0000 Reserved 64 GB N Y Y

20_0000_0000 Reserved 128 GB N N Y

40_0000_0000 PCI Express 1 32 GB N N Y

48_0000_0000 PCI Express 2 32 GB N N Y

50_0000_0000 PCI Express 3 32 GB N N Y

58_0000_0000 Reserved 160 GB N N Y

80_0000_0000 Reserved 32 GB N N Y

88_0000_0000 DRAM3 (32 - 512
GB)

480 GB N N Y

Supported boot options

The FRWY-LS1046A board supports the following boot options:

• QSPI NOR flash (referred to as "QSPI" or "QSPI flash" in the following sections). CS refers to chip select.

• Micro-SD card (SDHC1)

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 13

Onboard switch options

The FRWY-LS1046A board has user selectable switches for evaluating different boot options for the LS1046A device as given in
the table below ('0' is OFF, '1' is ON).

Boot source SW1[1:10]

QSPI NOR (default) 0_0100_0100_0

Micro-SD card (SDHC1) 0_0100_0000_0

In addition to the above switch settings, ensure that the following jumper settings are correct.

Table 6. FRWY-LS1046A jumper settings

Part
identifier

Jumper type Description Jumper settings

J72 1x2 connector UART selection header • Open: UART1 port is accessed remotely
through a 1x4 header (J73)

• Shorted: A USB 2.0 micro AB connector
(J58) is connected to UART1 port through
a USB-to-UART bridge (default setting)

J8 1x2 connector VDD voltage selection header • Open: VDD = 0.9 V

• Shorted: VDD = 1 V (default setting)

J14 1x2 connector Reset mode selection header • Open: RESET_REQ_B pin of the
processor is disconnected

• Shorted: RESET_REQ_B pin triggers
system reset when asserted (default
setting)

J11 1x2 connector PROG_MTR voltage control
header (NXP use only)

• Open: PROG_MTR pin of the processor is
powered off (default setting)

• Shorted: PROG_MTR pin is powered by
OVDD (1.8 V)

J9 1x2 connector TA_BB_VDD voltage control
header

• Open: TA_BB_VDD pin of the processor is
powered off

• Shorted: TA_BB_VDD pin is powered by
VDD (1/0.9 V) (default setting)

QSPI NOR flash

QSPI NOR flash is a simple and convenient destination for deploying images; therefore, it is most common medium for deploying
images. When the board boots from QSPI, the U-Boot log looks as follows:

NOTICE: Fixed DDR on board

NOTICE: 4 GB DDR4, 64-bit, CL=15, ECC on
NOTICE: BL2: v1.5(release):bsp0.1_pre-4-g6a5cfdd3
NOTICE: BL2: Built : 10:20:10, Mar 27 2019
NOTICE: BL31: v1.5(release):bsp0.1_pre-4-g6a5cfdd3
NOTICE: BL31: Built : 07:54:36, Apr 9 2019

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
14 NXP Semiconductors

NOTICE: Welcome to LS1046 BL31 Phase

U-Boot 2018.09-00007-gf851eafae4-dirty (Apr 09 2019 - 08:32:35 +0530)

SoC: LS1046AE Rev1.0 (0x87070010)
Clock Configuration:
 CPU0(A72):1600 MHz CPU1(A72):1600 MHz CPU2(A72):1600 MHz
 CPU3(A72):1600 MHz
 Bus: 700 MHz DDR: 2100 MT/s FMAN: 800 MHz
Reset Configuration Word (RCW):
 00000000: 0e150012 10000000 00000000 00000000
 00000010: 30400506 00805012 40025000 c1000000
 00000020: 00000000 00000000 00000000 00038800
 00000030: 20044100 24003101 00000096 00000001
Model: LS1046A FRWY Board
Board: LS1046AFRWY, Rev: A, boot from QSPI
SD1_CLK1 = 100.00MHZ, SD1_CLK2 = 100.00MHZ
I2C: ready
DRAM: 3.9 GiB (DDR4, 64-bit, CL=15, ECC on)
SEC0: RNG instantiated
Using SERDES1 Protocol: 12352 (0x3040)
Using SERDES2 Protocol: 1286 (0x506)
NAND: 512 MiB
MMC: FSL_SDHC: 0
Loading Environment from SPI Flash... SF: Detected mt25qu512a with page size 256 Bytes, erase size 64
KiB, total 64 MiB
OK
EEPROM: NXID v1
In: serial
Out: serial
Err: serial
Net: SF: Detected mt25qu512a with page size 256 Bytes, erase size 64 KiB, total 64 MiB
Fman1: Uploading microcode version 106.4.18
PCIe0: pcie@3400000 disabled
PCIe1: pcie@3500000 Root Complex: x1 gen1
PCIe2: pcie@3600000 Root Complex: x1 gen1
e1000: 68:05:ca:1c:02:c4
 FM1@DTSEC1, FM1@DTSEC5, FM1@DTSEC6, FM1@DTSEC10, e1000#0
Hit any key to stop autoboot: 0
=> print botargs
Error: "botargs" not defined
=> print bootargs
bootargs=console=ttyS0,115200 root=/dev/sdb3 rw earlycon=uart8250,mmio,0x21c0500 ramdisk_size=20000000
rootdelay=3
=> edit bootargs
edit: console=ttyS0,115200 root=/dev/ram0 rw earlycon=uart8250,mmio,0x21c0500 ramdisk_size=20000000
rootdelay=3
=> ping 192.168.3.1
FM1@DTSEC1 Waiting for PHY auto negotiation to complete...user interrupt!
FM1@DTSEC1: Could not initialize
FM1@DTSEC5 Waiting for PHY auto negotiation to complete.user interrupt!
FM1@DTSEC5: Could not initialize
FM1@DTSEC6 Waiting for PHY auto negotiation to complete..user interrupt!
FM1@DTSEC6: Could not initialize
FM1@DTSEC10 Waiting for PHY auto negotiation to complete..user interrupt!
FM1@DTSEC10: Could not initialize
Using e1000#0 device
host 192.168.3.1 is alive
=> tftp 0xa0000000 nxf28358/bin/frwy/kernel.itb

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 15

Using e1000#0 device
TFTP from server 192.168.3.1; our IP address is 192.168.3.193
Filename 'nxf28358/bin/frwy/kernel.itb'.
Load address: 0xa0000000
Loading: ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
16 NXP Semiconductors

 ####################################
 1.6 MiB/s
done
Bytes transferred = 18818835 (11f2713 hex)
=> bootm 0xa0000000
Loading kernel from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'kernel@1' kernel subimage
 Description: ARM64 Linux kernel
 Created: 2019-04-04 10:25:55 UTC
 Type: Kernel Image
 Compression: gzip compressed
 Data Start: 0xa00000dc
 Data Size: 9212643 Bytes = 8.8 MiB
 Architecture: AArch64
 OS: Linux
 Load Address: 0x80080000
 Entry Point: 0x80080000
 Verifying Hash Integrity ... OK
Loading ramdisk from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'ramdisk@1' ramdisk subimage
 Description: LS2 Ramdisk
 Created: 2019-04-04 10:25:55 UTC
 Type: RAMDisk Image
 Compression: gzip compressed
 Data Start: 0xa08d0ff8
 Data Size: 9572804 Bytes = 9.1 MiB
 Architecture: AArch64
 OS: Linux
 Load Address: unavailable
 Entry Point: unavailable
 Verifying Hash Integrity ... OK
Loading fdt from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'fdt@1' fdt subimage
 Description: Flattened Device Tree blob
 Created: 2019-04-04 10:25:55 UTC
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0xa08c9474
 Data Size: 31485 Bytes = 30.7 KiB
 Architecture: AArch64
 Load Address: 0x90000000
 Verifying Hash Integrity ... OK
 Loading fdt from 0xa08c9474 to 0x90000000
 Booting using the fdt blob at 0x90000000
 Uncompressing Kernel Image ... OK
 Using Device Tree in place at 0000000090000000, end 000000009001aafc
WARNING failed to get smmu node: FDT_ERR_NOTFOUND
WARNING failed to get smmu node: FDT_ERR_NOTFOUND

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 4.14.83-00006-g49bfece-dirty (vsharma@lsv03032.swis.in-blr01.nxp.com) (gcc
version 7.3.0 (GCC)) #12 SMP PREEMPT Thu Apr 4 15:53:32 IST 2019
[0.000000] Boot CPU: AArch64 Processor [410fd082]
[0.000000] Machine model: LS1046A FRWY Board
[0.000000] earlycon: uart8250 at MMIO 0x00000000021c0500 (options '')

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 17

[0.000000] bootconsole [uart8250] enabled
[0.000000] efi: Getting EFI parameters from FDT:
[0.000000] efi: UEFI not found.
[0.000000] OF: reserved mem: initialized node qman-fqd, compatible id fsl,qman-fqd
[0.000000] OF: reserved mem: initialized node qman-pfdr, compatible id fsl,qman-pfdr
[0.000000] OF: reserved mem: initialized node bman-fbpr, compatible id fsl,bman-fbpr
[0.000000] cma: Reserved 16 MiB at 0x00000000fac00000
[0.000000] NUMA: No NUMA configuration found
[0.000000] NUMA: Faking a node at [mem 0x0000000000000000-0x00000008ff7fffff]
[0.000000] NUMA: NODE_DATA [mem 0x8ff7c2280-0x8ff7c3a3f]
[0.000000] Zone ranges:
[0.000000] DMA [mem 0x0000000080000000-0x00000000ffffffff]
[0.000000] Normal [mem 0x0000000100000000-0x00000008ff7fffff]
[0.000000] Movable zone start for each node
[0.000000] Early memory node ranges
[0.000000] node 0: [mem 0x0000000080000000-0x00000000fbdfffff]
[0.000000] node 0: [mem 0x0000000880000000-0x00000008fbffffff]
[0.000000] node 0: [mem 0x00000008ff000000-0x00000008ff7fffff]
[0.000000] Initmem setup node 0 [mem 0x0000000080000000-0x00000008ff7fffff]
[0.000000] psci: probing for conduit method from DT.
[0.000000] psci: PSCIv1.1 detected in firmware.
[0.000000] psci: Using standard PSCI v0.2 function IDs
[0.000000] psci: MIGRATE_INFO_TYPE not supported.
[0.000000] psci: SMC Calling Convention v1.1
[0.000000] percpu: Embedded 24 pages/cpu @ffff80087f75d000 s61272 r8192 d28840 u98304
[0.000000] Detected PIPT I-cache on CPU0
[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 1001184
[0.000000] Policy zone: Normal
[0.000000] Kernel command line: console=ttyS0,115200 root=/dev/ram0 rw earlycon=uart8250,mmio,
0x21c0500 ramdisk_size=20000000 rootdelay=3
[0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)
[0.000000] software IO TLB [mem 0xf6c00000-0xfac00000] (64MB) mapped at [ffff800076c00000-
ffff80007abfffff]
[0.000000] Memory: 3889844K/4069376K available (12860K kernel code, 1404K rwdata, 4956K rodata,
1344K init, 919K bss, 163148K reserved, 16384K cma-reserved)
[0.000000] Virtual kernel memory layout:
[0.000000] modules : 0xffff000000000000 - 0xffff000008000000 (128 MB)
[0.000000] vmalloc : 0xffff000008000000 - 0xffff7dffbfff0000 (129022 GB)
[0.000000] .text : 0xffff000008080000 - 0xffff000008d10000 (12864 KB)
[0.000000] .rodata : 0xffff000008d10000 - 0xffff0000091f0000 (4992 KB)
[0.000000] .init : 0xffff0000091f0000 - 0xffff000009340000 (1344 KB)
[0.000000] .data : 0xffff000009340000 - 0xffff00000949f200 (1405 KB)
[0.000000] .bss : 0xffff00000949f200 - 0xffff000009584eb8 (920 KB)
[0.000000] fixed : 0xffff7dfffe7f9000 - 0xffff7dfffec00000 (4124 KB)
[0.000000] PCI I/O : 0xffff7dfffee00000 - 0xffff7dffffe00000 (16 MB)
[0.000000] vmemmap : 0xffff7e0000000000 - 0xffff800000000000 (2048 GB maximum)
[0.000000] 0xffff7e0000000000 - 0xffff7e0021fe0000 (543 MB actual)
[0.000000] memory : 0xffff800000000000 - 0xffff80087f800000 (34808 MB)
[0.000000] Preemptible hierarchical RCU implementation.
[0.000000] RCU restricting CPUs from NR_CPUS=64 to nr_cpu_ids=4.
[0.000000] Tasks RCU enabled.
[0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=4
[0.000000] NR_IRQS: 64, nr_irqs: 64, preallocated irqs: 0
[0.000000] GIC: Adjusting CPU interface base to 0x000000000142f000
[0.000000] GIC: Using split EOI/Deactivate mode
[0.000000] arch_timer: cp15 timer(s) running at 25.00MHz (phys).
[0.000000] clocksource: arch_sys_counter: mask: 0xffffffffffffff max_cycles: 0x5c40939b5,
max_idle_ns: 440795202646 ns
[0.000001] sched_clock: 56 bits at 25MHz, resolution 40ns, wraps every 4398046511100ns
[0.008352] Console: colour dummy device 80x25

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
18 NXP Semiconductors

[0.012839] Calibrating delay loop (skipped), value calculated using timer frequency.. 50.00 BogoMIPS
(lpj=100000)
[0.023248] pid_max: default: 32768 minimum: 301
[0.027933] Security Framework initialized
[0.033066] Dentry cache hash table entries: 524288 (order: 10, 4194304 bytes)
[0.040859] Inode-cache hash table entries: 262144 (order: 9, 2097152 bytes)
[0.047973] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes)
[0.054726] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes)
[0.077927] ASID allocator initialised with 32768 entries
[0.091361] Hierarchical SRCU implementation.
[0.104178] EFI services will not be available.
[0.116737] smp: Bringing up secondary CPUs ...
[0.149404] Detected PIPT I-cache on CPU1
[0.149426] CPU1: Booted secondary processor [410fd082]
[0.177412] Detected PIPT I-cache on CPU2
[0.177425] CPU2: Booted secondary processor [410fd082]
[0.205435] Detected PIPT I-cache on CPU3
[0.205447] CPU3: Booted secondary processor [410fd082]
[0.205475] smp: Brought up 1 node, 4 CPUs
[0.237418] SMP: Total of 4 processors activated.
[0.242149] CPU features: detected feature: 32-bit EL0 Support
[0.248012] CPU features: detected feature: Kernel page table isolation (KPTI)
[0.259367] CPU: All CPU(s) started at EL2
[0.263487] alternatives: patching kernel code
[0.268443] devtmpfs: initialized
[0.273867] random: get_random_u32 called from bucket_table_alloc+0x108/0x260 with crng_init=0
[0.282653] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns:
7645041785100000 ns
[0.292459] futex hash table entries: 1024 (order: 4, 65536 bytes)
[0.298878] xor: measuring software checksum speed
[0.343711] 8regs : 7673.000 MB/sec
[0.387930] 8regs_prefetch: 6686.000 MB/sec
[0.432498] 32regs : 8644.000 MB/sec
[0.476717] 32regs_prefetch: 7072.000 MB/sec
[0.481354] xor: using function: 32regs (8644.000 MB/sec)
[0.486781] pinctrl core: initialized pinctrl subsystem
[0.492429] DMI not present or invalid.
[0.496418] NET: Registered protocol family 16
[0.504899] cpuidle: using governor menu
[0.509034] Bman ver:0a02,02,01
[0.514051] qman-fqd addr 0x00000008ff800000 size 0x800000
[0.519597] qman-pfdr addr 0x00000008fc000000 size 0x2000000
[0.525292] Qman ver:0a01,03,02,01
[0.528780] vdso: 2 pages (1 code @ ffff000008d16000, 1 data @ ffff000009345000)
[0.536220] hw-breakpoint: found 6 breakpoint and 4 watchpoint registers.
[0.543406] DMA: preallocated 256 KiB pool for atomic allocations
[0.549711] Serial: AMBA PL011 UART driver
[0.556971] Machine: LS1046A FRWY Board
[0.560827] SoC family: QorIQ LS1046A
[0.564501] SoC ID: svr:0x87070010, Revision: 1.0
[0.580361] HugeTLB registered 2.00 MiB page size, pre-allocated 0 pages
[0.655202] raid6: int64x1 gen() 1112 MB/s
[0.727199] raid6: int64x1 xor() 1039 MB/s
[0.799236] raid6: int64x2 gen() 1534 MB/s
[0.871236] raid6: int64x2 xor() 1471 MB/s
[0.943299] raid6: int64x4 gen() 2366 MB/s
[1.015298] raid6: int64x4 xor() 1574 MB/s
[1.087354] raid6: int64x8 gen() 2318 MB/s
[1.159372] raid6: int64x8 xor() 1576 MB/s
[1.231398] raid6: neonx1 gen() 2284 MB/s

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 19

[1.303421] raid6: neonx1 xor() 2462 MB/s
[1.375458] raid6: neonx2 gen() 3025 MB/s
[1.447485] raid6: neonx2 xor() 3142 MB/s
[1.519514] raid6: neonx4 gen() 4152 MB/s
[1.591546] raid6: neonx4 xor() 3522 MB/s
[1.663583] raid6: neonx8 gen() 4404 MB/s
[1.735603] raid6: neonx8 xor() 3692 MB/s
[1.739891] raid6: using algorithm neonx8 gen() 4404 MB/s
[1.745314] raid6: xor() 3692 MB/s, rmw enabled
[1.750301] raid6: using neon recovery algorithm
[1.755208] ACPI: Interpreter disabled.
[1.760238] vgaarb: loaded
[1.763074] SCSI subsystem initialized
[1.767026] usbcore: registered new interface driver usbfs
[1.772557] usbcore: registered new interface driver hub
[1.777922] usbcore: registered new device driver usb
[1.783275] imx-i2c 2180000.i2c: scl-gpios not found
[1.788348] i2c i2c-0: IMX I2C adapter registered
[1.793095] i2c i2c-0: using dma0chan16 (tx) and dma0chan17 (rx) for DMA transfers
[1.801181] pps_core: LinuxPPS API ver. 1 registered
[1.806170] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <giometti@linux.it>
[1.815361] PTP clock support registered
[1.819418] EDAC MC: Ver: 3.0.0
[1.822675] dmi: Firmware registration failed.
[1.827155] bman-fbpr addr 0x00000008fe000000 size 0x1000000
[1.832863] Bman err interrupt handler present
[1.837655] Bman portal initialised, cpu 0
[1.841822] Bman portal initialised, cpu 1
[1.845995] Bman portal initialised, cpu 2
[1.850161] Bman portal initialised, cpu 3
[1.854277] Bman portals initialised
[1.858629] Qman err interrupt handler present
[1.863444] QMan: Allocated lookup table at ffff00000b0cd000, entry count 131073
[1.871194] Qman portal initialised, cpu 0
[1.875354] Qman portal initialised, cpu 1
[1.879512] Qman portal initialised, cpu 2
[1.883670] Qman portal initialised, cpu 3
[1.887785] Qman portals initialised
[1.891415] Bman: BPID allocator includes range 32:32
[1.896520] Qman: FQID allocator includes range 256:256
[1.901773] Qman: FQID allocator includes range 32768:32768
[1.907406] Qman: CGRID allocator includes range 0:256
[1.912708] Qman: pool channel allocator includes range 1025:15
[1.918718] No USDPAA memory, no 'fsl,usdpaa-mem' in device-tree
[1.924875] fsl-ifc 1530000.ifc: Freescale Integrated Flash Controller
[1.931445] fsl-ifc 1530000.ifc: IFC version 1.4, 8 banks
[1.937034] Advanced Linux Sound Architecture Driver Initialized.
[1.943431] clocksource: Switched to clocksource arch_sys_counter
[1.949619] VFS: Disk quotas dquot_6.6.0
[1.953583] VFS: Dquot-cache hash table entries: 512 (order 0, 4096 bytes)
[1.960545] pnp: PnP ACPI: disabled
[1.966724] NET: Registered protocol family 2
[1.971321] TCP established hash table entries: 32768 (order: 6, 262144 bytes)
[1.978686] TCP bind hash table entries: 32768 (order: 7, 524288 bytes)
[1.985649] TCP: Hash tables configured (established 32768 bind 32768)
[1.992293] UDP hash table entries: 2048 (order: 4, 65536 bytes)
[1.998351] UDP-Lite hash table entries: 2048 (order: 4, 65536 bytes)
[2.004903] NET: Registered protocol family 1
[2.009391] RPC: Registered named UNIX socket transport module.
[2.015348] RPC: Registered udp transport module.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
20 NXP Semiconductors

[2.020076] RPC: Registered tcp transport module.
[2.024802] RPC: Registered tcp NFSv4.1 backchannel transport module.
[2.031331] Trying to unpack rootfs image as initramfs...
[2.036908] rootfs image is not initramfs (no cpio magic); looks like an initrd
[2.052644] Freeing initrd memory: 9348K
[2.056916] hw perfevents: enabled with armv8_cortex_a72 PMU driver, 7 counters available
[2.065365] kvm [1]: 8-bit VMID
[2.069077] kvm [1]: vgic interrupt IRQ1
[2.073065] kvm [1]: Hyp mode initialized successfully
[2.079417] audit: initializing netlink subsys (disabled)
[2.084897] audit: type=2000 audit(1.984:1): state=initialized audit_enabled=0 res=1
[2.085054] workingset: timestamp_bits=44 max_order=20 bucket_order=0
[2.099371] squashfs: version 4.0 (2009/01/31) Phillip Lougher
[2.105333] NFS: Registering the id_resolver key type
[2.110421] Key type id_resolver registered
[2.114624] Key type id_legacy registered
[2.118655] nfs4filelayout_init: NFSv4 File Layout Driver Registering...
[2.125443] fuse init (API version 7.26)
[2.129438] 9p: Installing v9fs 9p2000 file system support
[2.136116] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 245)
[2.143593] io scheduler noop registered
[2.147549] io scheduler cfq registered (default)
[2.152276] io scheduler mq-deadline registered
[2.156828] io scheduler kyber registered
[2.166137] OF: PCI: host bridge /soc/pcie@3500000 ranges:
[2.171660] OF: PCI: IO 0x4800010000..0x480001ffff -> 0x00000000
[2.177965] OF: PCI: MEM 0x4840000000..0x487fffffff -> 0x40000000
[2.184355] layerscape-pcie 3500000.pcie: PCI host bridge to bus 0000:00
[2.191095] pci_bus 0000:00: root bus resource [bus 00-ff]
[2.196610] pci_bus 0000:00: root bus resource [io 0x0000-0xffff]
[2.202826] pci_bus 0000:00: root bus resource [mem 0x4840000000-0x487fffffff] (bus address
[0x40000000-0x7fffffff])
[2.223522] pci 0000:00:00.0: BAR 14: assigned [mem 0x4840000000-0x48401fffff]
[2.230788] pci 0000:00:00.0: BAR 6: assigned [mem 0x4840200000-0x48402007ff pref]
[2.238402] pci 0000:01:00.0: BAR 0: assigned [mem 0x4840000000-0x48401fffff 64bit]
[2.246140] pci 0000:00:00.0: PCI bridge to [bus 01-ff]
[2.251392] pci 0000:00:00.0: bridge window [mem 0x4840000000-0x48401fffff]
[2.258667] pcieport 0000:00:00.0: Signaling PME with IRQ 68
[2.264408] pcieport 0000:00:00.0: AER enabled with IRQ 69
[2.270011] OF: PCI: host bridge /soc/pcie@3600000 ranges:
[2.275532] OF: PCI: IO 0x5000010000..0x500001ffff -> 0x00000000
[2.281836] OF: PCI: MEM 0x5040000000..0x507fffffff -> 0x40000000
[2.288198] layerscape-pcie 3600000.pcie: PCI host bridge to bus 0001:00
[2.294939] pci_bus 0001:00: root bus resource [bus 00-ff]
[2.300454] pci_bus 0001:00: root bus resource [io 0x10000-0x1ffff] (bus address [0x0000-0xffff])
[2.309466] pci_bus 0001:00: root bus resource [mem 0x5040000000-0x507fffffff] (bus address
[0x40000000-0x7fffffff])
[2.331486] pci 0001:00:00.0: BAR 14: assigned [mem 0x5040000000-0x50400fffff]
[2.338751] pci 0001:00:00.0: BAR 13: assigned [io 0x10000-0x10fff]
[2.345140] pci 0001:00:00.0: BAR 6: assigned [mem 0x5040100000-0x50401007ff pref]
[2.352755] pci 0001:01:00.0: BAR 1: assigned [mem 0x5040000000-0x504007ffff]
[2.359942] pci 0001:01:00.0: BAR 6: assigned [mem 0x5040080000-0x50400bffff pref]
[2.367555] pci 0001:01:00.0: BAR 0: assigned [mem 0x50400c0000-0x50400dffff]
[2.374741] pci 0001:01:00.0: BAR 3: assigned [mem 0x50400e0000-0x50400e3fff]
[2.381929] pci 0001:01:00.0: BAR 2: assigned [io 0x10000-0x1001f]
[2.388242] pci 0001:00:00.0: PCI bridge to [bus 01-ff]
[2.393495] pci 0001:00:00.0: bridge window [io 0x10000-0x10fff]
[2.399796] pci 0001:00:00.0: bridge window [mem 0x5040000000-0x50400fffff]
[2.407055] pcieport 0001:00:00.0: Signaling PME with IRQ 70
[2.412795] pcieport 0001:00:00.0: AER enabled with IRQ 71

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 21

[2.421618] Freescale LS2 console driver
[2.425609] fsl-ls2-console: device fsl_mc_console registered
[2.431417] fsl-ls2-console: device fsl_aiop_console registered
[2.439990] Serial: 8250/16550 driver, 4 ports, IRQ sharing enabled
[2.447306] console [ttyS0] disabled
[2.450920] 21c0500.serial: ttyS0 at MMIO 0x21c0500 (irq = 38, base_baud = 21875000) is a 16550A
[2.459775] console [ttyS0] enabled
[2.459775] console [ttyS0] enabled
[2.466758] bootconsole [uart8250] disabled
[2.466758] bootconsole [uart8250] disabled
[2.475360] 21c0600.serial: ttyS1 at MMIO 0x21c0600 (irq = 38, base_baud = 21875000) is a 16550A
[2.484348] 21d0500.serial: ttyS2 at MMIO 0x21d0500 (irq = 39, base_baud = 21875000) is a 16550A
[2.493336] 21d0600.serial: ttyS3 at MMIO 0x21d0600 (irq = 39, base_baud = 21875000) is a 16550A
[2.502506] SuperH (H)SCI(F) driver initialized
[2.507370] msm_serial: driver initialized
[2.514850] brd: module loaded
[2.520285] loop: module loaded
[2.524652] ahci-qoriq 3200000.sata: AHCI 0001.0301 32 slots 1 ports 6 Gbps 0x1 impl platform mode
[2.533617] ahci-qoriq 3200000.sata: flags: 64bit ncq sntf pm clo only pmp fbs pio slum part ccc sds
apst
[2.543654] scsi host0: ahci-qoriq
[2.547115] ata1: SATA max UDMA/133 mmio [mem 0x03200000-0x0320ffff] port 0x100 irq 50
[2.556899] nand: device found, Manufacturer ID: 0x01, Chip ID: 0xac
[2.563262] nand: AMD/Spansion S34MS04G2
[2.567182] nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 128
[2.575170] Bad block table found at page 262080, version 0x01
[2.581570] Bad block table found at page 262016, version 0x01
[2.588074] fsl,ifc-nand 7e800000.nand: IFC NAND device at 0x7e800000, bank 0
[2.595511] fsl-quadspi 1550000.quadspi: n25q512a (65536 Kbytes)
[2.603204] libphy: Fixed MDIO Bus: probed
[2.607623] tun: Universal TUN/TAP device driver, 1.6
[2.613352] libphy: Freescale XGMAC MDIO Bus: probed
[2.618367] libphy: Freescale XGMAC MDIO Bus: probed
[2.624145] libphy: Freescale XGMAC MDIO Bus: probed
[2.629286] libphy: Freescale XGMAC MDIO Bus: probed
[2.634399] libphy: Freescale XGMAC MDIO Bus: probed
[2.639525] libphy: Freescale XGMAC MDIO Bus: probed
[2.644660] libphy: Freescale XGMAC MDIO Bus: probed
[2.649785] libphy: Freescale XGMAC MDIO Bus: probed
[2.654913] libphy: Freescale XGMAC MDIO Bus: probed
[2.660023] libphy: Freescale XGMAC MDIO Bus: probed
[2.673670] Freescale FM module, FMD API version 21.1.0
[2.680924] Freescale FM Ports module
[2.684583] fsl_mac: fsl_mac: FSL FMan MAC API based driver
[2.690487] fsl_mac 1ae0000.ethernet: FMan MEMAC
[2.695103] fsl_mac 1ae0000.ethernet: FMan MAC address: 00:04:9f:04:f4:5b
[2.702163] fsl_mac 1ae8000.ethernet: FMan MEMAC
[2.706778] fsl_mac 1ae8000.ethernet: FMan MAC address: 00:04:9f:04:f4:5c
[2.713831] fsl_mac 1aea000.ethernet: FMan MEMAC
[2.718446] fsl_mac 1aea000.ethernet: FMan MAC address: 00:04:9f:04:f4:5d
[2.725510] fsl_mac 1af2000.ethernet: FMan MEMAC
[2.730124] fsl_mac 1af2000.ethernet: FMan MAC address: 00:04:9f:04:f4:5e
[2.736938] fsl_dpa: FSL DPAA Ethernet driver
[2.743946] fsl_dpa: fsl_dpa: Probed interface eth0
[2.751522] fsl_dpa: fsl_dpa: Probed interface eth1
[2.759722] fsl_dpa: fsl_dpa: Probed interface eth2
[2.764723] fsl_dpa soc:fsl,dpaa:ethernet@8: of_find_device_by_node(/soc/fman@1a00000/
ethernet@f0000) failed
[2.774576] fsl_dpa: probe of soc:fsl,dpaa:ethernet@8 failed with error -22
[2.784736] fsl_dpa: fsl_dpa: Probed interface eth3

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
22 NXP Semiconductors

[2.789673] fsl_advanced: FSL DPAA Advanced drivers:
[2.794634] fsl_proxy: FSL DPAA Proxy initialization driver
[2.800352] fsl_oh: FSL FMan Offline Parsing port driver
[2.805980] e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-NAPI
[2.813026] e1000: Copyright (c) 1999-2006 Intel Corporation.
[2.818794] e1000e: Intel(R) PRO/1000 Network Driver - 3.2.6-k
[2.824624] e1000e: Copyright(c) 1999 - 2015 Intel Corporation.
[2.830860] e1000e 0001:01:00.0: Interrupt Throttling Rate (ints/sec) set to dynamic conservative mode
[2.868518] ata1: SATA link down (SStatus 0 SControl 300)
[2.895892] e1000e 0001:01:00.0 0001:01:00.0 (uninitialized): registered PHC clock
[2.965337] e1000e 0001:01:00.0 eth4: (PCI Express:2.5GT/s:Width x1) 68:05:ca:1c:02:c4
[2.973257] e1000e 0001:01:00.0 eth4: Intel(R) PRO/1000 Network Connection
[2.980141] e1000e 0001:01:00.0 eth4: MAC: 3, PHY: 8, PBA No: E46981-008
[2.986864] igb: Intel(R) Gigabit Ethernet Network Driver - version 5.4.0-k
[2.993823] igb: Copyright (c) 2007-2014 Intel Corporation.
[2.999409] igbvf: Intel(R) Gigabit Virtual Function Network Driver - version 2.4.0-k
[3.007236] igbvf: Copyright (c) 2009 - 2012 Intel Corporation.
[3.013454] sky2: driver version 1.30
[3.017646] VFIO - User Level meta-driver version: 0.3
[3.024196] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[3.030721] ehci-pci: EHCI PCI platform driver
[3.035173] ehci-platform: EHCI generic platform driver
[3.040493] ehci-orion: EHCI orion driver
[3.044574] ehci-exynos: EHCI EXYNOS driver
[3.048829] ehci-msm: Qualcomm On-Chip EHCI Host Controller
[3.054463] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver
[3.060641] ohci-pci: OHCI PCI platform driver
[3.065095] ohci-platform: OHCI generic platform driver
[3.070403] ohci-exynos: OHCI EXYNOS driver
[3.074858] xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
[3.080347] xhci-hcd xhci-hcd.0.auto: new USB bus registered, assigned bus number 1
[3.088171] xhci-hcd xhci-hcd.0.auto: hcc params 0x0220f66d hci version 0x100 quirks 0x22010810
[3.096883] xhci-hcd xhci-hcd.0.auto: irq 47, io mem 0x02f00000
[3.103012] hub 1-0:1.0: USB hub found
[3.106767] hub 1-0:1.0: 1 port detected
[3.110789] xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
[3.116273] xhci-hcd xhci-hcd.0.auto: new USB bus registered, assigned bus number 2
[3.123931] xhci-hcd xhci-hcd.0.auto: Host supports USB 3.0 SuperSpeed
[3.130728] hub 2-0:1.0: USB hub found
[3.134482] hub 2-0:1.0: 1 port detected
[3.138528] xhci-hcd xhci-hcd.1.auto: xHCI Host Controller
[3.144014] xhci-hcd xhci-hcd.1.auto: new USB bus registered, assigned bus number 3
[3.151826] xhci-hcd xhci-hcd.1.auto: hcc params 0x0220f66d hci version 0x100 quirks 0x22010810
[3.160535] xhci-hcd xhci-hcd.1.auto: irq 48, io mem 0x03000000
[3.166622] hub 3-0:1.0: USB hub found
[3.170376] hub 3-0:1.0: 1 port detected
[3.174390] xhci-hcd xhci-hcd.1.auto: xHCI Host Controller
[3.179875] xhci-hcd xhci-hcd.1.auto: new USB bus registered, assigned bus number 4
[3.187531] xhci-hcd xhci-hcd.1.auto: Host supports USB 3.0 SuperSpeed
[3.194322] hub 4-0:1.0: USB hub found
[3.198075] hub 4-0:1.0: 1 port detected
[3.202117] xhci-hcd xhci-hcd.2.auto: xHCI Host Controller
[3.207605] xhci-hcd xhci-hcd.2.auto: new USB bus registered, assigned bus number 5
[3.215421] xhci-hcd xhci-hcd.2.auto: hcc params 0x0220f66d hci version 0x100 quirks 0x22010810
[3.224132] xhci-hcd xhci-hcd.2.auto: irq 49, io mem 0x03100000
[3.230218] hub 5-0:1.0: USB hub found
[3.233972] hub 5-0:1.0: 1 port detected
[3.237983] xhci-hcd xhci-hcd.2.auto: xHCI Host Controller
[3.243471] xhci-hcd xhci-hcd.2.auto: new USB bus registered, assigned bus number 6
[3.251126] xhci-hcd xhci-hcd.2.auto: Host supports USB 3.0 SuperSpeed

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 23

[3.257918] hub 6-0:1.0: USB hub found
[3.261672] hub 6-0:1.0: 1 port detected
[3.265887] usbcore: registered new interface driver usb-storage
[3.273713] i2c /dev entries driver
[3.285513] rtc-pcf2127-i2c 1-0051: rtc core: registered rtc-pcf2127-i2c as rtc0
[3.294177] at24 1-0052: 65536 byte 24c512 EEPROM, writable, 1 bytes/write
[3.302305] at24 1-0053: 65536 byte 24c512 EEPROM, writable, 1 bytes/write
[3.309197] i2c i2c-0: Added multiplexed i2c bus 1
[3.314057] i2c i2c-0: Added multiplexed i2c bus 2
[3.318915] i2c i2c-0: Added multiplexed i2c bus 3
[3.323770] i2c i2c-0: Added multiplexed i2c bus 4
[3.328560] pca954x 0-0077: registered 4 multiplexed busses for I2C switch pca9546
[3.336184] IR NEC protocol handler initialized
[3.340714] IR RC5(x/sz) protocol handler initialized
[3.345759] IR RC6 protocol handler initialized
[3.350285] IR JVC protocol handler initialized
[3.354809] IR Sony protocol handler initialized
[3.359421] IR SANYO protocol handler initialized
[3.364119] IR Sharp protocol handler initialized
[3.368820] IR MCE Keyboard/mouse protocol handler initialized
[3.374647] IR XMP protocol handler initialized
[3.379355] ptp_qoriq: device tree node missing required elements, try automatic configuration
[3.388095] pps pps0: new PPS source ptp1
[3.394762] ina2xx 1-0040: power monitor ina220 (Rshunt = 1000 uOhm)
[3.404835] imx2-wdt 2ad0000.watchdog: timeout 60 sec (nowayout=0)
[3.411659] qoriq_cpufreq: Freescale QorIQ CPU frequency scaling driver
[3.418534] sdhci: Secure Digital Host Controller Interface driver
[3.424719] sdhci: Copyright(c) Pierre Ossman
[3.429204] Synopsys Designware Multimedia Card Interface Driver
[3.435872] sdhci-pltfm: SDHCI platform and OF driver helper
[3.480450] mmc0: SDHCI controller on 1560000.esdhc [1560000.esdhc] using ADMA 64-bit
[3.490349] platform caam_qi: Linux CAAM Queue I/F driver initialised
[3.497044] caam 1700000.crypto: device ID = 0x0a11030100000000 (Era 8)
[3.503658] caam 1700000.crypto: job rings = 3, qi = 1
[3.511094] caam algorithms registered in /proc/crypto
[3.517639] platform caam_qi: algorithms registered in /proc/crypto
[3.524776] caam_jr 1710000.jr: registering rng-caam
[3.529811] caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto
[3.537225] usbcore: registered new interface driver usbhid
[3.542818] usbhid: USB HID core driver
[3.546710] DPAA2-ETH: debugfs created
[3.550991] Freescale USDPAA process driver
[3.555170] fsl-usdpaa: no region found
[3.559000] Freescale USDPAA process IRQ driver
[3.564252] optee: probing for conduit method from DT.
[3.569391] optee: api uid mismatch
[3.573414] Netfilter messages via NETLINK v0.30.
[3.578184] nf_conntrack version 0.5.0 (16384 buckets, 65536 max)
[3.584356] nf_tables: (c) 2007-2009 Patrick McHardy <kaber@trash.net>
[3.590882] nf_tables_compat: (c) 2012 Pablo Neira Ayuso <pablo@netfilter.org>
[3.598187] ip_tables: (C) 2000-2006 Netfilter Core Team
[3.603645] Initializing XFRM netlink socket
[3.607940] NET: Registered protocol family 10
[3.612742] Segment Routing with IPv6
[3.616435] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
[3.622528] NET: Registered protocol family 17
[3.626972] NET: Registered protocol family 15
[3.627441] usb 1-1: new high-speed USB device number 2 using xhci-hcd
[3.637943] Bridge firewalling registered
[3.641951] Ebtables v2.0 registered

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
24 NXP Semiconductors

[3.645589] 8021q: 802.1Q VLAN Support v1.8
[3.649787] 9pnet: Installing 9P2000 support
[3.654072] Key type dns_resolver registered
[3.658559] registered taskstats version 1
[3.662860] Btrfs loaded, crc32c=crc32c-generic
[3.673746] rtc-pcf2127-i2c 1-0051: setting system clock to 2020-04-06 19:17:39 UTC (1586200659)
[3.682621] ALSA device list:
[3.685590] No soundcards found.
[3.689091] Waiting 3 sec before mounting root device...
[3.772357] usb-storage 1-1:1.0: USB Mass Storage device detected
[3.778617] scsi host1: usb-storage 1-1:1.0
[3.827479] usb 4-1: new SuperSpeed USB device number 2 using xhci-hcd
[3.852534] usb-storage 4-1:1.0: USB Mass Storage device detected
[3.858750] scsi host2: usb-storage 4-1:1.0
[4.800127] scsi 1:0:0:0: Direct-Access SanDisk Cruzer Blade 1.00 PQ: 0 ANSI: 6
[4.808591] sd 1:0:0:0: [sda] 30464000 512-byte logical blocks: (15.6 GB/14.5 GiB)
[4.817025] sd 1:0:0:0: [sda] Write Protect is off
[4.822071] sd 1:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[4.836762] sd 1:0:0:0: [sda] Attached SCSI removable disk
[4.864003] scsi 2:0:0:0: Direct-Access SanDisk Ultra 1.00 PQ: 0 ANSI: 6
[4.872402] sd 2:0:0:0: [sdb] 60063744 512-byte logical blocks: (30.8 GB/28.6 GiB)
[4.880694] sd 2:0:0:0: [sdb] Write Protect is off
[4.885714] sd 2:0:0:0: [sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[4.896181] random: fast init done
[4.906915] sdb: sdb1 sdb2 sdb3
[4.911395] sd 2:0:0:0: [sdb] Attached SCSI removable disk
[6.719479] RAMDISK: gzip image found at block 0
[7.019379] EXT4-fs (ram0): mounted filesystem with ordered data mode. Opts: (null)
[7.027048] VFS: Mounted root (ext4 filesystem) on device 1:0.
[7.033019] devtmpfs: mounted
[7.036482] Freeing unused kernel memory: 1344K
INIT: version 2.88 booting
Starting udev
[7.125944] udevd[2374]: starting version 3.2.5
[7.130682] random: udevd: uninitialized urandom read (16 bytes read)
[7.137242] random: udevd: uninitialized urandom read (16 bytes read)
[7.143737] random: udevd: uninitialized urandom read (16 bytes read)
[7.152900] udevd[2375]: starting eudev-3.2.5
[7.376937] EXT2-fs (sda): warning: mounting unchecked fs, running e2fsck is recommended
[7.541898] EXT4-fs (sdb3): mounted filesystem with ordered data mode. Opts: (null)
[7.554434] EXT4-fs (sdb2): mounted filesystem with ordered data mode. Opts: (null)
[7.595406] EXT4-fs (ram0): re-mounted. Opts: (null)
Configuring packages on first boot....
(This may take several minutes. Please do not power off the machine.)
Running postinst /etc/rpm-postinsts/100-sysvinit-inittab...
INIT: Entering runlevel: 5un-postinsts exists during rc.d purge
Configuring network interfaces... done.
Starting Dropbear SSH server: Generating 2048 bit rsa key, this may take a while...
Public key portion is:
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCLvasBL3eOZGy212NfRvDYv6kGYftjZmIBJGhA+LVlAnDttOadAZYnvwPB/rb5/
ctRY4N5VJ6KeLW/FjgWjijgbJLEX+bkQpbvb0FJa+2sfWIWK7YRnla7beZxNIhtIxbyHMKohszusTNizkdo2bX/tJBRKTE7/Wv/
C9NvMBvSSJg2iUEDLcBWBpeX/jjRcIa4L8lObVihAZZqmZ6k5AoBfV/
jJh3oJ2PbZ93bmzG3fiKoKuCwW5N6iPhZiFEZx3tAn3Tj112nCgr7GUe3WAHQCoBXgUAaCngQXI0EyV7hS0Jh3nCLEJ75/
Z62kVg6Hs45gDcINq/7GR/90YZYo8RH root@TinyDistro
Fingerprint: sha1!! be:6b:43:de:9e:11:21:fa:ea:7d:4f:b1:73:b3:2a:63:6b:9b:0b:ba
dropbear.
Starting syslogd/klogd: done

NXP LSDK (NXP Reference Tiny Distro) 2.0 TinyDistro /dev/ttyS0

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 25

TinyDistro login: root
root@TinyDistro:~# cat /proc/cpuinfo
processor : 0
BogoMIPS : 50.00
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
CPU part : 0xd08
CPU revision : 2

processor : 1
BogoMIPS : 50.00
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
CPU part : 0xd08
CPU revision : 2

processor : 2
BogoMIPS : 50.00
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
CPU part : 0xd08
CPU revision : 2

processor : 3
BogoMIPS : 50.00
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
CPU part : 0xd08
CPU revision : 2

root@TinyDistro:~# uname -a
Linux TinyDistro 4.14.83-00006-g49bfece-dirty #12 SMP PREEMPT Thu Apr 4 15:53:32 IST 2019 aarch64 GNU/
Linux
root@TinyDistro:~# uname -r
4.14.83-00006-g49bfece-dirty
root@TinyDistro:~# cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
 1: 0 0 0 0 GICv2 25 Level vgic
 3: 1117 1104 1246 1116 GICv2 30 Level arch_timer
 4: 0 0 0 0 GICv2 27 Level kvm guest timer
 6: 0 0 0 0 GICv2 138 Level arm-pmu
 7: 0 0 0 0 GICv2 139 Level arm-pmu
 8: 0 0 0 0 GICv2 127 Level arm-pmu
 9: 0 0 0 0 GICv2 129 Level arm-pmu
11: 10 0 0 0 GICv2 75 Level fsl-ifc
12: 4 0 0 0 GICv2 131 Level 1550000.quadspi
13: 0 0 0 0 GICv2 94 Level mmc0
15: 0 0 0 0 GICv2 77 Level bman-err, qman-err, fman-err
22: 0 0 0 0 GICv2 216 Level QMan portal 3
23: 0 0 0 0 GICv2 218 Level QMan portal 2
24: 0 0 0 0 GICv2 220 Level QMan portal 1
25: 0 0 0 0 GICv2 222 Level QMan portal 0

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
26 NXP Semiconductors

32: 0 0 0 0 GICv2 217 Level BMan portal 3
33: 0 0 0 0 GICv2 219 Level BMan portal 2
34: 0 0 0 0 GICv2 221 Level BMan portal 1
35: 0 0 0 0 GICv2 223 Level BMan portal 0
37: 121 0 0 0 GICv2 88 Level 2180000.i2c
38: 402 0 0 0 GICv2 86 Level ttyS0
44: 0 0 0 0 GICv2 118 Level 29d0000.ftm0
45: 0 0 0 0 GICv2 115 Level 2ad0000.watchdog
46: 0 0 0 0 GICv2 135 Level eDMA
47: 282 0 0 0 GICv2 92 Level xhci-hcd:usb1
48: 838 0 0 0 GICv2 93 Level xhci-hcd:usb3
49: 0 0 0 0 GICv2 95 Level xhci-hcd:usb5
50: 0 0 0 0 GICv2 101 Level ahci-qoriq[3200000.sata]
68: 0 0 0 0 GICv2 159 Level PCIe PME
69: 0 0 0 0 GICv2 160 Level aerdrv
70: 0 0 0 0 GICv2 193 Level PCIe PME
71: 0 0 0 0 GICv2 194 Level aerdrv
72: 0 0 0 0 GICv2 76 Level fman, ptp_qoriq
78: 2 0 0 0 GICv2 103 Level 1710000.jr
79: 0 0 0 0 GICv2 104 Level 1720000.jr
80: 0 0 0 0 GICv2 105 Level 1730000.jr
IPI0: 1963 1485 2265 1375 Rescheduling interrupts
IPI1: 27 546 523 542 Function call interrupts
IPI2: 0 0 0 0 CPU stop interrupts
IPI3: 0 0 0 0 CPU stop (for crash dump) interrupts
IPI4: 0 0 0 0 Timer broadcast interrupts
IPI5: 0 0 0 0 IRQ work interrupts
IPI6: 0 0 0 0 CPU wake-up interrupts
Err: 0
root@TinyDistro:~#

3.1.4.2 Option 1: Deploy FRWY-LS1046A BSP images using removable
storage device

Given below are the steps to deploy FRWY-LS1046A BSP images on the FRWY-LS1046A board using a removable storage device
(micro-SD). Option 1 can be used when the user has access to a local Linux host machine and to a local FRWY-LS1046A board.
For this option, the storage device (micro-SD using adapter if needed) is plugged into the host machine and programmed. Once
the programming is complete, the storage device is removed from the host machine and then inserted into the FRWY-LS1046A
board.

1. Connect the removable storage device to the local Linux host machine.

2. The composite firmware, boot partition, and rootfs images that were assembled during “Download and assemble FRWY-
LS1046A BSP images” will be available under flexbuild_<version> directory on the host machine. The images are
named as follows:

• Composite firmware:

firmware_ls1046afrwy_uboot_sdboot.img

• Boot partition:

bootpartition_LS_arm64_<version> or bootpartition_LS_arm64_<version>.tgz (64-bit)

• rootfs:

rootfs_ubuntu_bionic_LS_arm64 or rootfs_ubuntu_bionic_LS_arm64.tgz (64-bit)

FRWY-LS1046A BSP Quick Start

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 27

3. Set up the environment for flex-installer to run:

$ cd flexbuild
$ source setup.env

4. Execute flex-installer with appropriate arguments to deploy FRWY-LS1046A BSP images to the storage device.

For example:

flex-installer -b bootpartition_<arch>_<version>.tgz -r rootfs_ubuntu_<version>.tgz -f
firmware_ls1046afrwy_uboot_sdboot.img -d /dev/mmcblk0

If the Linux host machine supports read/write SD card directly without an extra SD card reader device, then the

device name of micro-SD card is typically mmcblk0.

 WARNING

5. After a successful installation, the message “installation finished successfully” appears. Execute the following command
to unmount all mounted partitions of the target device.

Example:

$ sudo umount /run/media/mmcblk0

6. Unplug removable storage device (micro-SD card) from the Linux host and plug it into the FRWY-LS1046A board.

7. Ensure that the DIP switch settings on the board enable booting from micro-SD card (see “Onboard switch options” in
the preceding section for switch settings).

8. Power cycle the board. The system will automatically boot the BSP Ubuntu distro available on the micro-SD card.

Update/flash image in QSPI NOR flash

As an alternative option, the user can boot Linux with tiny distro from QSPI NOR flash using the following steps:

1. Power on the board and stop autoboot to enter the U-Boot prompt.

2. Program/update the composite firmware to QSPI NOR flash as follows:

a. Load firmware image from storage media:

Storage media Commands in U-Boot

USB
=> usb start
=> load usb 0:2 a0000000
firmware_ls1046afrwy_uboot_qspiboot.img

Micro-SD
=> load mmc 0:2 a0000000
firmware_ls1046afrwy_uboot_qspiboot.img

b. Execute the following command to program the QSPI NOR flash:

=> sf probe 0:0; sf erase 0 +$filesize; sf write a0000000 0 $filesize

3. Ensure that the DIP switch settings on the board enable booting from QSPI NOR flash (see “Onboard switch options” in
the preceding section for switch settings).

4. Power cycle the board. The system will automatically boot the BSP tiny distro available on the QSPI NOR flash.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
28 NXP Semiconductors

3.1.4.3 Option 2: Deploy BSP images directly to storage device on a
board

If the user does not have a local Linux host machine that can connect to a removable media, and/or the user does not have local
access to a FRWY-LS1046A board, then the user can directly deploy BSP images to the storage device on a FRWY-LS1046A
board by accessing the board remotely. For this option, a network connection to the FRWY-LS1046A board is required.

1. Reboot the FRWY-LS1046A board from QSPI NOR flash and let it boot automatically.

• If the DIP switch settings are configured for QSPI NOR flash, then the board will boot from QSPI NOR flash using
the composite firmware present on the board.

2. Log in to TinyDistro as “root” and bring up a network interface:

$ udhcpc -i <port name in TinyDistro>

3. Use flex-installer to create and format the partitions for storage device (micro-SD card).

Storage device Commands in Linux

Micro-SD card $ flex-installer -i pf -d /dev/mmcblk0

If the Linux host machine supports read/write SD card directly without an extra SD card reader device, then the

device name of micro-SD card is typically mmcblk0.

 WARNING

4. Download and deploy composite firmware image, firmware_ls1046afrwy_uboot_sdboot.img, and two tarballs (boot
partition and Ubuntu userland) to micro-SD card. The composite image and tarballs were assembled while performing
steps mentioned in the “Download and assemble FRWY-LS1046A BSP images” section.

Storage device Commands in Linux

Micro-SD card a. $ cd /run/media/mmcblk0p3

b. Download firmware_ls1046afrwy_uboot_sdboot.img,
bootpartition_<arch>_<version>.tgz, and
ubuntu_<codename>_<arch>_rootfs_<timestamp>.tgz using the wget or
scp command.

c. $ flex-installer -b bootpartition_<arch>_lts_<version>.tgz -r

rootfs_ubuntu_<codename>_<arch>_<timestamp>.tgz -f

firmware_ls1046afrwy_uboot_sdboot.img -d /dev/mmcblk0

5. Ensure that the DIP switch settings on the board enable booting from micro-SD card (see “Onboard switch options” in
the preceding section for switch settings).

6. Power cycle the board. The system will automatically boot Ubuntu userland.

7. Log in using root/root or user/user.

3.2 How to build FRWY-LS1046A BSP with Flexbuild
Flexbuild provides command line interface, flex-builder, for various build scenarios. The FRWY-LS1046A BSP Quick Start on
page 9 section introduces how to build the FRWY-LS1046A BSP distro userland with prebuilt boot partition and component tarballs
for quick deployment on the target board. The current section explains how to build FRWY-LS1046A BSP with Flexbuild.

How to build FRWY-LS1046A BSP with Flexbuild

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 29

Go to www.nxp.com to download Flexbuild source tarball in the name format, flexbuild_<version>.tgz:

$ tar xvzf flexbuild_<version>.tgz
$ cd flexbuild
$ source setup.env
$ flex-builder -h

Build Trusted Firmware-A (TF-A) with RCW and U-Boot in Flexbuild

Layerscape platforms support TF-A, which provides a reference implementation of secure world software for Armv7-A and Armv8-
A.

flex-builder can automatically build the dependent RCW, U-Boot, OPTEE, and CST when building TF-A to generate BL2 and
FIP images for Layerscape platforms.

Use the commands below to build U-Boot-based TF-A image in Flexbuild:

Usage:
$ flex-builder -c atf -m <machine> -b <boottype> [-s]

Examples:
$ flex-builder -c atf -m ls1046afrwy -b qspi # build uboot-based TF-A image for qspi-NOR boot
on FRWY-LS1046A
$ flex-builder -c atf -m ls1046afrwy -b sd # build uboot-based TF-A image for micro-SD boot
on FRWY-LS1046A
$ flex-builder -c atf -m ls1046afrwy -b qspi -s # build uboot-based TF-A image for qspi-NOR
secure boot on FRWY-LS1046A

If the user wants to modify RCW source code (in packages/firmware/rcw) or specify RCW binary that is

different from default one, then the user needs to reconfigure the rcw_<boottype> variable in configs/board/

<machine>/manifest and run the flex-builder -c rcw command to regenerate RCW binary.

 NOTE

If RCW or U-Boot source code is updated since last build, ensure to clean the obsolete image by rm -rf build/

firmware/u-boot/<machine> and/or rm -rf build/firmware/rcw/<machine> command, and then

rebuild TF-A by flex-builder -c atf -m <machine> -b <boottype> command.

 NOTE

The '-s' option is used for secure boot; OPTEE and FUSE_PROVISIONING are not enabled by default, change

CONFIG_BUILD_OPTEE=n to y and/or change CONFIG_FUSE_PROVISIONING=n to y in configs/

build_lsdk.cfg to enable it, if required.

 NOTE

Build Linux kernel with Flexbuild

Building FRWY-LS1046A BSP kernel in standalone mode is explained in Configuring and building Linux kernel on page 88.
Alternatively, FRWY-LS1046A BSP kernel can be built easily using flex-builder. This section explains how to build Linux kernel
using flex-builder.

To build kernel using the default tree/branch/tag configurations specified in configs/build_lsdk.cfg:

$ flex-builder -c linux -a arm64 # for 64-bit mode of all Armv8 Layerscape platforms by
default

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
30 NXP Semiconductors

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=LAYERSCAPE-FRWYLS1046A-BSP

To build kernel with specified tree/branch/tag and additional fragment config:

Usage:
$ flex-builder -c linux:<kernel-repo>:<branch|tag> -a arm64 -B fragment:<custom>.config

Examples:
$ flex-builder -c linux:linux:linux-4.14-ls1046afrwy-bsp0.1 -a arm64 -B fragment:lttng.config
$ flex-builder -c linux:linux:ls1046afrwy-bsp0.1 -a arm64

The user can put a custom kernel fragment config file (for example, named as ls1046afrwy.config) in flexbuild/packages/
linux/<kernel-repo>/arch/arm64/configs directory, then run the command below to compile kernel as per the default
defconfig, lsdk.config, and the additional ls1046afrwy.config:

$ flex-builder -c linux -a arm64 -B fragment:ls1046afrwy.config

Platform Command for building Linux

FRWY-LS1046A, 64-bit $ flex-builder -c linux:custom -a arm64 (optional, customize kernel config in
interactive menu)

$ flex-builder -c linux -a arm64

Build FRWY-LS1046A BSP composite firmware and boot partition

The FRWY-LS1046A BSP composite firmware consists of TF-A BL2, TF-A BL3 FIP firmware, bootloader environment, secure
headers, Ethernet MAC/PHY firmware, dtb, kernel and tiny ramdisk rfs, and so on. This composite firmware can be programmed
at offset 0x0 in flash device or at offset block #8 in micro-SD card.

To generate FRWY-LS1046A BSP composite firmware for Layerscape platform, run the following command:

Usage:
$ flex-builder -i mkfw -m <machine> -b <boottype> [-B <bootloader>] [-s]

Examples:
$ flex-builder -i mkfw -m ls1046afrwy -b qspi
 firmware_ls1046afrwy_uboot_qspiboot.img will be generated.

$ flex-builder -i mkfw -m ls1046afrwy -b qspi -s
 firmware_ls1046afrwy_uboot_qspiboot_secure.img will be generated.

$ flex-builder -i mkfw -m ls1046afrwy -b sd
 firmware_ls1046afrwy_uboot_sdboot.img will be generated.

$ flex-builder -i mkfw -m ls1046afrwy -b sd -s
 firmware_ls1046afrwy_uboot_sdboot_secure.img will be generated.

To generate FRWY-LS1046A BSP boot partition tarball, run the following command:

$ flex-builder -i mkbootpartition -a arm64
or
$ flex-builder -i mkbootpartition -a arm64 -s (for secure boot)

The command above will generate all required images, including kernel image, dtb, distro boot script, flex_linux_<arch>.itb,
small ramdiskrfs, and so on. If any dependency exists on any other component, then flex-builder will automatically build that
component.

How to build FRWY-LS1046A BSP with Flexbuild

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 31

How to build application components in Flexbuild

The following commands are some examples of building application components.

Usage:
$ flex-builder -c <component> -a <arch> # build single application component for specified <arch>

Examples:
$ flex-builder -c apps # build all apps components for arm64 arch
$ flex-builder -c fmc # build fmc component for arm64 arch
$ flex-builder -c dpdk # build dpdk component for arm64 arch
$ flex-builder -c openssl # build openssl component for arm64 arch
$ flex-builder -c cst # build cst component, needed for secure boot
(arm64 is the default arch if -a <arch> is not specified)

To add new application component in Flexbuild, follow the steps below:

1. Add new <component> to apps_repo_list and set CONFIG_BUILD_<component>=y in configs/build_xx.cfg.

2. Configure url/branch/tag/commit information for new <component_name> in configs/build_xx.cfg, default remote.
Component git repository is specified by GIT_REPOSITORY_URL by default if <component>_url is not specified; the user
can also directly create the new component git repository in packages/apps directory.

3. Add build support for new component in packages/apps/Makefile.

4. Run the flex-builder -c <component-name> -a <arch> command to build the new component.

5. Run the flex-builder -i merge-component -a <arch> command to merge the new component package into target
distro userland.

How to update existing Linux kernel with new custom kernel for Ubuntu on target board in case of non-secure boot

The user can quickly install custom kernel and lib modules after Ubuntu had been deployed in micro-SD card on target board in
case of non-secure boot, follow the steps below:

1. After modifying Linux kernel source code in $FBDIR/packages/linux/<kernel-repo> on demand, rebuild kernel as
follows:

$ flex-builder -c linux:custom (optional, to customize kernel config in interactive menu)
$ flex-builder -c linux
$ flex-builder -i mkbootpartition -a arm64

The new kernel image tarball $FBDIR/build/images/linux_4.14_LS_arm64_<timestamp>.tgz will be generated.

2. Then, log in to Ubuntu system on target board, and update kernel image as follows:

root@localhost:/# dhclient -i eth0
root@localhost:~# cd /
root@localhost:/# wget <path>/linux_4.14_LS_arm64_<timestamp>.tgz (or by scp command)
root@localhost:/# tar xf linux_4.14_LS_arm64_<timestamp>.tgz
root@localhost:/# reboot

System will reboot and automatically boot to Ubuntu with new custom kernel.

Rebuild images after modifying source code of NXP user space components locally

Flexbuild supports building specific components after the source code is changed. Flexbuild then deploys the changes to the
target board. Follow these steps:

1. Modify source code of user space components in the packages/apps/<apps-component> directory on demand.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
32 NXP Semiconductors

2. Clean old build footprint under user space component:

$ make clean -C $FBDIR/packages/apps/<app-component>
$ rm -rf $FBDIR/build/apps/components_LS_arm64

3. Build the user space component and generate the compressed component tarball:

$ flex-builder -c <apps-component> -a arm64
$ flex-builder -i compressapps -a arm64

4. Upload and deploy the newly generated app_components_LS_arm64.tgz to target board on which Ubuntu distro was
installed in micro-SD card:

=> run sd_bootcmd (or run qspi_bootcmd to enter tiny distro Linux environment)
Download app_components_LS_arm64.tgz via wget or scp command
root@TinyDistro:~# tar xf app_components_LS_arm64.tgz
root@TinyDistro:~# cp -a components_LS_arm64/* /run/media/mmcblk0p3
root@TinyDistro:~# reboot

How to generate a custom Ubuntu root filesystem with custom additional package list on x86 host machine

In Flexbulid, two default additional package lists are available for Ubuntu/Debian: additional_packages_list_moderate and
additional_packages_list_tiny:

$ flex-builder -i mkrfs -a arm64 (as per additional_packages_list_moderate with more packages for
Ubuntu rootfs by default)
$ flex-builder -i mkrfs -r ubuntu:tiny -a <arch> (as per additional_packages_list_tiny with less
packages for Ubuntu rootfs)
$ flex-builder -i mkrfs -r ubuntu -a <arch> -B <custom_packages_list>

To install a new package to build/rfs/rootfs_ubuntu_bionic_LS_arm64 filesystem, run the following commands:

$ sudo chroot build/rfs/rootfs_ubunutu_bionic_LS_arm64
$ apt-get install <new_package_name>
exit

How to install distro to micro-SD / USB storage device

Use the FRWY-LS1046A BSP flex-installer to install all the release binaries and distro userland on a storage media (for
example, micro-SD card, USB disk) on the Linux host machine or on the target board. Follow the instructions below:

1. Plug micro-SD / USB storage device to Linux host machine or target board.

2. Install FRWY-LS1046A BSP distro:

• If the prebuilt distro tarball generated by Flexbuild is available on Linux host machine, then run the following command:

$ flex-installer -b bootpartition_LS_arm64_lts_4.14.tgz -r rootfs_ubuntu_bionic_LS_arm64.tgz -
m ls1046afrwy -d /dev/sdx

In the above command, replace sdx with actual device name on the host machine, for example sdb, sdc, or

mmcblk0.

 NOTE

How to build FRWY-LS1046A BSP with Flexbuild

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 33

• If the user wants to modify source code and build a custom FRWY-LS1046A BSP distro with Flexbuild, then
following commands need to be run on the Linux host machine:

$ flex-builder -c linux:custom -a <arch> # customize kernel config in interactive menu
$ flex-builder -c linux -a <arch>
$ flex-builder -i mkfw -m <machine> -b <boottype>
$ flex-builder -i mkrfs -a <arch>
$ flex-builder -c apps -a <arch>
$ flex-builder -i merge-component -a <arch>
$ flex-builder -i mkbootpartition -a <arch>
$ flex-installer -b build/images/bootpartition_LS_arm64_lts_4.14 -r build/rfs/
rootfs_ubuntu_bionic_LS_arm64 -d /dev/sdx

• If the user wants to install distro rootfs directly on the micro-SD / USB disk on the FRWY-LS1046A board on which
Linux is unavailable, then prebuilt image, lsdk_linux_<arch>_LS_tiny.itb, needs to be downloaded as follows:

$ wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/lsdk_linux_arm64_LS_tiny.itb

• Optionally, the prebuilt image can be built locally using the following command:

$ flex-builder -i mklinux -a <arch> to generate lsdk_linux_arm64_LS_tiny.itb

• Put lsdk_linux_arm64_LS_tiny.itb to a TFTP service directory, and then download it to the target board from U-
Boot prompt as follows:

=> tftp a0000000 lsdk_linux_arm64_LS_tiny.itb
=> bootm a0000000#<board-name>
Note: Make sure to update bootargs as shown below
setenv bootargs console=ttyS0,115200 root=/dev/ram0 rw earlycon=uart8250,mmio,0x21c0500
ramdisk_size=20000000 rootdelay=3

In the above command, <board-name> is ls1046afrwy.

• After booting and logging in to Linux on the target board, download the prebuilt distro tarballs generated by Flexbuild
and install them using the following commands:

$ flex-installer -i pf -d /dev/sdx
$ cd /run/media/{mmcblk0p3 or sdx3}, then download distro images to micro-SD/USB storage
disk via wget or scp command
$ flex-installer -b bootpartition_LS_arm64_lts_<version>.tgz -r
rootfs_ubuntu_bionic_LS_arm64.tgz -d /dev/sdX

3. Power on or reboot the target board after finishing the distro installation. The system will enter boot loader (U-Boot), will
automatically scan boot configuration script from the attached micro-SD / USB disk, and will boot the target FRWY-
LS1046A BSP distro if found; otherwise, it will fall back to boot from QSPI NOR flash with tiny ramdisk distro.

How to program firmware to micro-SD / QSPI NOR flash media

• Program firmware to micro-SD card:

1. Download the prebuilt firmware image / generate image:

— Option 1: Download the prebuilt image using the wget command:

$ wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/
firmware_ls1046afrwy_uboot_sdboot.img

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
34 NXP Semiconductors

— Option 2: To generate firmware_ls1046afrwy_uboot_sdboot.img locally, run the following command:

$ flex-builder -i mkfw -m ls1046afrwy -b sd

2. Program firmware_<machine>_uboot_sdboot.img to micro-SD card:

— Under U-Boot:

a. Program image:

=> load mmc 0:2 a0000000 firmware_ls1046afrwy_uboot_sdboot.img
=> mmc write a0000000 8 1fff8

b. Power cycle the board.

Ensure that switch settings on the board are for SD boot.

 NOTE

— Under Linux:

$ flex-installer -f firmware_ls1046afrwy_uboot_sdboot.img -d /dev/mmcblk0

• Program firmware to QSPI NOR flash:

1. Download the image using one of the following options:

— Option 1: Load prebuilt image from micro-SD card:

=> load mmc 0:2 a0000000 firmware_ls1046afrwy_uboot_qspiboot.img

— Option 2: Download the prebuilt image using the wget command:

$ wget https://www.nxp.com/lgfiles/sdk/ls1046afrwy_bsp_01/
firmware_ls1046afrwy_uboot_qspiboot.img

— Option 3: To generate firmware_ls1046afrwy_uboot_qspiboot.img locally, run the following command:

$ flex-builder -i mkfw -m ls1046afrwy -b qspi

2. Program firmware_ls1046afrwy_uboot_qspiboot.img to QSPI NOR flash:

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize

3.3 Secure boot

3.3.1 Hardware Pre-Boot Loader (PBL) based platforms

3.3.1.1 Introduction
This section is intended for end-users to demonstrate the image validation process. The image validation can be split into stages,
where each stage performs a specific function and validates the subsequent stage before passing control to that stage.

Chain Of Trust:

CoT starts from a set of implicitly trusted components.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 35

The following images are included in the CoT:

• BL1

• BL2

• BL31

• BL32

• BL33

• Linux

For more details on the CoT refer trusted-board-boot.rst in the TF-A repository

3.3.1.2 Secure boot process
Secure boot process uses a digital signature validation routine already present in Internal BOOT ROM. This routine performs
validation using HW bound RSA public key to decrypt the signed hash and compare it to a freshly calculated hash over the same
system image. If the comparison passes, the image can be considered as authentic.

The complete process can be broken down into following phases:

• Pre-Boot Phase

1. PBL

2. SFP

• ISBC

• ESBC

The complete secure boot process is shown in the figure below.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
36 NXP Semiconductors

Figure 2. Secure boot process

3.3.1.3 Pre-boot phase
When the processor is powered on, reset control logic blocks all device activities (including scan and debug activity) until fuse
values can be accurately sensed. The most important fuse value at this stage of operation is the ‘Intent to Secure’ (ITS) bit. When
an OEM sets ITS, they intend for the system to operate in a secure and trusted manner.

The two main components involved during this process are:

The Security Fuse Processor (SFP) has two roles. The first is to physically burn fuses during device provisioning. The second
is to use these provisioned values to enforce security policy in the pre-boot phase, and to securely pass provisioned keys and
other secret values to other hardware blocks when the system is in a trusted/secure state.

Pre-Boot Loader (PBL) is the micro-sequencer that can simplify system boot by configuring the DDR memory controllers to more
optimal settings and copying code and data from low speed memory into DDR. This allows subsequent phases of boot to operate
at higher speed. The setting of ITS determines where the PBL is allowed to read and write. The use of the PBL is mandatory
when performing secure boot. At a minimum, the PBL must read a command file from a location determined by the Reset
Configuration Word (RCW) and perform a store of a value to the ESBC Pointer Register within the SoC. If the PBL does not
perform this operation (or sets the ESBC pointer to the wrong value), the ISBC will fail to validate the ESBC. Once the PBL has
completed any operations defined by its command file, the PBL is disabled until the next Power on Reset and the Boot Phase
begins.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 37

The ISBC is capable of reading from NOR flash connected to the local bus, on-chip memory configured as SRAM, or main memory.
Unless the ESBC is stored in NOR flash, the developer is required to create a PBL Image that copies the image to be validated
from NVRAM to main memory or internal SRAM prior to writing the SCRATCHRW1 Register and executing the ISBC code.

To assist with the creation of PBL Images (for both normal and Trust systems), NXP offers a PBL Image Tool.

Note that it is possible for an attacker to modify the board to direct the PBL to the wrong non-volatile memory interface, or change
the PBL Image and CSF Header pointer, however this will result in a secure boot failure and the system remaining in an idle loop
indefinitely.

3.3.1.4 ISBC phase

3.3.1.4.1 Flow in the ISBC code
With the PBL disabled and all external masters blocked by the PAMUs, CPU 0 is released from boot hold-off and begins executing
instructions from a hardwired location within the Internal BOOT ROM. The instructions inside the Internal BOOT ROM are NXP
developed code known as the Internal Secure Boot Code (ISBC). The ISBC leads CPU 0 to perform the following actions:

1. Who am I check? - CPU 0 reads its Processor ID Register, and if it finds any value besides physical CPU 0, the CPU
enters a loop. This insures that only CPU 0 executes the ISBC.

2. Sec_Mon check - CPU 0 confirms that the Sec_Mon is in the Check state. If not, it writes a ‘fail’ bit in a Sec_Mon control
register, leading to a state transition.

3. ESBC pointer read - CPU 0 reads the ESBC (External Secure Boot Code) Pointer Register, and then reads the word at
the indicated address, which is the first word of the Command Sequence File Header which precedes the ESBC itself. If
the contents of the word do not match a hard coded preamble value, the ISBC takes this to mean it has not found a valid
CSF and cannot proceed. This leads to a fail, as described in #2 above.

4. CSF parsing and public key check - If CPU 0 finds a valid CSF header, it parses the CSF header to locate the public
key to be used to validate the code. There can be a single public key or a table of 4 public keys present in the header. The
Secure Fuse Processor does not actually store a public key, it stores a SHA-256 hash of the public key/table of 4 keys. This
is done to allow support for up to 4096b keys without an excessively large fuse block. If the hash of the public key fails to
match the stored hash, secure boot fails.

5. Signature validation - With the validated public key, CPU 0 decrypts the digital signature stored with the CSF header. The
ISBC then uses the ESBC lengths and pointer fields in the CSF header to calculate a hash over the code. The ISBC checks
that the CSF header is included in the address range to be hashed. Option flags in the CSF header tell the ISBC whether
the NXP Unique ID and the OEM Unique ID (in the Secure Fuse Processor) are included in the hash calculation. Including
these IDs allows the image to be bound to a single platform. If the decrypted hash and generated hash do not match,
secure boot fails.

6. ESBC First Instruction Pointer check - One final check is performed by the ISBC. This check confirms that the First
Instruction Pointer in the CSF header falls within the range of the addresses included in the previous hash. If the pointer
is valid, the ISBC writes a ‘PASS’ bit in a Sec_Mon command register, the state machine transitions to ‘Trusted’, and the
OTPMK is made available to the SEC.

7. In case of failure, for Trust v2.0 devices , secondary flag is checked in the CSF header. If set, ISBC reads the CSF header
pointer form SCRATCHRW3 location and repeats from step 4.

There are many reasons the ISBC could fail to validate the ESBC. Technicians with debug access can check the SCRATCHRW2
Register to obtain an error code. For a list of error codes, refer ISBC Validation Error Codes.

3.3.1.4.2 Super Root Keys (SRKs) and signing keys
These are RSA public and private key pairs. Private keys are used to sign the images and public keys are used to validate the
image during ISBC and ESBC phase.

Public keys are embedded in the header and the hash of SRK table is fused in SRKH register of SFP.

These are Hardware Bound Keys, once the hash is fused the public private key pair cannot be modified.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
38 NXP Semiconductors

Keys of sizes 1k, 2k, and 4k are supported in FSL Secure Boot Process.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot.

If this key is ever lost, the OEM will be unable to update the image.

3.3.1.4.3 Key revocation
Trust Architecture 2.x introduces support for revoking the RSA public keys used by the ISBC to verify the ESBC. The RSA public
keys used for this purpose are called Super Root Keys (SRK's).

OEM can use either a single key or a list of upto 4 SRK's in the Trust Arch v2.x devices.

In the NXP Code Signing Tool (CST), the OEM defines whether the device uses a single SRK, or offers a list of SRK's. If using a
single SRK, a new flag bit in the CSF header will indicate “Key”, otherwise the flag will indicate “Key List”. Assuming key list, the
OEM can populate a list of up to 4 SRK's for trust arch v2.x onwards platforms and can calculate a SHA-256 hash over the list.
This hash is written to the SRKH registers in the SFP.

As part of code signing, the OEM defines which key in the key list is to be used for validating the image. This key number is
included as a new field in the CSF header.

During secure boot, the ISBC determines whether a key list is in use. If the key list is valid, the ISBC checks the key number
indicated in the CSF header against the revocation fuses in the SFP’s OEM Security Policy Register (SFP_OSPR). If the key is
revoked, the image validation fails.

In order to prevent unauthorized revocation of keys, SFP provides a bit (Write Disable). If the bit is set, the Key

revocation bits cannot be written to.

In regular operation, the ESBC (early Trusted S/W) needs to set the SFP Write Disable bit. When circumstances

call for revoking a key, the OEM will use an ESBC image with “Write Disable” bit not set. So, the SFP will be in a

state in which key revocation fuses can be set.

Logically after revoking the required key(s), the OEM would then load a new signed ESBC image with code to set

the "Write Disable" bit, with new CSF header indicating which of the remaining non-revoked key to use.

So, only the possessor of a legitimate RSA private key can enable key revocation.

 NOTE

One possible motivation for an OEM to revoke an SRK is the loss of the associated RSA private key to an attacker. If the attacker
has gained access to a legitimate RSA private key, and the attacker can turn on power to the fuse programming circuitry, then the
attacker could maliciously revoke keys. To prevent this from being used to permanently disable the system, one SRK does not
have an associated revocation fuse.

3.3.1.4.4 Alternate image support
Trust 2.0 onwards will support a primary and alternate image, where failure to find a valid image at the primary location will cause
the ISBC to check a configured alternate location.

To execute, the alternate image must be validated using a non-revoked public key as defined by its CSF Header. A valid alternate
image has same rights and privileges as a valid primary image.

This feature helps to reduce risk of corrupting single valid image during firmware update or as a result of flash block wear-out.

To enable this feature, create PBI with pointers for both primary and alternate images (HW PBL uses SCRATCHRW1 &
SCRATCHRW3).

3.3.1.4.5 ESBC with CSF header
ESBC is the generic name for the code that the ISBC validates. A few ESBC scenarios are described in later sections.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 39

The figure below provides an example of an ESBC with CSF (Command Sequence File) header. The CSF header includes lengths
and offset which allow the ISBC to locate the operands used in ESBC image validation, as well as describe the size and location
of the ESBC image itself.

Note: CSF header and ESBC header may be used synonymously in this and other NXP Trust Architecture documentation.

Figure 3. ESBC with CSF header

3.3.1.5 ESBC phase
Unlike ISBC, which is an internal ROM and unchangeable, ESBC is NXP – supplied reference code, and can be changed by
OEMs. ESBC is the BL2 image, which is signed using private key. That image then loads a FIP image that includes, BL31 (EL3
runtime software) , BL32(optional image for platform storage) and BL33 (Uboot) to DDR and their headers to DDR, then validates
these images.

BL33 (U-Boot) which has been signed using a private key. U-Boot reserves a small space for storing environment variables. This
space is typically one sector above or below the U-Boot and is stored on persistent storage devices like NOR flash if macro
CONFIG_ENV_IS_IN_FLASH is used. In case of secure boot, macro CONFIG_ENV_IS_NOWHERE is used and so, environment
is compiled in BL33 (U-Boot) image and is called default environment. This default environment cannot be stored on flash devices.
User won't be able to edit this environment also as he cannot reach to U-Boot prompt in case of secure boot. There is default
boot command for secure boot in this default environment which executes on autoboot.

ESBC validates a file called boot script and on successful validation, execute the commands in the boot script.

There are many reasons ESBC could fail to validate Client images or boot script. The error status message along with the code
is printed on the U-Boot console. For a list of error codes, refer ESBC Validation Error Codes.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

On SoCs with Armv8 core (for example, LS1046A), during ISBC phase in internal BOOT ROM, SMMU (which by

default is in by-pass mode) is configured to allow only secure transactions from CAAM.

The security policy with respect to the SMMU in ESBC phase must be decided by the user/customer. So, currently

in ESBC (U-Boot), SMMU is configured back to by-pass mode allowing all transactions (secure as well as non-

secure).

 NOTE

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
40 NXP Semiconductors

3.3.1.5.1 Boot script
Boot script is a U-Boot script image which contains U-Boot commands. ESBC would validate this boot script before executing
commands in it.

1. Boot script can have any commands which U-Boot supports. No checking on the allowed commands in

boot script. Since it is validated image, assumption is that commands in boot script would be correct.

2. If some basic scripting error done in boot script (like unknown command, missing arguments), the required

usage of that command and core is put in infinite loop.

3. After execution of commands in boot script, if control reaches back in U-Boot, error message would be

printed on U-Boot console and core would be put in spin loop by command esbc_halt.

4. Scatter gather images are not supported with validate command.

5. If ITS fuse is blown, any error in verification of the image would result in system reset. The error would be

printed on console before system goes for a reset.

 NOTE

3.3.1.5.1.1 Where to place the boot script?
NXP's ESBC U-Boot expects the boot script to be loaded in flash as specified in address map. ESBC U-Boot code assumes that
the public/private key pair used to sign the boot script is same as that was used while signing the U-Boot image. If user used
different key pair to sign the image, hash of the N and E component of the key pair should be defined in macro:

CONFIG_BOOTSCRIPT_KEY_HASH.

Note: The hash defined should be hex value, 256 bits long.

Both the above macros can be defined or changed in the configuration file secure_boot.h at the following location in U-Boot code:

u-boot/arch/arm/include/asm/fsl_secure_boot.h

Two new commands called esbc_validate and esbc_halt have been added in NXP ESBC U-Boot.

Two more commands are present, 'blob enc' and 'blob dec' for running Chain of Trust with confideniality.

3.3.1.5.1.2 Chain of Trust
Boot script contains information about the next level of images, For example, Linux, HV, and so on. ESBC validates these images
as per their public keys and then executes bootm command to pass-on the control to next image.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

The following figure shows the Chain of Trust established for validation with this ESBC U-Boot.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 41

Figure 4. Secure boot flow (Chain of Trust)

3.3.1.5.1.2.1 Sample boot script
A sample boot script would look like:

 ...
 esbc_validate <Img1 header addr> <pub_key hash>
 esbc_validate <Img2 header addr> <pub_key hash>
 esbc_validate <Img3 header addr> <pub_key hash>
 ...
 bootm <img1 addr> <img2 addr> <img3 addr>

3.3.1.5.1.2.1.1 esbc_validate command

esbc_validate img_hdr [pub_key_hash]

Input arguments:

img_hdr - Location of CSF header of the image to be validated

pub_key_hash - hash of the public key used to verify the image. This is an optional parameter. If not provided, code makes the
assumption that the key pair used to sign the image is same as that used with ISBC. So the hash of the key in the header is
checked against the hash available in SRK fuse for verification.

Description:

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
42 NXP Semiconductors

The command would do the following:

• Perform CSF header validation on the address passed in the image header. During parsing of the header, image address
is stored in an environment variable which is later used in source command in default secure boot command.

• Signature checks on the image

3.3.1.5.1.2.1.2 esbc_halt command

esbc_halt (no arguments)

Description:

The command would do the following:

This command puts core in spin loop.

After successful validation of images, bootm command in bootscript should execute and control should never reach back to U-
Boot. If somehow, control reaches back to U-Boot (for example, bootm not present in bootscript), core should just spin.

3.3.1.5.1.3 Chain of Trust with confidentiality
To establish Chain of Trust with confidentiality, cryptographic blob mechanism can be used. In this Chain of Trust, validated image
is allowed to use the One Time Programmable Master Key to decrypt system secrets.

Two bootscripts are to be used. First encap bootscript is used which creates a blob of the Linux images and saves them. After
that, the system is booted after replacing the encap bootscript with decap bootscript which decapsulates the blobs and boot the
Linux with the images.

The following figures show the Chain of Trust with confidentiality (Encapsulation and Decapsulation).

Figure 5. Chain of Trust with confidentiality (Encapsulation)

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 43

Figure 6. Chain of Trust with Confidentiality (Decapsulation)

3.3.1.5.1.3.1 blob enc command
blob enc <src location> <dst location> <length> <key_modifier address>

Input arguments:

src location - Address of the image to be encapsulated

dst location - Address where the blob will be created

length - Size of the image to be encapsulated

key_modifier address - Address where a random number 16 bytes long(key modifier) is placed

Description:

The command would do the following:

• Create a cryptographic blob of the image placed at src location and place the blob at dst location.

3.3.1.5.1.3.1.1 Sample encap boot script

A sample encap boot script would look like:

...
blob enc <Img1 addr> <Img1 dest addr> <Img1 size> <key_modifier address>
erase <encap Img1 addr> +<encap Imag1 size>
cp.b <Img1 dest addr> <encap Img1 addr> <encap Imag1 size>

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
44 NXP Semiconductors

blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key_modifier address>
erase <encap Img2 addr> +<encap Imag2 size>
cp.b <Img2 dest addr> <encap Img2 addr> <encap Imag2 size>

blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key_modifier address>
erase <encap Img3 addr> +<encap Imag3 size>
cp.b <Img3 dest addr> <encap Img3 addr> <encap Img3 size>

...

3.3.1.5.1.3.2 blob dec command
blob dec <src location> <dst location> <length> <key_modifier address>

Input arguments:

src location - Address of the image blob to be decapsulated

dst location - Address where the decapsulated image will be placed

length - Expected Size of the image after decapsulation.

key_modifier address - Address where key modifier (Same as that used for Encapsulation) is placed

Description:

The command would do the following:

• Decapsulate the blob placed at src location and place the decapsulated data of expected size at dst location.

3.3.1.5.1.3.2.1 Sample Decap Boot Script

A sample decap boot script would look like:

...
blob dec <Img1 blob addr> <Img1 dest addr> <expected Img1 size> <key_modifier address>
blob dec <Img2 blob addr> <Img2 dest addr> <expected Img2 size> <key_modifier address>
blob dec <Img3 blob addr> <Img3 dest addr> <expected Img3 size> <key_modifier address>
...
bootm <Img1 dest addr> <Img2 dest addr> <Img3 dest addr>

3.3.1.6 Next executable (Linux phase)
The bootloader finishes the platform initialization and passes control to the Linux image. The boot-chain can be further extended
to be able to sign application which would be running on Linux prompt. Further, integrate RTIC to verify memory regions using
Security Engine (SEC) during run time.

Chain of Trust

To execute Chain of Trust, follow the steps below:

Instruction on demo:

1. Make sure that the ISBC code validate the BL2 code.

2. BL2 loads FIP (BL31 (Secure Firmware) + BL32 (Optional) + BL33 (Uboot)) and validate them.

3. On successful validation, BL31 and BL32 passes for necessary configurations.

4. After configuration, U-Boot code runs and validates the boot script.

5. On successful validation of boot script, U-Boot code executes the commands.

6. The Boot script also contains commands to validate next level images, such as rootfs, Linux uImage, and device tree.

7. After boot script validating all the images, U-Boot executes the bootm command to pass control to Linux.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 45

*Rest of the content in the topic remains the same.

Chain Of trust with confidentiality

Step 1: Creating blobs

1. Make sure that the ISBC code validate the BL2 code.

2. BL2 loads FIP (BL31 (Secure Firmware) + BL32 (Optional) + BL33 (Uboot)) and validate them.

3. On successful validation, BL31 and BL32 passes for necessary configurations.

4. After configuration, U-Boot code runs and validates the boot script.

5. On successful validation of boot script, U-Boot code executes the commands.

6. The boot script contains commands that encapsulates next level images, such as linux uImage and device tree.

Step 2: Decrypting blob and booting

1. Make sure that the ISBC code validate the BL2 code.

2. BL2 loads FIP (BL31 (Secure Firmware) + BL32 (Optional) + BL33 (Uboot)) and validate them.

3. On successful validation, BL31 and BL32 passes for necessary configurations.

4. After configuration, U-Boot code runs and validates the boot script.

5. On successful validation of boot script, U-Boot code executes the commands.

6. The boot script contains commands that decapsulate or decrypt next level images, such as rootfs, linux uImage and
device tree.

7. After decryption, U-Boot code executes the bootm command in boot script to pass control to Linux.

*Rest of the content in the topic remains the same.

Running Secure Boot (Chain Of Trust)

Change wherever ESBC Uboot is used

3.3.1.7 Product execution
This section presents the steps need to be followed in order to properly run the software product according to its intended use
and functionalities.

3.3.1.7.1 Introduction
Chain of Trust

This section presents the steps need to be followed in order to execute Chain of Trust.

Steps in the demo would be:

1. ISBC code would validate the BL2 image code.

2. On successful validation, BL2 code would run, which would then validate the BL31, BL32, BL33 images.

3. On successful validation of boot script by BL33 image, commands in boot script would be executed.

4. Boot script contains commands to validate next level images, that is, rootfs, Linux uImage, and device tree.

5. Once all the images are validated, bootm command in boot script would be executed which would pass control to Linux.

Running Secure boot (Chain of Trust)

1. Setup the board for secure boot flow. You can choose any if the flows mentioned below.

a. Flow A

Program the ITS fuse. Use RCW with SB_EN=0

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
46 NXP Semiconductors

Or

b. Flow B

For protyping phase, don't blow the ITS fuse, but use rcw with SB_EN = 1.

Blow other required fuses on the board. (OTPMK and SRK hash[1]) For more details regarding fuse blowing, CCS
and Boot Hold Off, refer to Platform reference manual and Trust Architecture User Guide.

SRK hash in the fuse should be same as the hash of the key pair being used to sign the ESBC u-boot.

For testing purpose, the SRK Hash can be written in the mirror registers.

gen_otpmk_drbg utility in cst can be used to generate otpmk key.

 NOTE

2. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses. Once ITS fuse is blown, the
control would automatically shift to ISBC on power on.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to Bank4.

3. Give a power on cycle to the board.

a. For Flow A and Flow B (Secure boot Images flashed on default Bank)

• On power on, ISBC code would get control, validate the ESBC image.

• ESBC image would further validate the signed linux, rootfs and dtb images

• Linux would come up

b. Flow B (Secure boot Images flashed on alternate Bank)

• On power on cycle, u-boot prompt on bank 0 would come up.

• On switching to alternate bank, the secure boot flow as mentioned above would execute.

Two additional features are provided in secure boot:

1. Chain of Trust with confidentiality

2. ISBC Key Extension

3.3.1.7.2 Chain of Trust with confidentiality
This section presents the steps need to be followed to execute Chain of Trust with confidentiality.

The demo is divided into two parts:

1. Creating or encrypting images in form of blobs.

2. Decrypting images, and booting from decrypted images.

Steps in the demo are:

Step 1: Creating blobs

1. ISBC code would validate the ESBC code.

2. On successful validation, ESBC code would run, which would then validate the boot script.

[1] Blowing of OTPMKis essential to run secure boot for both Production (Flow A) and Prototyping/Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. For this use RCW with
BOOT_HO = 1. This will put the core in Boot Hold off stage. Then a CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then release the core out of Boot Hold off by writing to Core Release
Register in DCFG.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 47

3. On successful validation of boot script, commands in boot script would be executed.

4. The boot script contains commands to encapsulate next level images, that is rootfs, linux uImage and device tree.

blob encapsulation command::

blob enc src dst len km - Encapsulate and create blob of data

$len - Number of bytes to be encapsulated.

$src - The address where image to be encapsulated is present.

$dst - The address where encapsulated image is stored.

$km - The address where the key modifier is stored. The modifier is required and used as key for cryptographic operation. Key
modifier should be 16 bytes long.

Step 2: Decrypting blob and booting

1. ISBC code would validate the ESBC code.

2. On successful validation, ESBC code would run, which would then validate the boot script.

3. On successful validation of boot script, commands in boot script would be executed.

4. The boot script contains commands to decapsulate or decrypt next level images, that is rootfs, linux uImage, and device
tree.

5. After decryption, bootm command would be executed in boot script to pass control to Linux.

blob decapsulation command::

blob dec src dst len km - Decapsulate the image and recover the data

$len - Number of bytes to be decapsulated.

$src - The address where encapsulated image is present.

$dst - The address where decapsulated image will be stored.

$km - The address where the key modifier is stored. The modifier is required and used as key for cryptographic operation. Key
modifier should be 16 bytes long. It should be same as passed while encapsulating the image.

3.3.1.7.2.1 Other images required for the demo
Apart from SDK images described above, the following images are also required:

1. Encap boot script

Sample Boot script

load \$devtype \$devnum:2 \$kernelheader_addr_r /secboot_hdrs/ls1046ardb/hdr_linux.out;
esbc_validate \$kernelheader_addr_r;
load \$devtype \$devnum:2 \$fdtheader_addr_r /secboot_hdrs/ls1046ardb/hdr_dtb.out; esbc_validate
\$fdtheader_addr_r;
size \$devtype \$devnum:2 /vmlinuz; echo Encapsulating linux image;setenv key_addr 0x87000000; mw
\$key_addr $key_id_1;
setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_2;setexpr \$key_addr \$key_addr + 0x4;
mw \$key_addr $key_id_3;setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_4;
blob enc \$kernel_addr_r \$load_addr \$filesize \$key_addr; setexpr blobsize \$filesize
+ 0x30;echo Saving encrypted linux ;save \$devtype \$devnum:2 \$load_addr /vmlinuz \
$blobsize;size \$devtype \$devnum:2 /fsl-ls1046a-rdb-sdk.dtb;
echo Encapsulating dtb image; blob enc \$fdt_addr_r \$load_addr \$filesize \$key_addr; setexpr
blobsize \$filesize + 0x30;echo Saving encrypted dtb; save \$devtype \$devnum:2 \$load_addr /fsl-
ls1046a-rdb-sdk.dtb \$blobsize; size \$devtype \$devnum:2 /ls1046ardb_dec_boot.scr;
load \$devtype \$devnum:2 \$load_addr /ls1046ardb_dec_boot.scr;
echo replacing Bootscript; save \$devtype \$devnum:2 \$load_addr /ls1046ardb_boot.scr \
$filesize;size \$devtype \$devnum:2 /secboot_hdrs/ls1046ardb/hdr_ls1046ardb_bs_dec.out;

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
48 NXP Semiconductors

load \$devtype \$devnum:2 \$load_addr /secboot_hdrs/ls1046ardb/hdr_ls1046ardb_bs_dec.out ;echo
Replacing bootscript header; save \$devtype \$devnum:2 \$load_addr /hdr_ls1046ardb_bs.out \
$filesize;reset;'

2. Decap boot script

size \$devtype \$devnum:2 /vmlinuz;setexpr imgsize \$filesize - 0x30 ;
echo Decapsulating linux image; setenv key_addr 0x87000000; mw \$key_addr $key_id_1;setexpr \
$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_2;setexpr \$key_addr \$key_addr + 0x4; mw \
$key_addr key_id_3;setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_4;
 blob dec \$kernel_addr_r \$load_addr \$imgsize \$key_addr; cp.b \$load_addr \$kernel_addr_r \
$filesize ;size \$devtype \$devnum:2 /fsl-ls1046a-rdb-sdk.dtb;setexpr imgsize \$filesize - 0x30 ;
echo Decapsulating dtb image; blob dec \$fdt_addr_r \$load_addr \$imgsize \$key_addr; cp.b \
$load_addr \$fdt_addr_r \$filesize ;

3.3.1.7.2.2 Running secure boot (Chain of Trust with confidentiality)
1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.

a. Flow A

Program the ITS fuse. Use RCW with SB_EN=0

Or

b. Flow B

For protyping phase, do not blow the ITS fuse, instead use rcw with SB_EN = 1.

2. Blow other required fuses on the board. (OTPMK and SRK hash)[2]) For more details regarding fuse blowing, CCS and
Boot Hold Off, refer to Platform Reference Manual and Trust Architecture User Guide.

SRK hash in the fuse should be same as the hash of the key pair being used to sign the ESBC U-Boot.

For testing purpose, the SRK hash can be written in the mirror registers.

gen_otpmk_drbg utility in cst can be used to generate otpmk key.

 NOTE

3. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses. Once ITS fuse is blown, the
control would automatically shift to ISBC on power on.

b. Flow B - You can use alternate bank for demo purpose. This would mean flashing the images on alternate bank
addresses from Bank0 and then switching to Bank4.

4. Give a power on cycle to the board.

a. For Flow A and Flow B (Secure boot images flashed on default bank)

• On power on, ISBC code would get control, validate the ESBC image.

• First Boot: Encapsulaton Step (Should happen in OEM's premises)

i. By defult the enacap and decap bootscripts will be installed in the bootpartition.

[2] Blowing of OTPMKis essential to run secure boot for both Production (Flow A) and Prototyping/Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. For this use RCW with
BOOT_HO = 1. This will put the core in Boot Hold off stage. Then a CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then release the core out of Boot Hold off by writing to Core Release
Register in DCFG.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 49

ii. When the board boots up for the first time after all images have been generated, Encap bootscript will
execute. This bootscript:

i. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and
dtb images with newly encapsulated linux and dtb.

ii. Replaces the encap bootscript and header with the decap bootscript and it's header, already
present in the bootpartition.

iii. Issues reset

• Subsequent Boot .

i. Uboot would execute script with decap commands

i. Un-blobify linux and dtb image in DDR

ii. Pass control to these images

b. Flow B (Secure boot images flashed on alternate bank)

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
50 NXP Semiconductors

• On power on cycle, U-Boot prompt on bank0 would come up.

• On switching to alternate bank, the secure boot flow as mentioned above would execute.

3.3.1.8 Troubleshooting
Table 7. Troubleshooting

Symptoms Reasons and/or Recommended actions

1. No print on UART console. • Check the status register of sec mon block (location 0xfe314014).
Refer to the details of the register from the Reference Manual. Bits
OTPMK_ZERO, OTMPK_SYNDROME and PE should be 0 otherwise
there is some error in the OTPMK fuse blown by you.

• If OTMPK fuse is correct (see Step 1), check the SCRATCHRW2
register for errors. Refer to Section for error codes.

• If Error code = 0 then check the Security Monitor state in HPSR
register of Sec Mon.

Sec Mon in Check State (0x9)

If ITS fuse = 1, then it means ISBC code has reset the board. This may be
due to the following reasons:

Hash of the public key used to sign the ESBC U-BOOT does not match with
the value in SRK hash fuse

Or

Signature verification of the image failed

Sec Mon in Trusted State (0xd) or Non-Secure State (0xb)

Check the entry point field in the ESBC header. It should be 0xcffffffc for the
demo described in Section 4.

If entry point is correct, ensure that U-BOOT image has been compiled with
the required secure boot configuration.

2. Instead of linux prompt, you get a U-BOOT
command prompt instead of linux prompt.

You have not booted in secure boot mode. You never get a U-BOOT prompt
in secure boot flow. You would reach this stage if ITS = 0 and you are using
rcw where sben0 is present in its name.

3 U-BOOT hangs or board resets Some validation failure occurred in ESBC U-BOOT. Error code and
description would be printed on U-BOOT console.

3.3.1.9 CSF Header Data Structure
The CSF Header provides the ISBC with most of the information needed to validate the image.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 51

LS1 platform

Figure 7. CSF header for LS1 (ISBC and ESBC phases)

Table 8. CSF Header Format (LS1 Platform)

Offset Data Bits [0:31]

0x00-0x03 Barker code.

This location should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this location does not match the Barker code, the ISBC stops execution and reports error.

0x07-0x04 If the srk_table_flag is not set :

• Public key offset: This location contains an address which is the offset of the public key from the
start of CSF header. Using this offset and the public key length, the public key is read.

If srk_table_flag is set:

• Srk table offset: This location contains an address which is the offset of the srk table from the
start of CSF header. Using this offset and the number of entries is SRK Table, the SRK table is
read.

Table continues on the next page...

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
52 NXP Semiconductors

Table 8. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]

0x08 Srk table flag.

This flag indicates whether hash burnt in srk fuse is of a single key or of srk table.

0x0b-0x09 If the srk_table_flag is not set :

• 0x0b-0x9 -- Public key length: This location contains the length of the public key in bytes.

If srk_table_flag is set:

• 0x09 – Key Number from srk table which is to be used for verification.

• 0x0b-0x0a – Number of entries in srk table. Minimum number of entries in table = 1, Maximum =
4.

0x0f-0x0c RSA Signature offset.

This location contains an offset(in bytes) of the RSA signature from the start of CSF header. Using this
offset and the Signature length, the RSA signature is read. The RSA signature is calculated over CSF
Header, Scatter Gather table and ESBC images.

0x13-0x10 RSA Signature length in bytes.

0x17-0x14 For ISBC Phase:

SG Table offset

This location contains an address which is the offset of the SG table from the start of CSF header. Using
this offset and the number of entries is SG Table, the SG table is read.

For ESBC Phase:

Address of the image to be validated.

0x1b-0x18 For ISBC Phase:

Number of entries in SG Table (Earlier ,Based on the Scatter gather flag in CSF Header, this location
can either be treated as number of entries in SG table or ESBC image size in bytes.).

For ESBC Phase

Size of image to be validated

0x1f-0x1c For ISBC Phase:

ESBC entry point.

ISBC transfers control to this location upon successful validation of ESBC image(s).

For ESBC Phase: Reserved

0x21-0x20 Manufacturing Protection Flag

Indicates if manufacturing protection has to be enabled or not in ISBC.

0x23-0x22 Reserved .(Earlier this field was SG Flag. SG flag is always assumed to be 1 in unified implementation.)

Table continues on the next page...

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 53

Table 8. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]

0x24 For ISBC Phase: Reserved

For ESBC Phase: Reserved

0x25 For ISBC Phase

Secondary Image flag

Indicates if user has a secondary image available in case of failures in validating primary iamge.Valid in
case of primary Images’s Header.

For ESBC Phase:Reserved

0x27-0x26 Unique ID Usage

This location contains a flag which specifies one of these possibilities

• 0x00 - No UID’s present

• 0x01 - FSL UID and OEM UID are present

• 0x02 - Only FSL UID is present

• 0x04 - Only OEM UID is present

0x2b-0x28 NXP unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x2f-0x2c OEM unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to OEM. This value is compared with the OEM ID
0 in Secure Fuse Processor 's OEM-ID registers

0x37-0x30 Reserved

0x3b-0x38 NXP unique ID 1

Lower 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x3f-0x3c OEM unique ID 1

Lower 32 bits of a unique 32 bit value, which is specific to OEM. This value is compared with the OEM
ID 1 in Secure Fuse Processor 's OEM-ID registers

0x40-0x47 For ISBC Phase: Not Applicable

For ESBC Phase: Reserved

0x48-0x4b For ISBC Phase: Not Applicable

For ESBC Phase:

ISBC key Extension flag

If this flag is set, key to be used for validation needs to be picked up from IE Key table.

Table continues on the next page...

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
54 NXP Semiconductors

Table 8. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]

0x4c-0x4f For ISBC Phase: Not Applicable

For ESBC Phase:

IE Key Select

Key Number to be used from the IE Key Table if IE flag is set.

Table 9. Scatter Gather Table Format (LS1 Platform)

Offset Data Bits [0:31]

0x00-0x03 Length. This location specifies the length in bytes of the ESBC image 1.

0x04-0x07 Target where the ESBC Image 1 can be found. This field is ignored in case of PBL based SOC’s.

0x08-0x0b Source Address of ESBC Image 1

0x0c-0x0f Destination Address of ESBC Image 1

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

0x10-0x13 Length. This location specifies the length in bytes of the ESBC image 2.

0x14-0x17 Target where the ESBC Image 2 can be found. This field is ignored in case of PBL based SOC’s.

0x18-0x1b Source Address of ESBC Image 2

0x1c-0x1f Destination Address of ESBC Image 2

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

Table 10. Signature (LS1 Platform)

Offset Data Bits [0:31]

0x00-size The RSA signature calculated over CSF Header, Scatter Gather table and ESBC image(s).

Table 11. Public key (LS1 Platform)

Offset Data Bits [0:31]

0x00-size Public Key Value. The hash of this public key is compared with the hash stored in Secure Fuse Processor
SRKH registers.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 55

Table 12. SRK Table (LS1 Platform)

Offset Data Bits [0:31]

0x00-0x03 Key 1 length

0x04-0x403 Key 1 value. (Remaining bytes will be padded with zero)

0x404-0x407 Key 2 length

0x408-0x807 Key 2 value. (Remaining bytes will be padded with zero)

0x808-0x80b Key 3 length

0x80c-0xb0b Key 3 value. (Remaining bytes will be padded with zero)

0xb0c-0xb0f Key 4 length

0xb10-0xe10 Key 4 value. (Remaining bytes will be padded with zero)

LS1046A platform

Figure 8. CSF header for LS1046A (ISBC and ESBC phases)

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
56 NXP Semiconductors

Table 13. CSF header format (LS1046A platform)

Offset Data Bits [0:31]

0x00-0x03 Barker code.

This location should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this location does not match the Barker code, the ISBC stops execution and reports error.

0x07-0x04 If the srk_table_flag is not set :

• Public key offset: This location contains an address which is the offset of the public key from the
start of CSF header. Using this offset and the public key length, the public key is read.

If srk_table_flag is set:

• Srk table offset: This location contains an address which is the offset of the srk table from the
start of CSF header. Using this offset and the number of entries is SRK Table, the SRK table is
read.

0x08 Srk table flag.

This flag indicates whether hash burnt in srk fuse is of a single key or of srk table.

0x0b-0x09 If the srk_table_flag is not set :

• 0x0b-0x9 -- Public key length: This location contains the length of the public key in bytes.

If srk_table_flag is set:

• 0x09 – Key Number from srk table which is to be used for verification.

• 0x0b-0x0a – Number of entries in srk table. Minimum number of entries in table = 1, Maximum =
4.

0x0f-0x0c RSA Signature offset.

This location contains an offset(in bytes) of the RSA signature from the start of CSF header. Using this
offset and the Signature length, the RSA signature is read. The RSA signature is calculated over CSF
Header, Scatter Gather table and ESBC images.

0x13-0x10 RSA Signature length in bytes.

0x17-0x14 For ISBC Phase:

SG Table offset

This location contains an address which is the offset of the SG table from the start of CSF header. Using
this offset and the number of entries is SG Table, the SG table is read.

For ESBC Phase:

Reserved

0x1b-0x18 For ISBC Phase:

Number of entries in SG Table (Earlier ,Based on the Scatter gather flag in CSF Header, this location
can either be treated as number of entries in SG table or ESBC image size in bytes.).

For ESBC Phase

Size of image to be validated

Table continues on the next page...

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 57

Table 13. CSF header format (LS1046A platform) (continued)

Offset Data Bits [0:31]

0x1f-0x1c For ISBC Phase:

ESBC entry point.

ISBC transfers control to this location upon successful validation of ESBC image(s).

For ESBC Phase: Reserved

0x21-0x20 Manufacturing Protection Flag

Indicates if manufacturing protection has to be enabled or not in ISBC.

0x23-0x22 Reserved .(Earlier this field was SG Flag. SG flag is always assumed to be 1 in unified implementation.)

0x24 For ISBC Phase: Reserved

For ESBC Phase: Reserved

0x25 For ISBC Phase

Secondary Image flag

Indicates if user has a secondary image available in case of failures in validating primary iamge.Valid in
case of primary Images’s Header.

For ESBC Phase:Reserved

0x27-0x26 Unique ID Usage

This location contains a flag which specifies one of these possibilities

• 0x00 - No UID’s present

• 0x01 - FSL UID and OEM UID are present

• 0x02 - Only FSL UID is present

• 0x04 - Only OEM UID is present

0x2b-0x28 NXP unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x2f-0x2c OEM unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to OEM. This value is compared with the OEM ID
0 in Secure Fuse Processor 's OEM-ID registers

0x37-0x30 Reserved

0x3b-0x38 NXP unique ID 1

Lower 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

Table continues on the next page...

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
58 NXP Semiconductors

Table 13. CSF header format (LS1046A platform) (continued)

Offset Data Bits [0:31]

0x3f-0x3c OEM unique ID 1

Lower 32 bits of a unique 32 bit value, which is specific to OEM. This value is compared with the OEM
ID 1 in Secure Fuse Processor 's OEM-ID registers

0x40-0x47 For ISBC Phase: Not Applicable

For ESBC Phase: 64 bit pointer to ESBC image

0x48-0x4b For ISBC Phase: Not Applicable

For ESBC Phase:

ISBC key Extension flag

If this flag is set, key to be used for validation needs to be picked up from IE Key table.

0x4c-0x4f For ISBC Phase: Not Applicable

For ESBC Phase:

IE Key Select

Key Number to be used from the IE Key Table if IE flag is set.

Table 14. Scatter gather table format (LS1046A platform)

Offset Data Bits [0:31]

0x00-0x03 Length. This location specifies the length in bytes of the ESBC image 1.

0x04-0x07 Target where the ESBC Image 1 can be found. This field is ignored in case of PBL based SOC’s.

0x08-0x0b Source Address of ESBC Image 1

0x0c-0x0f Destination Address of ESBC Image 1

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

0x10-0x13 Length. This location specifies the length in bytes of the ESBC image 2.

0x14-0x17 Target where the ESBC Image 2 can be found. This field is ignored in case of PBL based SOC’s.

0x18-0x1b Source Address of ESBC Image 2

0x1c-0x1f Destination Address of ESBC Image 2

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 59

Table 15. Signature (LS1046A platform)

Offset Data Bits [0:31]

0x00-size The RSA signature calculated over CSF Header, Scatter Gather table and ESBC image(s).

Table 16. Public key (LS1046A platform)

Offset Data Bits [0:31]

0x00-size Public Key Value. The hash of this public key is compared with the hash stored in Secure Fuse Processor
SRKH registers.

Table 17. SRK table (LS1046A platform)

Offset Data Bits [0:31]

0x00-0x03 Key 1 length

0x04-0x403 Key 1 value. (Remaining bytes will be padded with zero)

0x404-0x407 Key 2 length

0x408-0x807 Key 2 value. (Remaining bytes will be padded with zero)

0x808-0x80b Key 3 length

0x80c-0xb0b Key 3 value. (Remaining bytes will be padded with zero)

0xb0c-0xb0f Key 4 length

0xb10-0xe10 Key 4 value. (Remaining bytes will be padded with zero)

3.3.1.10 ISBC validation error codes
LS1/LS1046A platform

Errors in the system can be of following types:

1. Core Exceptions

2. System State Failures

3. Header Checking Failures

a. General Failures

b. Key/Signature/UID related errors

4. Verification Failures

5. SEC/PAMU errors

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
60 NXP Semiconductors

Table 18. Core exceptions (LS1 platform)

Value Code Definition

0x1 ERROR_UNDEFINED_INSTRUCTION Occurs if neither the processor nor any attached co-processor
recognizes the currently executing instruction.

0x2 ERROR_SWI Software Interrupt is a user-defined interrupt instruction. It
allows a program running in User mode, for example, to request
privileged operations that run in Supervisor mode.

0x3 ERROR_PREFETCH_ABORT Occurs when the processor attempts to execute an instruction
that has been prefetched from an illegal address.

0x4 ERROR_DATA_ABORT Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

0x5 ERROR_IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and IRQ interrupts are enabled.

0x6 ERROR_FIQ Occurs when the processor external fast interrupt request pin is
asserted (LOW) and FIQ interrupts are enabled.

Table 19. Core exceptions (LS1046A platform)

Error Code Value

Current EL with SP0

ERROR_EXCEPTION_SYNC_SP0 0x01

ERROR_EXCEPTION_IRQ_SP0 0x02

ERROR_EXCEPTION_FIQ_SP0 0x03

ERROR_EXCEPTION_SERROR_SP0 0x04

Current EL with SPx

ERROR_EXCEPTION_SYNC_SPX 0x05

ERROR_EXCEPTION_IRQ_SPX 0x06

ERROR_EXCEPTION_FIQ_SPX 0x07

ERROR_EXCEPTION_SERROR_SPX 0x08

Lower EL using AArch64

ERROR_EXCEPTION_SYNC_L64 0x11

ERROR_EXCEPTION_IRQ_L64 0x12

ERROR_EXCEPTION_FIQ_L64 0x13

ERROR_EXCEPTION_SERROR_L64 0x14

Lower EL using AArch32

ERROR_EXCEPTION_SYNC_L32 0x15

ERROR_EXCEPTION_IRQ_L32 0x16

ERROR_EXCEPTION_FIQ_L32 0x17

ERROR_EXCEPTION_SERROR_L32 0x18

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 61

Table 20. System state failures (LS1/LS1046A platforms)

Value Code Definition

0x100 ERROR_CORE_NON_ZERO ISBC is not running on CPU0

0x101 ERROR_STATE_NOT_CHECK SEC_MON State Machine not in CHECK state at start of ISBC.
Some Security violation could have occurred.

0x102 ERROR2_STATE_NOT_CHECK SEC_MON State Machine not in CHECK state, when trying to
transition it to Trusted/Non Secure/Soft Fail state

0x103 ERROR_SSM_TRUSTSTS SEC_MON State Machine not in TRUSTED state at end of
ISBC.

Table 21. General header checking failures (LS1/LS1046A platforms)

Value Code Definition

0x301 ERROR_ESBC_HDR_LOC ESBC header location is not in 3.5G space

0x302 ERROR_ESBC_HEADER_BARKER Barker code in the header is incorrect.

0x303 ERROR_ESBC_HEADER_SG_ENTRIES_
NOT_IN_3_5G

SG table/ESBC image address (header address + image offset
in sg table) is beyond 3.5G

0x303 ERROR_ESBC_HEADER_SG_ENTRIES_
ON_OCRAM

One Entry in the SG table is on OCRAM

0x304 ERROR_ESBC_HEADER_SG_ESBC_EP ESBC entry point in header not within ESBC address range

0x305 ERROR_SGL_ENTIRES_NOT_SUPPORT
ED

Number of entries in SG table exceeds maximum limit i.e 8

0x306 ERROR_ESBC_HEADER_HKAREA_LEN_
ZERO

Houskeeping area not provided in header

0x307 ERROR_ESBC_HEADER_HKAREA_NOT_
IN_3_5G

House keeping area not in 3.5G boundary

0x308 ERROR_ESBC_HEADER_HKAREA_LEN_
INSUFFICIENT

Housekeeping area length provided is not sufficient.

0x309 ERROR_SG_TABLE_NOT_IN_3_5 SG Table is not in 3.5G boundary

0x309 ERROR_SG_TABLE_ON_OCRAM SG table is on OCRAM

0x310 ERROR_ESBC_HEADER_HKAREA_NOT_
4K_ALIGNED

House keeping area is not aligned to 4K boundary

0x311 ERROR_SGL_ENTRIES_SIZE_ZERO SG table has entry with size zero.

Table 22. Key/signature/UID related errors (LS1/LS1046A platforms)

Value Code Definition

0x320 ERROR_ESBC_HEADER_KEY_LEN Length of public key in header is not one of the supported
values.

0x321 ERROR_ESBC_HEADER_KEY_LEN_
NOT_TWICE_SIG_LEN

Public key is not twice the length of the RSA signature

Table continues on the next page...

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
62 NXP Semiconductors

Table 22. Key/signature/UID related errors (LS1/LS1046A platforms) (continued)

Value Code Definition

0x322 ERROR_ESBC_HEADER_KEY_MOD_1 Most significant bit of modulus in header is zero.

0x323 ERROR_ESBC_HEADER_KEY_MOD_2 Modulus in header is even number

0x324 ERROR_ESBC_HEADER_SIG_KEY_MOD Signature value is greater than modulus in header

0x325 ERROR_FSL_UID FSL_UID in ESBC Header did not match the FSL_UID in SFP if
fsl uid flag Is 1

0x326 ERROR_OEM_UID OEM_UID in ESBC Header did not match the OEM_UID in SFP
if oem uid flag is 1.

0x327 ERROR_INVALID_SRK_NUM_ENTRY Number of entries field in CSF Header is > 4(This is when
srk_flag in header is 1)

0x328 ERROR_INVALID_KEY_NUM Key number to be used from srk table is not present in table.
(This is when srk_flag in header is 1)

0x329 ERROR_KEY_REVOKED Key selected from srk table has been revoked(This is when
srk_flag in header is 1)

0x32a ERROR_INVALID_SRK_ENTRY_KEYLEN Key length specified in one of the entries in srk table is not one
of the supported values (This is when srk_flag in header is 1)

0x32b ERROR_SRK_TBL_NOT_IN_3_5 SRK Table is not in 3.5G boundary (This is when srk_flag in
header is 1)

0x32b ERROR_SRK_TBL_ON_OCRAM SRK Table is on OCRAM

0x32c ERROR_KEY_NOT_IN_3_5G Key is not in 3.5G boundary

0x32c ERROR_KEY_ON_OCRAM Key on OCRAM

Table 23. Verification failures (LS1/LS1046A platforms)

Value Code Definition

0x340 ERROR_HASH_COMPARE_KEY Super Root Key Hash Comparison failure. Mismatch in the hash
of the public key/srk table as present in the header with the
value in the SRK HASH fuse.

0x341 ERROR_HASH_COMPARE_EM RSA signature check failure. Signature provided by you in the
header doesn’t match with the signature of the ESBC image
generated by ISBC. The ESBC image loaded by you may be
different than the image used while generating the
signature(using CST)

Table 24. SEC/PAMU failures (LS1/LS1046A platforms)

Value Code Definition

0x700 ERROR_SEC_ENQ Error when enqueuing to SEC

0x701 ERROR_SEC_DEQ Sec Block returned some error when dequeuing from it.

0x702 ERROR_SEC_DEQ_TO Timeout when trying to deq from SEC

Table continues on the next page...

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 63

Table 24. SEC/PAMU failures (LS1/LS1046A platforms) (continued)

Value Code Definition

0x800 ERROR_PAMU Error while programming PAACT/SPAACT tables in PAMU (For
PowerPC platforms only)

3.3.1.11 ESBC Validation Error Codes
For trust arch version 1.x and 2.x.

Table 25. ESBC Validation Failures

Value Code Definition

0x0 ERROR_ESBC_CLIENT_MAX NULL

0x4 ERROR_ESBC_CLIENT_HEADER_BARKE
R

Wrong barker code in header

0x8 ERROR_ESBC_CLIENT_HEADER_KEY_LE
N

Wrong public key length in header

0x10 ERROR_ESBC_CLIENT_HEADER_SIG_LE
N

Wrong signature length in header

0x11 ERROR_ESBC_CLIENT_HEADER_KEY_R
EVOKED

Key used to sign the image revoked

0x12 ERROR_ESBC_CLIENT_HEADER_INVALID
_SRK_NUM_ENTRY

Wrong key entry

0x13 ERROR_ESBC_CLIENT_HEADER_INVALID
_KEY_NUM

Selected key no. not in SRK table

0x14 ERROR_ESBC_CLIENT_HEADER_INV_SR
K_ENTRY_KEYLEN

Unsupported key length of key in SRK table

0x15 ERROR_ESBC_CLIENT_HEADER_IE_KEY
_REVOKED

Selected key in IE key table revoked

0x16 ERROR_ESBC_CLIENT_HEADER_INVALID
_IE_NUM_ENTRY

Wrong IE Key entry

0x17 ERROR_ESBC_CLIENT_HEADER_INVALID
_IE_KEY_NUM

Selected key no. not in IE Key table

0x18 ERROR_ESBC_CLIENT_HEADER_INV_IE_
ENTRY_KEYLEN

Unsupported key length of key in IE Key table

0x19 ERROR_IE_TABLE_NOT_FOUND information about IE table missing

0x20 ERROR_ESBC_CLIENT_HEADER_KEY_LE
N_NOT_TWICE_SIG_LEN

Public key length not twice of signature length

0x21 ERROR_KEY_TABLE_NOT_FOUND SRK Key/key table not found

Table continues on the next page...

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
64 NXP Semiconductors

Table 25. ESBC Validation Failures (continued)

Value Code Definition

0x40 ERROR_ESBC_CLIENT_HEADER_KEY_M
OD_1

Public key Modulus most significant bit not set

0x80 ERROR_ESBC_CLIENT_HEADER_KEY_M
OD_2

Public key Modulus in header not odd

0x100 ERROR_ESBC_CLIENT_HEADER_SIG_KE
Y_MOD

Signature not less than modulus

0x200 ERROR_ESBC_CLIENT_HEADER_SG_ES
BC_EP

Entry Point error

0x400 ERROR_ESBC_CLIENT_HASH_COMPARE
_KEY

Public key hash comparison failed

0x800 ERROR_ESBC_CLIENT_HASH_COMPARE
_EM

RSA verification failed

0x1000 ERROR_ESBC_CLIENT_SSM_TRUSTSTS SNVS not in TRUSTED state

0x2000 ERROR_ESBC_CLIENT_BAD_ADDRESS Bad address error

0x4000 ERROR_ESBC_CLIENT_MISC Miscallaneous error

0x8000 ERROR_ESBC_CLIENT_HEADER_SG_EN
TIRES_BAD

Incorrect entries in SG table

0x10000 ERROR_ESBC_CLIENT_HEADER_SG No SG support

0x20000 ERROR_ESBC_CLIENT_HEADER_IMG_SI
ZE

Invalid Image size

0x40000 ERROR_ESBC_WRONG_CMD Failure in command/Unknown command/Wrong arguments of
boot script.

0x80000 ERROR_ESBC_MISSING_BOOTM Bootm command missing from boot script.

3.3.1.12 Trust Architecture and SFP information

SoC Trust Arch.
Version

SFP Version POVDD DRVR OTPMK SNVS/SFP
Register to
check
Hamming
Error

Algo (CST) Register to
check
Hamming
Error

Algo (CST) Register to
check
Hamming
Error

LS1046A 2.1 3.3 1.89 V A SFP 2 SFP

3.3.2 Code Signing Tool
To assist with signing of various images and creation of CSF header, NXP offers a Code Signing Tool (CST). It is generally expected
that the CST signs images in an offline process

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 65

Figure 9. Tool in CST Package

3.3.2.1 Key generation

The CST begins by generating a RSA public and private key pair using OPENSSL APIs. The key pair consists of 3 parts; N, E,
and D.

N - Modulus

E - Encryption exponent

D - Decryption exponent

Public Key - It is a combination of E and N components.

Private Key - It is a combination of D and N components.

The application allows the user to feed 3 key sizes for generating keys. The key sizes are 1024 bits, 2048 bits, and 4096 bits.

It is the OEM's responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot. If this key is ever lost, the OEM will be unable to update the image.

3.3.2.1.1 gen_keys
This utility generates a RSA public and private key pair using OPENSSL APIs. The key pair consists of 3 parts; N, E, and D.

N – Modulus

E – Encryption exponent

D – Decryption exponent

Public Key - It is a combination of E and N components.

Private Key - It is a combination of D and N components.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot. If this key is ever lost, the OEM will be unable to update the image.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
66 NXP Semiconductors

Features

• The application allows the user to generate 3 sizes keys. The key sizes are 1024 bits, 2048 bits, and 4096 bits.

• It generates RSA key pairs in PEM format.

• Keys are generated and stored in the files. User can provide file names through command line option.

Usage

./gen_keys [OPTION] SIZE

SIZE refers to size of public key in bits. (Modulus size).

Size supported -- 1024, 2048, 4096. The generated keys would be in PEM format.

Options:

-h,--help Usage of the command

-k,--pubkey File where Public key would be stored in PEM format (default = srk.pub)

-p,--privkey File where Private key would be stored in PEM format (default = srk.priv)

Usage Example

$./gen_keys 1024

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

===
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
===

Generated SRK pair stored in :
 PUBLIC KEY srk.pub
 PRIVATE KEY srk.pri

$./gen_keys 4096 -k my.pub -p my.pri

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

===
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
===

Generated SRK pair stored in :

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 67

 PUBLIC KEY my.pub
 PRIVATE KEY my.pri

3.3.2.1.2 gen_otpmk_drbg
This utility in the Code Signing Tool inserts hamming code in a user defined 256b hexadecimal string, or generate a 256b
hexadecimal random number and inserts the hamming code in it which can be used as OTPMK value.

For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the NIST

approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is the Linux /

dev/random.

 NOTE

Features:

• Generates random numbers, which can be used if user defined string is not provided, to generate OTPMK value.

• Calculates and embeds the hamming code in the hexadecimal string.

Usage:

./gen_otpmk_drbg -b <bit_order> --s [string]

<bit_order> : (1 or 2) OTPMK Bit Ordering Scheme in SFP

1 : TA1.x

2 : TA2.x, TA3.x

<string> : 32 byte string

In case string is not specified, the utility generates a 32 bytes random number and embeds hamming code in it.

Usage Example:

$ gen_otpmk_drbg -b 1

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Input string not provided
Generating a random string

* Hash_DRBG library invoked
* Seed being taken from /dev/urandom

OTPMK[255:0] is:
d2f63a662f69a1faa4c2406f83eedde7647fbd3c62ac442c67fad2d4cda8b3a0

 NAME | BITS | VALUE
_________|______________|____________
OTPMKR 0 | 31- 0 | cda8b3a0
OTPMKR 1 | 63- 32 | 67fad2d4
OTPMKR 2 | 95- 64 | 62ac442c
OTPMKR 3 | 127- 96 | 647fbd3c
OTPMKR 4 | 159-128 | 83eedde7
OTPMKR 5 | 191-160 | a4c2406f

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
68 NXP Semiconductors

OTPMKR 6 | 223-192 | 2f69a1fa
OTPMKR 7 | 255-224 | d2f63a66

$./gen_otpmk_drbg -b 2 --s 1111111122222222333333334444444455555555666666667777777788888888

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

OTPMK[255:0] is:
1111111122222222333333334444444455555555666666667777777788888888

 NAME | BITS | VALUE
_________|______________|____________
OTPMKR 0 | 255-224 | 11111111
OTPMKR 1 | 223-192 | 22222222
OTPMKR 2 | 191-160 | 33333333
OTPMKR 3 | 159-128 | 44444444
OTPMKR 4 | 127- 96 | 55555555
OTPMKR 5 | 95- 64 | 66666666
OTPMKR 6 | 63- 32 | 77777777
OTPMKR 7 | 31- 0 | 88888888

3.3.2.1.3 gen_drv_drbg
This utility in the Code Signing Tool inserts hamming code in a user defined 64b hexadecimal string, or generate a 64b hexadecimal
random number and inserts the hamming code in it which can be used as Debug Response Value.

For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the NIST

approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is the Linux /

dev/random.

 NOTE

Features:

• Generates random numbers, which can be used if user defined string is not provided, to generate Debug Response value.

• Calculates and embeds the hamming code in the hexadecimal string.

Usage:

./gen_drv_drbg <Hamming_algo> [string]

Hamming_algo : Platforms

A1 : T10xx, T20xx, T4xxx, P4080rev1, B4xxx

A2 : LSx

B : P10xx, P20xx, P30xx, P4080rev2, P4080rev3, P50xx, BSC913x, C29x

string : 8 byte string

In case string is not specified, the utility generates an 8 byte random number and embeds hamming code in it.

Usage Example:

$./gen_drv_drbg A2

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 69

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Input string not provided
Generating a random string

* Hash_DRBG library invoked
* Seed being taken from /dev/random

Random Key Genearted is:
f4bfc65e16284dbb
DRV[63:0] after Hamming Code is:
f4bfc65f16294daf
 NAME | BITS | VALUE
_________|______________|____________
DRV 0 | 63 - 32 | f4bfc65f
DRV 1 | 31 - 0 | 16294daf

$./gen_drv_drbg A2 1652afe595631dec

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

DRV[63:0] after Hamming Code is:
1652afe495631cea
 NAME | BITS | VALUE
_________|______________|____________
DRV 0 | 63 - 32 | 1652afe4
DRV 1 | 31 - 0 | 95631cea

3.3.2.2 Header creation

3.3.2.2.1 uni_pbi
Following options are available with the uni_pbi command.

$./uni_pbi
 --verbose Display header Info after Creation. This option is invalid for TA2 platform
 --hash Print the SRK(Public key) hash. This option is invalid for TA2 platform
 --img_hash Header is generated without Signature.
 Image Hash is stored in a separate file. This option is invalid for TA2 platform
 --help Show the Help for Tool Usage.

The input to this tool will be an input file specifying the platform. Based on that, there are two separate behaviour of the tool.

uni_pbi for TA2.x platforms is used for the following:

• To add boot location pointer and set SB_EN and BOOT_HO value for secure boot

• (optional) To add PBI commands (ACS write commands to add U-Boot spl and its header to OCRAM from Non-XIP
memory).

• (optional) To append images (U-Boot, Boot script, and their headers) to RCW file.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
70 NXP Semiconductors

Refer Hardware Pre-Boot Loader (PBL) based platforms on page 35 for TA2.x based platforms.

uni_pbi for Service processor based platforms

• uni_pbi tool is used for creating signature and header over PBI commands.

Table 26. Description of fields in input files of both type of platforms (TA2.x and TA3.x)

Field name Description Platform supported

PLATFORM The platform for which tool is being used TA 2.x and TA 3.x

RCW_PBI_FILENAME Input image file name. The rcw file which has to be modified. TA 2.x and TA 3.x

BOOT1_PTR Address of ISBC (Boot1) CSF Header TA 2.x and TA 3.x

OUTPUT_RCW_PBI_FILENAME To identify the platform for which the tool is being used. This
field is optional. If not specified, it will take default name.

TA 2.x

BOOT_SRC Only to be specified in case of SD boot TA 2.x

SB_EN Field to enable or disable secure boot, by setting SB_EN bit in
rcw file to 1

TA 2.x

BOOT_HO To put core in hold-off state to fuse key hash in case of secure
boot, by setting BOOT_HO bit in rcw file to 1

TA 2.x

COPY_CMD To add ACS write commands to write U-Boot spl and is header
to OCRAM. This is an optional field. If not mentioned, won't add
the command.

TA 2.x

APPEND_IMAGES To append U-Boot, Boot script, and their headers to the new rcw
generated. It is an optional field. This is an optional field, if not
specified, no images will be appended.

TA 2.x

KEY_SELECT Specify the key to be used in signature generation from the SRK
table

TA 3.x

PRI_KEY Private key file name in PEM format. The maximum keys
supported are 8.

TA 3.x

FSL_UID_x FSL UID(s) to be populated in the header TA 3.x

OEM_UID_x OEM UID(s) to be populated in the header TA 3.x

OUTPUT_HDR_FILENAME Output file name of the header. An output file name is generated
with rcw commands appended with signed PBI commands.

TA 3.x

IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which Image Hash
is stored)

TA 3.x

MP_FLAG Manufacturing Protection Flag TA 3.x

ISS_FLAG Increment Security State Flag TA 3.x

LW_FLAG Leave Writeable Flag TA 3.x

VERBOSE Specify VERBOSE as 1, if you want to display header
information. This can also be done with '--verbose' option

TA 3.x

IE_TABLE_ADDR 64-bit address of IE table(to be used in case of IE key extension
feature usage)

TA 3.x

Sample input files are present in the CST tool at location: input_files/uni_pbi/<platform>/

For example, input_files/uni_pbi/ls1/input_pbi_sd_secure.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 71

In TA 3.x, SB_EN and BOOT_HO fields are by default set to 1 to enable secure boot.

 NOTE

To know platforms under TA 2.x, see Trust Architecture and SFP information on page 65.

 NOTE

3.3.2.2.1.1 Sample Input File
Sample input file for TA2-based platforms:

/*
 * Copyright 2016 NXP
 */
--
For PBI Creation
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= u-boot-with-spl-pbl.bin
--
Specify the output file name [Optional].
Default Values chosen in Tool
OUTPUT_RCW_PBI_FILENAME=u-boot-with-spl-pbl-sec.bin
--
#specify the boot src
BOOT_SRC=SD_BOOT
Specify the platform
PLATFORM=LS1020
Specify the RCW Fields. (0 or 1) - [Optional]
SB_EN=1
BOOT_HO=1
BOOT1_PTR=10016000
--
Specify the PBI commands - [Optional]
Argument: COPY_CMD = (src_offset, dest_offset, Image name)
Split hdr_uboot_spl.out in PBI commads
COPY_CMD={ffffffff,10016000,hdr_uboot_spl.out;}
--
Specify the Images to be appended
Arguments: APPEND_IMAGES=(Image name, Offset from start)
APPEND_IMAGES={u-boot-dtb.bin,00022000;}
APPEND_IMAGES={hdr_uboot.out,00122000;}
APPEND_IMAGES={hdr_bs.out, 00124000;}
APPEND_IMAGES={bootscript,00128000;}
--

3.3.2.2.2 uni_sign
uni_sign tool can be used for the following functions.

• CSF header generation along with signature for both ISBC and ESBC phase

• CSF header generation without signature if private key is not provided

uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be verified by ISBC

uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over images to be verified by ESBC

Following options are available with the uni_sign command.

Usage:

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
72 NXP Semiconductors

To view usage of tool:

./uni_sign
 --verbose Display header Info after Creation
 --hash Print the SRK(Public key) hash
 --img_hash Header is generated without Signature. Image Hash is stored in a separate file
 --out <file> Header file name
 --in <file> Input file for signature calculation. This option would override the filename in
IMAGE_1 in input_file if present
 --app <file> File to be appended to the header
 --app_off <offset> Offset at which file will be appended to the header
 --help Show the Help for Tool Usage

For example:

./uni_sign --in <inp_file> --out <op file> --app_off <offset> --app <file> <input_file>

There are scenarios when a build script using the tool needs to modify the input file name or the output header file

name. These command line options provide a way to override the values as specified in the input file.

 NOTE

Table 27. Description of fields

Field Field description Platform
supported

PLATFORM To identify the platform/SoC for which CF header needs to be created. All

ESBC Do not set this flag when code signing is being performed on the image directly
verified by the ISBC. For later images in the chain of trust, set this flag.

TA3.x

ENTRY_POINT Entry point address or Image start address field in the header. All

PRI_KEY Private key file name to be used for signing the image. (File has to be in PEM format)
(default = srk.pri generated by gen_keys command) FILE1 [,FILE2, FILE3, FILE4].
Multiple key support for Trust Arch v2.x devices only.

All

PUB_KEY Public key file name in PEM format. (default = srk.pub generated by gen_keys) FILE1
[,FILE2, FILE3, FILE4]. Multiple key support for Trust Arch v2.x devices only.

All

KEY_SELECT Specify the key to be used in signature generation when more than one key has been
given as input. (Default=1, first key will be selected)

All

IMAGE_1 -
IMAGE_8

Create Entries for SG table in the format { IMAGE_NAME, SRC_ADDR,
DST_ADDR }

All

OEM_UID_x OEM UID to be populated in the header. All

FSL_UID_x FSL UID to be populated in the header. All

HK_AREA_POINTE
R

House Keeping Area Starting Pointer required by Sec (Required for Trust Arch v2.x
devices only when esbc option is not provided)

TA2.x

HKAREA_SIZE House Keeping Area Size (Required for Trust Arch v2.x devices only when esbc
option is not provided)

TA2.x

Table continues on the next page...

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 73

Table 27. Description of fields (continued)

Field Field description Platform
supported

OUTPUT_HDR_FIL
ENAME

Name of the combined header binary to be created by tool All

SG_TABLE_ADDR Specify SG_TABLE Address where Scatter Gather table is present for
2041/3041/4080/5020/5040 when ESBC=0.

TA1.x

OUTPUT_SG_BIN Specify the output file name of sg table. TA1.x

IMAGE_TARGET Specify the target where image will be loaded. For example,NOR_8B/NOR_16B/
NAND_8B_512/NAND_8B_2K/NAND_8B_4K/ NAND_16B_512/NAND_16B_2K/
NAND_16B_4K/SD/MMC/SPI

All

SEC_IMG Flag for Secondary Image. Required for Trust Arch v2.x devices only TA2.x

MP_FLAG Specify Manufacturing Protection Flag. Available for LS1 only. All, only needed in
ISBC phase

VERBOSE Specify Verbose option. Contents of header generated will be printed. All

IMAGE_HASH_FIL
ENAME

used with '--img_hash' option (Name of file in which Image Hash is stored) TA3.x

ISS_FLAG Increment Security State Flag TA3.x, only
needed in ISBC
phase

LW_FLAG Leave Writeable Flag TA3.x, only
needed in ISBC
phase

ESBC_HDRADDR 32-bit address where header generated will be placed. Used to calculate IE key table
address

TA3.x, only to be
used in case of IE
key extension
feature usage

IE_KEY Comma separated list of files containing public keys(IE Keys) TA3.x, only to be
used in case of IE
key extension
feature usage

IE_REVOC Comma separated list of numbers that are to be revoked from IE table TA3.x, only to be
used in case of IE
key extension
feature usage

IE_KEY_SEL No. of keys in IE table that is to be used to validate image TA3.x, only to be
used in case of IE
key extension
feature usage

Sample input files can be referred to, from input_files/uni_sign/l<platform>.

For IE keys, refer to input_files/uni_sign/l<platform>/ie_ke.

To know platforms under TA 2.x, refer Trust Architecture and SFP information on page 65.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
74 NXP Semiconductors

3.3.2.2.2.1 Sample Input File
The input files will not have ESBC field (ESBC=0).

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
TRUST 1.0, 1.1, 2.0, 2.1: 1010/1040/2041/3041/4080/5020/5040/9131/9132/9164/4240/C290/LS1
PLATFORM=LS2088

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
Address can be 64 bit
ENTRY_POINT=30008000

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.1): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pri>
PRI_KEY=srk.pri

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={u-boot.bin,30008000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}
IMAGE_8={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_uboot.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 75

ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Following fields are Required for 4240/9164/1040/C290 only

Specify House keeping Area
Required for 42409164/1040/C290 only when ESBC flag is not set. [Mandatory]
HK_AREA_POINTER=
HK_AREA_SIZE=

Following field Required for 4240/9164/1040/C290 only
Specify Secondary Image Flag. (0 or 1) - [Optional]
(Default is 0)
SEC_IMAGE=

Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 - [Optional]
SG_TABLE_ADDR=

3.3.2.3 Signature generation
The tools in this category are provided in case the user does not want to share the Private Key with the CST tool. The --img_hash
option in Header creation on page 70 tools provides OEMs with the ability to perform code signing in a secure environment which
does not run the NXP Code Signing Tool.

--img_hash option

• Generates hash file in binary format which contains SHA256 hash of the components required for signature.

• Generates output header binary file based on the fields specified in input file.

• Output header binary file does not contain signature.

• Provides flexibility to manually append signature at the end of output header file. Users can use their own custom tool to
generate the signature. The signature offset chosen in the header is such that the signature can be appended at the end of
the header file.

• This option does not require private key to be provided. But the corresponding public key from the public/ private key pair
must be provided to calculate correct SHA256 hash.

• The SHA256 hash generated over CF header (in case of TA1.x platforms)) is then signed using RSA algorithm (OPENSSL
APIs) with the private key. This encrypted hash is known as digital signature. This signature is placed at an offset from the
CF header, which is later read by IBR.

• The SHA256 hash generated over CSF header, the public Key, the S/G table and the ESBC is also signed using RSA algorithm
with the same private key. The signature generated is placed at an offset from the CSF header, which is again later read by
IBR.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
76 NXP Semiconductors

Figure 10. Dual signature generation

Usage example

$./uni_sign --img_hash --verbose input_files/uni_sign/<platform>/input_uboot_nor_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/<platform>/input_uboot_nor_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(100)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 60
- ISS = 1
- MP = 0

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 77

- LW = 0
- B01 = 1
- Image Information
- SG Table Offset : 800
- Number of entries : 1
- Entry Point : 30008000
- Entry 1 : u-boot.bin (Size = 000c0000 SRC = 30008000 DST = ffffffff)
- RSA Signature Information
- RSA Offset : a00
- RSA Size : 80

Image Hash:
8588c174dd92f4a1b114b9029fc647e18cac4aaa46f03a6538ef20531e796e8f

**
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
**

Header File Created: hdr_uboot.out

SRK (Public Key) Hash:
7df50d4256c4cbde4ef4ae9931042b1e44ff13aeb5107a7e0e9ee07e0fbfc236
 SFP SRKHR0 = 7df50d42
 SFP SRKHR1 = 56c4cbde
 SFP SRKHR2 = 4ef4ae99
 SFP SRKHR3 = 31042b1e
 SFP SRKHR4 = 44ff13ae
 SFP SRKHR5 = b5107a7e
 SFP SRKHR6 = 0e9ee07e
 SFP SRKHR7 = 0fbfc236

The tools are provided to create the signature file and embed the signature at the end of header file.

3.3.2.3.1 gen_sign
This tool is provided for the user to calculate signature for a given hash using CST tool. The tool requires only the hash file and
private key file from the user as input. It would generate signature file as output.

It uses RSA_sign API of openssl to calculate signature over hash provided.

Usage

./gen_sign [option] <HASH_FILE> <PRIV_KEY_FILE>

--sign_file SIGN_FILE Provides file name for signature to be generated as operand. SIGN_FILE is generated containing
signature calculated over hash provided through HASH_FILE using private key provided through
PRIV_KEY_FILE. With this option, HASH_FILE and PRIV_KEY_FILE are compulsory while
SIGN_FILE is optional. The default value of SIGN_FILE is signout.

HASH_FILE Name of hash file containing hash over signature needs to be calculated.

PRIV_KEY_FILE Name of key file containing private key.

Usage example

After the hash file has been created as described in Signature generation on page 76, the tool can be used as described below.

$./uni_sign --img_hash input_files/uni_sign/<platform>/input_uboot_nor_secure

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
78 NXP Semiconductors

.

.

.

**
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
**

Header File Created: hdr_uboot.out

$./gen_sign hash.out srk.pri

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#
Signature Length = 80
Hash in hash.out is signed with srk.pri
Signature is stored in file : sign.out

3.3.2.3.2 sign_embed
This tool embeds signature in the header file generated using img_hash option which generates header but does not embed
signature in the header. This option opens header file and copies signature at the end of the file.

The header file generated with 'img_hash' option has padding added till signature offset, so that signature can be directly
embedded to the end of the file.

Usage

./sign_embed <hdr_file> <sign_file>

hdr_file Name of header file in which signature needs to be embedded

sign_file Name of sign file containing signature which needs to be embedded

Usage example

$./sign_embed hdr_uboot.out sign.out

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

hdr_uboot.out is appended with file sign.out (0x80)

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 79

User can generate the complete header along with signature in a single step using uni_sign/uni_pbi tool without

any option.

./uni_sign <input_file>

Or

User may wish to do it in three separate steps:

1. ./uni_sign --img_hash <input_file> (Create header file without signature and store the hash in a separate

file)

2. ./gen_sign[3] [option] <HASH_FILE> <PRIV_KEY_FILE> (Sign the image hash using private key)

3. ./sign_embed <hdr_file> <sign_file> (Embed the signature at the end of header file)

 NOTE

3.3.3 Procedure to Run Secure Boot
This section describes the steps to be followed to run secure boot on a platform, after building the images.

3.3.3.1 Prepare board for secure boot
Blowing One Time Programmable Master Key (OTPMK) fuse

1. Check initial SNVS state:

md 1e90014
88000900

The second nibble indicates that the OTPMK is not blown.

2. Enable POVDD for FRWY-LS1046A board:

a. Boot the board to U-Boot prompt in non-secure mode.

b. Enable POVDD using GPIO3[24] by using below commands:

mw 0x2320000 80000000
mw 0x2320008 f01c0000

3. Use the following command to generate OTPMK:

cd cst
./gen_otpmk_drbg 2

For more information on gen_otpmk_drbg, see Code Signing Tool on page 65.

 NOTE

4. Write OTPMK fuse values on shadow registers:

mw.l 1e80234 <OTPMK1>
mw.l 1e80238 <OTPMK2>
mw.l 1e8023c <OTPMK3>
mw.l 1e80240 <OTPMK4>
mw.l 1e80244 <OTPMK5>
mw.l 1e80248 <OTPMK6>
mw.l 1e8024c <OTPMK7>
mw.l 1e80250 <OTPMK8>

[3] This may be done by user's own tool in case he does not want to share the private key with the CST tool.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
80 NXP Semiconductors

5. Check SNVS state again. There should be no parity errors.

md 1e90014
80 000 900

Now, you will see ‘0’ in second nibble.

md 1e80024
00000000

No parity errors.

6. Use the below command (for LS1046A) to write to INGR register:

mw 1e80020 0x02000000

7. Reset and check that SNVS is in Check state:

md 1e90014
80 000 900

3.3.3.2 Running secure boot on target platforms
Platform LS1046A

1. After copying images to flash, select the boot source by changing the switch settings, then boot the board.

2. Flexbuild-generated RCW for secure boot has the boot core put in hold off by setting BOOT_HO = 1 and enabled secure
boot by SB_EN=1.

After booting the board, core would get stuck at its first instruction. This is done to allow the user to write SRKH in the
register. When using pre-built images, use the SRK hash present in srk_hash.txt from github. If SRKH fuse is already blown,
then set BOOT_HO = 0 in rcw file in flexbuild, else write the SRK hash value (displayed while signing images) in SFP mirror
registers and then release the core out of Boot Hold off by writing to Boot Release Register in DCFG using the below
commands:

ccs::config_server 0 10000
ccs::config_chain {<platform> dap sap2}
display ccs::get_config_chain
#Check Initial SNVS State and Value in SCRATCH Registers
ccs::display_mem <dap position> 0x1e90014 4 0 4
ccs::display_mem <dap position> 0x1ee0200 4 0 4
#Wrie the SRK Hash Value in Mirror Registers
ccs::write_mem <dap position> 0x1e80254 4 0 <SRKH1>
ccs::write_mem <dap position> 0x1e80258 4 0 <SRKH2>
ccs::write_mem <dap position> 0x1e8025c 4 0 <SRKH3>
ccs::write_mem <dap position> 0x1e80260 4 0 <SRKH4>
ccs::write_mem <dap position> 0x1e80264 4 0 <SRKH5>
ccs::write_mem <dap position> 0x1e80268 4 0 <SRKH6>
ccs::write_mem <dap position> 0x1e8026c 4 0 <SRKH7>
ccs::write_mem <dap position> 0x1e80270 4 0 <SRKH8>
#Get the Core Out of Boot Hold-Off
ccs::write_mem <dap position> 0x1ee00e4 4 0 0x00000001

Platform to be used in the above commands is ls1043a for LS1046A.

 NOTE

After implementing all the steps, the board will boot and user will get the Linux prompt after successful validation of all the
images.

Secure boot

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 81

To blow SRKH in production environment, follow procedure similar to blowing OTPMK fuses. For more detail on

production and development environments, see Flow A and Flow B under "Product execution" section.

 NOTE

3.3.3.3 Steps to run Chain of Trust with confidentiality
1. Generate all images:

$ flex-builder -c firmware
$ flex-builder -c linux -a <arch>

2. Generate autoboot script with e flag.

a. With encapsulation flag enabled:

$ flex-builder -i mkdistroscr -e

(or)

b. With encapsulation and key identifier (16 bytes):

$ flex-builder -i mkdistroscr -e -k <key_id>

For example, Key_id = 0x20000000.

For more information on key identifier, see "Other images required for the demo" section.

 NOTE

3. Sign all images:

$ flex-builder -i signimg -m <platform> -b <boottype> -s -e

4. Generate firmware image:

$ flex-builder -i mkfw -m <platform> -b <boottype > -s

5. Generate boot partition:

$ flex-builder -i mkbootpartition -a <arch> -s

6. Write image to micro-SD card:

$ flex-installer -b build/images/bootpartition_LS_<arch>_lts_<version>.tgz -r build/rfs/
rootfs_lsdk_<version>_LS_<arch> -d /dev/sdx

BOOT FLOW

First Boot: Encapsulaton Step (Should happen in OEM's premises)

1. By defult, the enacap and decap boot scripts will be installed in the boot partition.

2. When the board boots up for the first time after all images have been generated, encap boot script will execute. This boot
script:

a. Authenticates and encapsulates Linux and DTB images and replaces the unencrypted Linux and DTB images with
newly encapsulated Linux and DTB.

b. Replaces the encap boot script and header with the decap boot script and its header, already present in the boot
partition.

c. Issues reset.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
82 NXP Semiconductors

Subsequent Boot

1. U-Boot will execute script with decap commands.

a. Un-blobify Linux and DTB image in DDR.

b. Pass control to these images.

3.4 FRWY-LS1046A BSP memory layout

Flash layout

The following table shows the memory layout of various firmware stored in QSPI NOR flash device or micro-SD card on the FRWY-
LS1046A board.

Table 28. Flash layout

Definition Max. size QSPI NOR / NAND

Flash offset

Micro-SD card

Start block no.

RCW+PBI + BL2 (bl2.pbl) 1MB 0x00000000 0x00008

TF-A FIP image (fip.bin) BL31 + BL32 + BL33 4MB 0x00100000 0x00800

Boot firmware environment 1MB 0x00500000 0x02800

DP firmware 256KB 0x00900000 0x04800

Kernel lsdk_linux_<arch>.itb 16MB 0x01000000 0x08000

Ramdisk RFS 32MB 0x02000000 0x10000

Storage layout on micro-SD/USB for FRWY-LS1046A BSP image deployment

With FRWY-LS1046A BSP flex-installer, the FRWY-LS1046A BSP distro can be installed on a micro-SD/USB storage disk that
has at least 8 GB of memory space.

FRWY-LS1046A BSP memory layout

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 83

Table 29. Storage layout on micro-SD/USB for FRWY-LS1046A BSP image deployment

Region 1

(4 KB)

Region 2

(RAW)

64 MB

Firmware

Region 3

(Partition-1 FAT32)

20 MB

EFI

Region 4

(Partition-2 EXT4)

1 GB

Boot partition

Region 5

(Partition-3 EXT4)

Remaining space

RootFS partition

MBR/GPT RCW

U-Boot or UEFI

TF-A firmware

Secure boot headers

FMan/DP firmware

QE/uQE firmware

Eth PHY firmware

MC firmware

DPC firmware

DPL firmware

DTB

lsdk_linux_<arch>.itb

BOOTAA64.EFI

grub.cfg

kernel image

DTB

lsdk_linux_<arch>.itb

distro boot scripts

secure headers

other

Ubuntu

or

Ubuntu-Core

or

CentOS

or

Debian

3.5 Build tools
Flexbuild is a component-oriented build framework and integrated platform with capabilities of flexible, easy-to-use, scalable
system build and distro installation. With flex-builder CLI tool, users can build various components (Linux, U-Boot, RCW, TF-A,
and miscellaneous custom userspace applications) and distro userland to generate composite firmware, hybrid rootfs with
customable userland. The following are Flexbuild's main features:

• Automatically builds Linux, U-Boot, TF-A, RCW, and miscellaneous user space applications

• Generates machine-specific composite firmware for various boot types: SD/QSPI NOR, both for non secure and secure boot.

• Supports integrated management with repo-fetch, repo-branch, repo-commit, repo-tag, repo-update for git repositories of all
components

• Supports cross build on x86 Ubuntu 18.04 host machine for aarch64/armhf arch target

• Supports native build on aarch64/armhf machine for Arm arch target

• Supports creating an Ubuntu docker container and building BSP inside it when the host machine is using CentOS, RHEL,
Fedora, SUSE, Debian, non-18.04 Ubuntu, and so on

• Scalability of integrating various components of both system firmware and user space applications

• Capability of generating custom aarch64/armhf Ubuntu userland integrated configurable packages and proprietary
components

Flexbuild can separately build each component or automatically build all components, it generates the boot firmware (RCW, U-
Boot, PHY firmware, kernel image, and ramdisk RFS), lsdk_linux_arm64_LS_tiny.itb, and the Ubuntu userland containing
the specified packages and application components.

FRWY-LS1046A BSP Overview

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
84 NXP Semiconductors

Upgrading of toolchain is required for U-Boot, if your host machine is not a Ubutnu 18.04 system. Following are

two ways to use Ubuntu 18.04 toolchain:

• Run sudo do-release-upgrade command to upgrade existing Ubuntu 16.04 to Ubuntu 18.04

• Run flex-builder docker command on the existing non-Ubuntu 18.04 host to create a ubuntu 18.04

docker container in which GCC 7.3.0 is available, and then build BSP in docker.

 NOTE

Build tools

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 85

Chapter 4
Linux kernel

Introduction

The Linux kernel is a monolithic Unix-like computer operating system kernel. It is the central part of Linux operating systems that
are extensively used on PCs, servers, handheld devices and various embedded devices such as routers, switches, wireless access
points, set-top boxes, smart TVs, DVRs, and NAS appliances. It manages tasks/applications running on the system and manages
system hardware. A typical Linux system looks like this:

Figure 11. Typical Linux System

The Linux kernel was created in 1991 by Linus Torvalds and released as an open source project under GNU General Public
License(GPL) version 2. It rapidly attracted developers around the world. In 2015 the Linux kernel has received contributions from
nearly 12,000 programmers from more than 1,200 companies. The software is officially released on http://www.kernel.org website

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
86 NXP Semiconductors

http://www.kernel.org

through downloadable packages and GIT repositories. A general Linux kernel introduction from kernel.org can also be found at
https://www.kernel.org/doc/html/latest/admin-guide/README.html.

Kernel Releases and relationship with Layerscape SDK

There are different Linux kernel releases coming from different sources. Below we listed the ones that are related to the LSDK
kernel.

Kernel.org official kernel releases

• Mainline

Mainline tree is maintained by Linus Torvalds. It's the tree where all new features are introduced and where all the exciting
new development happens. New mainline kernels are released every 2-3 months.

• Longterm (LTS)

There are usually several "longterm maintenance" kernel releases provided for the purposes of backporting bugfixes for older
kernel trees. Only important bugfixes are applied to such kernels and they don't usually see very frequent releases, especially
for older trees.

Refer to https://www.kernel.org/category/releases.html for the current maintained Longterm releases.

Linaro LSK kernel release

Linaro is an open organization focused on improving Linux on ARM. They are also providing a Linux kernel release called Linaro
Stable Kernel (LSK). It is based on kernel.org Longterm kernel releases and included ARM related features developed by Linaro.
Normally these features are generic kernel features for the ARM architecture. Please refer to https://wiki.linaro.org/LSK for more
information about the LSK releases.

NXP Layerscape SDK kernel

NXP’s SDK kernel often contains patches that are not upstream yet so essentially the LSDK kernel is an enhanced Linaro LSK
which is in turn an enhanced kernel.org LTS. In order to fully utilize the ARM open source eco-system. The kernel versions provided
in NXP LSDK will be chosen from the kernel.org Longterm releases to include the important bugfixes backported. It will also
include generic ARM kernel features provided by the Linaro LSK release which could be important for some users.

Getting the LSDK kernel source code

With Layerscape SDK, NXP owned/updated software components are published on github. You can use git commands to get the
latest kernel source code.

• Install git command if not there already. For example, on Ubuntu:

$ sudo apt-get install git

• Clone the Linux kernel source code with git.

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/linux

• Checkout the desired kernel version. As we provide support to the two latest LTS kernel versions in the SDK, it is possible
that the default one is not your desired kernel version

$ cd linux
$ git branch

Check the name of the current branch. If it is not the Kernel version you want, use the following command to checkout your
desired kernel version: x.y

$ git checkout -b linux-x.y origin/linux-x.y

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 87

https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/category/releases.html

4.1 Configuring and building Linux kernel
Configuring and building the Linux kernel is controlled by the Kbuild subsystem. You can find documents describing the internal
of Kbuild subsystem under the Documentation/kbuild/ folder in the Linux source code tree, if you are adding new files or new
config options to the kernel. Otherwise, as a Linux kernel user, you would probably require to only fine tune the kernel configuration
based on your system requirements and build new kernel image with updated configuration. These tasks are performed using
make commands. This section explains how to perform these tasks.

Setting environment for cross-compilation

Configuration changes in this subsection are only applicable when you are configuring and building kernel on an architecture that
is different from the target. For example, compiling an Armv8 kernel on an x86 computer. If you are compiling the kernel on a
machine natively of the same architecture as the target, then skip steps in this subsection.

1. Install the cross-compiler of your distribution.

2. Specify the target architecture in ARCH environment variable.

3. Specify the path and prefix of a cross-compiler in CROSS_COMPILE environment variable:

$ export CROSS_COMPILE=/path/to/dir/tool-chain-prefix-

Or, simply specify the prefix if the cross-compiler commands are already in the execution PATH:

$ export CROSS_COMPILE=tool-chain-prefix-

For example, the commands needed on Ubuntu Linux will be as follows for 64-bit Arm platforms:

$ sudo apt-get install gcc-aarch64-linux-gnu
$ export CROSS_COMPILE=aarch64-linux-gnu-
$ export ARCH=arm64

For the shell environment variables exported above, you can also include them directly in each make command you use. For
example, $ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make {targets}. Exporting them will save your time if you are
frequently using make commands in kernel.

Configuring kernel

The current kernel configuration for a kernel source tree will be kept in a hidden .config file at the top level of the kernel source
code, after you changed the configuration with a make config command variant. You can copy the .config file directly from one
kernel source tree to another with the same kernel version to create a duplicate configuration. Also, you can edit it with a text
editor, in which you can see a list of CONFIG_* symbols corresponding to each kernel config option.

The following targets from the Linux kernel Kbuild framework are used to load the default kernel configuration for FRWY-LS1046A
BSP:

• defconfig/${PLATFORM}_defconfig

Create the .config file by using the default config options of the architecture or platform defined in the arch/$ARCH/configs/
directory. This normally includes all the device drivers needed for the architecture or platform.

• ${FRAGMENT}.config

Merge a configuration fragment that enables certain features into the .config file.

Specific command to load the default configuration of Layerscape Armv8 platforms (in 64-bit mode) for FRWY-LS1046A BSP is
as follows:

$./scripts/kconfig/merge_config.sh arch/arm64/configs/defconfig arch/arm64/configs/lsdk.config

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
88 NXP Semiconductors

To further fine tune the configuration based on your system needs, you can use the following make commands:

• $ make menuconfig

Choose config options in text-based color menus, radiolists, and dialogs. It is a good way to navigate through all the selectable
kernel config options in a well-organized, human-readable hierarchy, and you can get a description of each option when it is
highlighted by clicking the <Help> button. The "Device Drivers" section of this document also mentions the path to config
options needed for a feature to work in the menuconfig.

• $ make ${FRAGMENT}.config

You can also utilize this capability to enable options for a specific feature in your custom kernel configuration quickly, rather
than selecting each option separately in the menuconfig. In the "Device Drivers" section of this document, the CONFIG_*
symbols needed by a specific feature/driver are listed. Put these symbols with “=y” or “=m” depending on if you want these
features/drivers to be built-in or built as loadable kernel module into a ${FEATURE}.config file under arch/$ARCH/configs/
directory. Run the $ make ${FEATURE}.config command, it will enable all these listed kernel config options together.

Building kernel

Building the kernel is simple.

• Use the following command to build kernel images and device tree images:

make

• Use the following command to build loadable kernel modules:

make modules

You can supply the -j <NUM> parameter to the above make commands to spin NUM concurrent threads to reduce build time on
multicore systems.

After a successful build:

• Compiled kernel images are in arch/${ARCH}/boot/ folder

• Compiled device trees (dtb files) are in arch/${ARCH}/boot/dts folder

• Compiled kernel modules are spread out in driver folders. You can extract them to a specific folder (for example, /folder/to/
install) by using the following command:

$ make modules_install INSTALL_MOD_PATH=/folder/to/install

Install new kernel and modules

The path or naming convention of kernel images and modules are different for different Linux distributions. The following
instructions are based on the convention of FRWY-LS1046A BSP.

Using Flexbuild scripts

1. Copy kernel image, DTB, and kernel modules from your kernel tree to the staging folder of the Flexbuild script (skip if you
are using the flex-builder -c linux to build the kernel directly):

For 64-bit Arm:

$ cp arch/arm64/boot/Image.gz ${path-to-flexbuild}/build/linux/kernel/arm64/
$ cp arch/arm64/boot/dts/freescale/*.dtb ${path-to-flexbuild}/build/linux/kernel/arm64/
$ make modules_install INSTALL_MOD_PATH=${path-to-flexbuild}/build/linux/kernel/arm64/

Configuring and building Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 89

2. Regenerate the boot partition and rootfs (for commands below, ${ARCH} = arm32 | arm64):

$ flex-builder -i mkbootpartition -a ${ARCH}
$ flex-builder -i merge-component -a ${ARCH}
$ flex-builder -i compressrfs -a ${ARCH}

3. Use flex-installer to deploy the updated boot partition and rootfs to the device by following instructions provided in FRWY-
LS1046A BSP Quick Start on page 9.

Updating target filesystem directly

This option can be more convenient if you are compiling the kernel on the target device locally or you can easily update the
filesystem of target device remotely (for example, using scp, tftp).

1. Copy your image file to /boot folder on the target device using cp command if compiled locally; use any remote update
option available if compiled remotely.

2. Copy dtb files to /boot folder on the target device using cp if compiled locally; use any remote update option available if
compiled remotely.

3. Update kernel modules:

Kernel modules need to be updated after updating kernel image.

 NOTE

• If you compiled the kernel on the target device locally, then use the following command to update kernel modules:

$ make modules_install

• If you compiled the kernel remotely, then:

a. Install the modules into a temporary folder (for example, /tmp/ls1046afrwy_bsp_01/):

$ make modules_install INSTALL_MOD_PATH=/tmp/ls1046afrwy_bsp_01/

b. Transfer the lib/ directory from the above temporary location to the target device using any file transfer option
and put it in the / path of the filesystem.

4.2 Device Drivers

4.2.1 Enhanced Secured Digital Host Controller (eSDHC)

Description

The enhanced secured host controller (eSDHC) provides an interface between the host system and the SD/SDIO/micro-SD cards.

The eSDHC device driver supports either kernel built-in or module.

Kernel Configure Options

Tree View

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
90 NXP Semiconductors

Kernel Configure Options Tree View Description

 Device Drivers --->
 <*> MMC/SD/SDIO card support --->
 <*> MMC block device driver
 (32) Number of minors per block device

Enables SD/MMC block device driver support

*** MMC/SD/SDIO Host Controller Drivers ***

<*> Secure Digital Host Controller Interface
support
<*> SDHCI platform and OF driver helper
[*] SDHCI OF support for the NXP eSDHC
controller

Enables NXP eSDHC driver support

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_MMC y/n y Enable SD/MMC bus protocol

CONFIG_MMC_BLOCK y/n y Enable SD/MMC block device
driver support

CONFIG_MMC_BLOCK_MIN
ORS

integer 32 Number of minors per block
device

CONFIG_MMC_BLOCK_BO
UNCE

y/n y Enable continuous physical
memory for transmit

CONFIG_MMC_SDHCI y/n y Enable generic sdhc interface

CONFIG_MMC_SDHCI_PLT
FM

y/n y Enable common helper
function support for sdhci
platform and OF drivers

CONFIG_MMC_SDHCI_OF_
ESDHC

y/n y Enable NXP eSDHC support

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/mmc/host/sdhci.c Linux SDHCI driver support

drivers/mmc/host/sdhci-pltfm.c Linux SDHCI platform devices support driver

drivers/mmc/host/sdhci-of-esdhc.c Linux eSDHC driver

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 91

Device Tree Binding

Property Type Status Description

compatible String Required Should be 'fsl,esdhc'

reg integer Required Register map

Example:

esdhc: esdhc@1560000 {
 compatible = "fsl,ls1046a-esdhc", "fsl,esdhc";
 reg = <0x0 0x1560000 0x0 0x10000>;
 interrupts = <GIC_SPI 62 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 2 1>;
 voltage-ranges = <1800 1800 3300 3300>;
 sdhci,auto-cmd12;
 big-endian;
 bus-width = <4>;
};

Known Bugs, Limitations, or Technical Issues

1. Call trace of more than 120 seconds task blocking when running iozone to test card performance. This is not issue and
use below command to disable the warning.

echo 0 > /proc/sys/kernel/hung_task_timeout_secs

2. Layerscape boards could not provide a power cycle to SD card but according to SD specification, only a power cycle could
reset the SD card working on UHS-I speed mode. When the card is on UHS-I speed mode, this hardware problem may
cause unexpected result after board reset. The workaround is using power off/on instead of reset when using SD UHS-I
card.

3. Transcend 8G class 10 SDHC card has some compatibility issue. It is observed it could not work on 50 MHz high-speed
mode on LS2 boards, but other brand SD cards (Sandisk, Kingston, Sony ...) worked fine. Reducing SD clock frequency
could also resolve the issue. The workaround is using other kind SD cards instead.

4. After sleep of the board, the card will get below interrupt timeout issue. This is hardware issue. CMD18 (multiple blocks
read) has hardware interrupt timeout issue.

mmc0: Timeout waiting for hardware interrupt.

5. Linux MMC stack does not have SD UHS-II support currently. It could not handle SD UHS-II card well. If UHS-I support is
enabled in eSDHC dts node, the driver may make SD UHS-II card enter 1.8v mode. Only a power cycle could reset the
card, so use power off/on instead of reset for SD UHS-II card if UHS-I support is enabled in eSDHC dts node.

4.2.2 Dual Universal Asynchronous Receiver/Transmitter
(DUART)

A dual universal asynchronous receiver/transmitter (DUART) consists of two UARTs that act independently. The LS1046A
processor implements two DUART modules.

U-Boot configuration

Compile-time options

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
92 NXP Semiconductors

Below are major U-Boot configuration options related to this feature defined in platform-specific config files under include/
configs/ directory.

Option identifier Description

CONFIG_SYS_NS16550_SERIAL Enable UART support

CONFIG_SYS_NS16550_REG_SIZE Enable UART IP register size

CONFIG_SYS_NS16550_CLK Enable UART clock

Choosing predefined U-Boot board configs

Make the defconfig (such as ls1046afrwy_tfa_defconfig) include 'uart'. This will support UART.

Run-time options

Env variable Env description Sub option Option description

bootargs Kernel command line
argument passed to kernel

console=ttyS0,115200 Select UART0 as the system
console

Kernel configuration options

Tree view

Below are the configuration options that need to be set/unset while doing "make menuconfig" for kernel.

Kernel configuration tree view options Description

Device Drivers --->

 Character devices --->

 Serial drivers --->

 <*> 8250/16550 and compatible
serial support
 [*] Console on 8250/16550 and
compatible serial port

UART driver and enable console support

Identifier

Below are the configuration identifiers that are used in kernel source code and default configuration files.

Option Values Default value Description

CONFIG_SERIAL_8250 y/m/n n UART driver

Device tree binding

Below is an example device tree node required by this feature. Note that it may have differences among platforms.

duart0: serial@21c0500 {
 compatible = "fsl,ns16550", "ns16550a";
 reg = <0x00 0x21c0500 0x0 0x100>;
 interrupts = <GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>;

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 93

 clocks = <&clockgen 4 1>;
 };

Source files

The following source file is related to this feature in U-Boot.

Source File Description

drivers/serial/serial_ns16550.c The UART driver file

The following source file is related to this feature in Linux kernel.

Source File Description

drivers/tty/serial/8250/8250_fsl.c The UART driver file

Verification in U-Boot

1. Boot the board to bring the U-Boot to UART console:

U-Boot 2018.09-gde5a84f (Mar 28 2019 - 14:51:09 +0530)

SoC: LS1046AE Rev1.0 (0x87070010)
Clock Configuration:
 CPU0(A72):1600 MHz CPU1(A72):1600 MHz CPU2(A72):1600 MHz
 CPU3(A72):1600 MHz
 Bus: 600 MHz DDR: 1600 MT/s FMAN: 700 MHz
Reset Configuration Word (RCW):
 00000000: 0c100010 0e000000 00000000 00000000
 00000010: 30400506 00805012 40025000 c1000000
 00000020: 00000000 00000000 00000000 00038800
 00000030: 20044100 24003101 00000096 00000001
Model: LS1046A FRWY Board
Board: LS1046AFRWY, boot from QSPI
SD1_CLK1 = 100.00MHZ, SD1_CLK2 = 100.00MHZ
I2C: ready
DRAM: 1.9 GiB (DDR4, 32-bit, CL=11, ECC on)
SEC0: RNG instantiated
Using SERDES1 Protocol: 12352 (0x3040)
Using SERDES2 Protocol: 1286 (0x506)
NAND: 512 MiB
MMC: FSL_SDHC: 0
Loading Environment from SPI Flash... SF: Detected mt25qu512a with page size 256 Bytes, erase size
64 KiB, total 64 MiB
OK
EEPROM: Read failed.
In: serial
Out: serial
Err: serial
Net: SF: Detected mt25qu512a with page size 256 Bytes, erase size 64 KiB, total 64 MiB
Fman1: Uploading microcode version 108.4.9
PCIe0: pcie@3400000 disabled
PCIe1: pcie@3500000 Root Complex: no link
PCIe2: pcie@3600000 Root Complex: no link
FM1@DTSEC1, FM1@DTSEC5, FM1@DTSEC6, FM1@DTSEC10

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
94 NXP Semiconductors

Hit any key to stop autoboot: 0
=>

Verification in Linux

1. After U-Boot startup, set the command line parameters (including console=ttyS0,115200) to pass to the Linux kernel in
boootargs.

bootargs=console=ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio,0x21c0500
mtdparts=1550000.quadspi:1m(rcw),15m(u-boot),48m(kernel.itb);7e800000.flash:16m(nand_uboot),
48m(nand_kernel),448m(nand_free)

=> fatload usb 0 0xa0000000 kernel-ls1046a-frwy.itb
20985175 bytes read in 541 ms (37 MiB/s)
=> bootm 0xa0000000
Loading kernel from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'kernel@1' kernel subimage
 Description: ARM64 Linux kernel
 Type: Kernel Image
 Compression: gzip compressed
 Data Start: 0xa00000dc
 Data Size: 9160081 Bytes = 8.7 MiB
 Architecture: AArch64
 OS: Linux
 Load Address: 0x80080000
 Entry Point: 0x80080000
 Verifying Hash Integrity ... OK
Loading ramdisk from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'ramdisk@1' ramdisk subimage
 Description: LS2 Ramdisk
 Type: RAMDisk Image
 Compression: gzip compressed
 Data Start: 0xa08c43dc
 Data Size: 11791919 Bytes = 11.2 MiB
 Architecture: AArch64
 OS: Linux
 Load Address: unavailable
 Entry Point: unavailable
 Verifying Hash Integrity ... OK
Loading fdt from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'fdt@1' fdt subimage
 Description: Flattened Device Tree blob
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0xa08bc724
 Data Size: 31794 Bytes = 31 KiB
 Architecture: AArch64
 Load Address: 0x90000000
 Verifying Hash Integrity ... OK
 Loading fdt from 0xa08bc724 to 0x90000000
 Booting using the fdt blob at 0x90000000
 Uncompressing Kernel Image ... OK
 Using Device Tree in place at 0000000090000000, end 000000009001ac31
WARNING failed to get smmu node: FDT_ERR_NOTFOUND
WARNING failed to get smmu node: FDT_ERR_NOTFOUND

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 95

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 4.14.83-g76ab6899bd29 (root@pramod) (gcc version 7.3.0 (Ubuntu/
Linaro 7.3.0-16ubuntu3)) #2 SMP PREEMPT Mon Feb 18 12:53:04 IST 2019
[0.000000] Boot CPU: AArch64 Processor [410fd082]
[0.000000] Machine model: LS1046A FRWY Board
[0.000000] earlycon: uart8250 at MMIO 0x00000000021d0500 (options '')
[0.000000] bootconsole [uart8250] enabled
[0.000000] efi: Getting EFI parameters from FDT:
[0.000000] efi: UEFI not found.
[0.000000] OF: reserved mem: initialized node qman-fqd, compatible id fsl,qman-fqd
[0.000000] OF: reserved mem: initialized node qman-pfdr, compatible id fsl,qman-pfdr
[0.000000] OF: reserved mem: initialized node bman-fbpr, compatible id fsl,bman-fbpr
[0.000000] cma: Reserved 16 MiB at 0x00000000f7000000
[0.000000] NUMA: No NUMA configuration found
[0.000000] NUMA: Faking a node at [mem 0x0000000000000000-0x00000000fbdfffff]
[0.000000] NUMA: NODE_DATA [mem 0xfbdc2b00-0xfbdc42bf]
[0.000000] Zone ranges:
[0.000000] DMA [mem 0x0000000080000000-0x00000000fbdfffff]
[0.000000] Normal empty
[0.000000] Movable zone start for each node
[0.000000] Early memory node ranges
[0.000000] node 0: [mem 0x0000000080000000-0x00000000f7ffffff]
[0.000000] node 0: [mem 0x00000000fb800000-0x00000000fbdfffff]
[0.000000] Initmem setup node 0 [mem 0x0000000080000000-0x00000000fbdfffff]
[0.000000] psci: probing for conduit method from DT.
[0.000000] psci: PSCIv1.1 detected in firmware.
[0.000000] psci: Using standard PSCI v0.2 function IDs
[0.000000] psci: MIGRATE_INFO_TYPE not supported.
[0.000000] psci: SMC Calling Convention v1.1
[0.000000] percpu: Embedded 24 pages/cpu @ffff80007bd5d000 s61272 r8192 d28840 u98304
[0.000000] Detected PIPT I-cache on CPU0
[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 485128
[0.000000] Policy zone: DMA
[0.000000] Kernel command line: console=ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio,
0x21d0500 mtdparts=1550000.quadspi:1m(rcw),15m(u-boot),48m(kernel.itb);7e800000.flash:
16m(nand_uboot),48m(nand_kernel),448m(nand_free)
[0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)
[0.000000] Memory: 1889440K/1972224K available (12668K kernel code, 1402K rwdata, 4944K
rodata, 1344K init, 917K bss, 66400K reserved, 16384K cma-reserved)
[0.000000] Virtual kernel memory layout:
[0.000000] modules : 0xffff000000000000 - 0xffff000008000000 (128 MB)
[0.000000] vmalloc : 0xffff000008000000 - 0xffff7dffbfff0000 (129022 GB)
[0.000000] .text : 0xffff000008080000 - 0xffff000008ce0000 (12672 KB)
[0.000000] .rodata : 0xffff000008ce0000 - 0xffff0000091c0000 (4992 KB)
[0.000000] .init : 0xffff0000091c0000 - 0xffff000009310000 (1344 KB)
[0.000000] .data : 0xffff000009310000 - 0xffff00000946ea00 (1403 KB)
[0.000000] .bss : 0xffff00000946ea00 - 0xffff000009553eb8 (918 KB)
[0.000000] fixed : 0xffff7dfffe7f9000 - 0xffff7dfffec00000 (4124 KB)
[0.000000] PCI I/O : 0xffff7dfffee00000 - 0xffff7dffffe00000 (16 MB)
[0.000000] vmemmap : 0xffff7e0000000000 - 0xffff800000000000 (2048 GB maximum)
[0.000000] 0xffff7e0000000000 - 0xffff7e0001ef8000 (30 MB actual)
[0.000000] memory : 0xffff800000000000 - 0xffff80007be00000 (1982 MB)
[0.000000] Preemptible hierarchical RCU implementation.
[0.000000] RCU restricting CPUs from NR_CPUS=64 to nr_cpu_ids=4.
[0.000000] Tasks RCU enabled.
[0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=4
[0.000000] NR_IRQS: 64, nr_irqs: 64, preallocated irqs: 0
[0.000000] GIC: Adjusting CPU interface base to 0x000000000142f000

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
96 NXP Semiconductors

[0.000000] GIC: Using split EOI/Deactivate mode
[0.000000] arch_timer: cp15 timer(s) running at 25.00MHz (phys).
[0.000000] clocksource: arch_sys_counter: mask: 0xffffffffffffff max_cycles: 0x5c40939b5,
max_idle_ns: 440795202646 ns
[0.000002] sched_clock: 56 bits at 25MHz, resolution 40ns, wraps every 4398046511100ns
[0.008406] Console: colour dummy device 80x25
[0.012905] Calibrating delay loop (skipped), value calculated using timer frequency.. 50.00
BogoMIPS (lpj=100000)
[0.023325] pid_max: default: 32768 minimum: 301
[0.028029] Security Framework initialized
[0.032892] Dentry cache hash table entries: 262144 (order: 9, 2097152 bytes)
[0.040470] Inode-cache hash table entries: 131072 (order: 8, 1048576 bytes)
[0.047579] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes)
[0.054333] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes)
[0.077545] ASID allocator initialised with 32768 entries
[0.090987] Hierarchical SRCU implementation.
[0.103821] EFI services will not be available.
[0.116388] smp: Bringing up secondary CPUs ...
[0.149081] Detected PIPT I-cache on CPU1
[0.149108] CPU1: Booted secondary processor [410fd082]
[0.177086] Detected PIPT I-cache on CPU2

2. After the kernel boots up to the console, you can type any shell command in the UART terminal.

4.2.3 Quad Serial Peripheral Interface (QSPI)

U-Boot Configuration

Make sure your boot mode support QSPI.

Use QSPI boot mode to boot an board, please check the board user manual and boot from QSPI. (or some other boot mode
decide by your board.)

Kernel Configure Tree View Options

Device Drivers --->
 Memory Technology Device (MTD) support
 RAM/ROM/Flash chip drviers --->
 < > Detect flash chips by Common Flash Interface (CFI) probe
 < > Detect non-CFI AMD/JEDEC-compatible flash chips
 < > Support for RAM chips in bus mapping
 < > Support for ROM chips in bus mapping
 < > Support for absent chips in bus mapping
 Self-contained MTD device drivers --->
 <*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...)
 < > NAND Device Support ----
 [*] the framework for SPI-NOR support
 <*> Freescale Quad SPI controller

Device Drivers --->
 [] Memory Controller drivers ----

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 97

Compile-time Configuration Options

Config Values Defualt Value Description

CONFIG_SPI_FSL_QUADSPI y/n y
Enable QSPI module

CONFIG_MTD_SPI_NOR_BAS
E

y/n y
Enables the framework for
SPI-NOR

Verification in U-Boot

=> sf probe 0:0
SF: Detected N25Q128A13 with page size 256 Bytes, erase size 4 KiB, total 16 MiB
=> sf erase 0 100000
SF: 1048576 bytes @ 0x0 Erased: OK
=> sf write 82000000 0 1000
SF: 4096 bytes @ 0x0 Written: OK
=> sf read 81100000 0 1000
SF: 4096 bytes @ 0x0 Read: OK
=> cm.b 81100000 82000000 1000
Total of 4096 byte(s) were the same

Verification in Linux:

The booting log

......
fsl-quadspi 1550000.quadspi: n25q128a13 (16384 Kbytes)
fsl-quadspi 1550000.quadspi: QuadSPI SPI NOR flash driver
......

Erase the QSPI flash

~ # mtd_debug erase /dev/mtd0 0x1100000 1048576
Erased 1048576 bytes from address 0x00000000 in flash

Write the QSPI flash

~ # dd if=/bin/tempfile.debianutils of=tp bs=4096 count=1
~ # mtd_debug write /dev/mtd0 0 4096 tp
Copied 4096 bytes from tp to address 0x00000000 in flash

Read the QSPI flash

~ # mtd_debug read /dev/mtd0 0 4096 dump_file

Copied 4096 bytes from address 0x00000000 in flash to dump_file

Check Read and Write

Use compare tools(yacto has tools named diff).

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
98 NXP Semiconductors

~ # diff tp dump_file
~ #
If diff command has no print log, the QSPI verification is passed.

4.2.4 Universal Serial Bus interfaces
See table below for USB controllers present on the LS1046A SoC.

SoC No. of USB 3.0 controllers present No. of USB 2.0 controllers present

LS1046A 2 0

Typical USB node on device trees for USB 3.0 controller:

usb0: usb@2f00000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x2f00000 0x0 0x10000>;
 interrupts = <GIC_SPI 60 IRQ_TYPE_LEVEL_HIGH>;
 dr_mode = "host";
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 usb3-lpm-capable;
 snps,dis-u1u2-when-u3-quirk;
 snps,incr-burst-type-adjustment = <1>, <4>, <8>, <16>;
 snps,host-vbus-glitches;
 };

4.2.4.1 USB 3.0 Controller (DesignWare USB3)

Description
The U-Boot and Linux kernel driver support DWC3 USB 3.0 Dual-Role-Device (DRD) controller.

U-Boot
Host mode

With default configuration of LSDK, host mode should be ready to use, below are related CONFIG files to select.

Configure tree view options

Configure tree view options Description

U-Boot-->
 USB support -->
 [*] Enable driver model for USB
 [*] xHCI HCD (USB 3.0) support
 [*] Designware USB3 DRD Core Support
 …
 [*] Support for NXP Layerscape on-chip
xHCI USB controller
 …
 [*] USB Mass Storage support

Enables USB host controller support

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 99

Device tree (arch/arm/dts/fsl-ls1046a.dtsi)

usb0: usb@2f00000 {
 compatible = "fsl,layerscape-dwc3";
 reg = <0x0 0x2f00000 0x0 0x10000>;
 interrupts = <0 60 4>;
 dr_mode = "host";
 };

Source files

The driver source is maintained in the Linux kernel source tree.

Source file Description

drivers/usb/host/xhci.c USB HOST xHCI Controller stack

drivers/usb/host/xhci.c USB HOST xHCI Controller stack

drivers/usb/host/xhci-fsl.c FSL USB HOST xHCI Controller driver, basing on dwc3 driver

drivers/usb/host/xhci-dwc3.c DWC3 controller driver

drivers/usb/host/usb-uclass.c USB host driver

common/usb.c USB generic driver

common/usb_hub.c USB hub driver

cmd/usb.c USB command-line support

Linux kernel
Host mode

With default configuration of LSDK, host mode should be ready to use, below are related CONFIGs that should have been selected.

Configure tree view options

Configure tree view options Description

 USB support --->

 [*] xHCI HCD (USB3.0) support

USB host controller support.

 [*] USB Mass Storage support

USB mass storage support.

[*] DesignWare USB3 DRD Core support

 [*] DWc3 Mode Selection
 [X] Dual Role mode

DesignWare USB3 DRD Core Support.

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
100 NXP Semiconductors

Table continued from the previous page...

Configure tree view options Description

Device Drivers
--> HID support
 --> USB HID support
 [*] USB HID transport layer USB HID
support

USB HID support

Device tree (arch/arm/boot/dts/freescale/fsl-ls1046a.dtsi)

usb0: usb@2f00000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x2f00000 0x0 0x10000>;
 interrupts = <GIC_SPI 60 IRQ_TYPE_LEVEL_HIGH>;
 dr_mode = "host";
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 usb3-lpm-capable;
 snps,dis-u1u2-when-u3-quirk;
 snps,incr-burst-type-adjustment = <1>, <4>, <8>, <16>;
 snps,host-vbus-glitches;
 };

Source files

The driver source is maintained in the Linux kernel source tree.

Source file Description

drivers/usb/core/* USB subsystem/framework

drivers/usb/host/xhci.c xhci-mem.c xhci-ring.c xhci-hub.c USB xHCI (host) driver

drivers/usb/storage/scsiglue.c protocol.c transport.c usb.c USB Mass Storage (device) driver

Known bugs, limitations, or technical issues

• Linux only allows one peripheral at one time. Make sure that when one of DWC3 controllers is set as peripheral, then the
others should not be set to the same mode.

• For USB host mode, some pen drives such as Kingston / Transcend / SiliconPower / Samtec might have a compatibility
issue.

• Some USB micro ports might have OTG 3.0 cable compatibility issue. An OTG 2.0 cable along with a USB standard port
works fine.

4.2.5 Real Time Clock (RTC)

Description
Provides the RTC function.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 101

Kernel configuration tree view options

Kernel configuration tree view options Description

Device Drivers->
 Real Time Clock-->
 [*] Set system time from RTC on
startup and resume (new)
 (rtc0) RTC used to set the system
time (new)
 <[*] /sys/class/rtc/rtcN (sysfs)
 <[*] /proc/driver/rtc (procfs for
rtc0)
 <[*] /dev/rtcN (character devices)

Enable RTC driver

Compile-time configuration options

Option Values Default Value Description

CONFIG_RTC_LIB y/m/n y Enable RTC lib

CONFIG_RTC_CLASS y/m/n y Enable generic RTC class
support

CONFIG_RTC_HCTOSYS y/n y Set the system time from
RTC when startup and
resume

CONFIG_RTC_HCTOSYS_D
EVICE

"rtc0" RTC used to set the system
time

CONFIG_RTC_INTF_SYSFS y/m/n y Enable RTC to use sysfs

CONFIG_RTC_INTF_PROC y/m/n y Use RTC through the proc
interface

CONFIG_RTC_INTF_DEV y/m/n y Enable RTC to use /dev
interface

Source files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/rtc/ Linux RTC driver

Device tree binding

Preferred node name: rtc

Property Type Status Description

compatible string Required Should be "nxp,pcf2129"

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
102 NXP Semiconductors

Default node:

 i2c@2180000 {
 compatible = "fsl,vf610-i2c", "fsl,ls1046a-vf610-i2c";
 #address-cells = <0x00000001>;
 #size-cells = <0x00000000>;
 reg = <0x00000000 0x02180000 0x00000000 0x00010000>;
 interrupts = <0x00000000 0x00000038 0x00000004>;
 clocks = <0x00000002 0x00000004 0x00000001>;
 dmas = <0x00000017 0x00000001 0x00000027 0x00000017 0x00000001 0x00000026>;
 dma-names = "tx", "rx";
 scl-gpios = <0x00000018 0x0000000c 0x00000000>;
 status = "okay";
 i2c-mux@77 {
 compatible = "nxp,pca9546";
 reg = <0x00000077>;
 #address-cells = <0x00000001>;
 #size-cells = <0x00000000>;
 i2c-mux-never-disable;
 i2c@0 {
 #address-cells = <0x00000001>;
 #size-cells = <0x00000000>;
 reg = <0x00000000>;
 rtc@51 {
 compatible = "nxp,pcf2129";
 reg = <0x00000051>;
 };
 };
 };
 };

Verification in Linux

Following is the RTC boot log:

 ...
 rtc-ds3232 1-0068: rtc core: registered ds3232 as rtc0
 MC object device driver dpaa2_rtc registered
 rtc-ds3232 0-0068: setting system clock to 2000-01-01 00:00:51 UTC (946684851)
 ...

Change the RTC time in Linux kernel:

 ~ # ls /dev/rtc -l
 lrwxrwxrwx 1 root root 4 Jan 11 17:55 /dev/rtc -> rtc0
 ~ # date
 Sat Jan 1 00:01:38 UTC 2000
 ~ # hwclock
 Sat Jan 1 00:01:41 2000 0.000000 seconds
 ~ # date 011115502011
 Tue Jan 11 15:50:00 UTC 2011
 ~ # hwclock -w
 ~ # hwclock
 Tue Jan 11 15:50:36 2011 0.000000 seconds
 ~ # date 011115502010
 Mon Jan 11 15:50:00 UTC 2010
 ~ # hwclock -s
 ~ # date

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 103

 Tue Jan 11 15:50:49 UTC 2011
 ~ #

 NOTE: Before using the rtc driver, make sure the /dev/rtc node in your file system is
correct. Otherwise, you need to make correct node for /dev/rtc

4.2.6 PCI Express Interface Controller

4.2.6.1 PCIe Linux Driver

Module Loading

The MPC85xx/Layerscape PCIE host bridge support code is compiled into the kernel. It is not available as a module.

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Bus support --->
 [*] PCI support
 [*] Message Signaled Interrupts (MSI
and MSI-X)

Enable PCI host bridge and message support

Bus support --->
 PCI host controller drivers --->
 [*] Freescale Layerscape PCIe controller

Enable NXP Layerscape PCIe controller

Device Drivers --->
 [*]Network device support --->
 [*]Ethernet device support --->
 [*] Intel devices --->
 <*> Intel (R) PRO/1000
PCI-Express Gigabit Ethernet support

Intel PRO/1000 PCI-Express support

Device Drivers --->

 <*> Serial ATA and Parallel ATA drivers
(libata) --->
 <*> Silicon Image 3124/3132
SATA support

Enable support for Silicon Image 3124/3132 Serial ATA.

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_PCI y/n y Enable PCI host bridge

CONFIG_PCI_MSI y/n y Message support

CONFIG_PCI_LAYERSCAPE y/n y Enable PCI for Layerscape

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
104 NXP Semiconductors

Table continued from the previous page...

Option Values Default Value Description

CONFIG_E1000E y/m/n y Enable Intel Pro/1000 driver

CONFIG_SATA_SIL y/m/n y Silicon Image SATA support

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

arch/powerpc/sysdev/fsl_pci.c The MPC85XX platform PCIE host bridge support source

drivers/pci/host/pci-layerscape.c The Layerscape platform PCIE host bridge support source

drivers/net/ethernet/intel/e1000e/ Intel Pro/1000 driver source code

drivers/ata/sata_sil.c Silicon Image source code

SATA Card Test Procedure

the user can use command
fdisk, mke2fs mount to operate the ide disk.
After kernel boots up, please follow the log to operate:

[root@pX0XX /root]# fdisk -l

Disk /dev/sda: 85.8 GB, 85899345920 bytes
255 heads, 63 sectors/track, 10443 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Disk /dev/sda doesn't contain a valid partition table

[root@pX0XX /root]# fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that the previous content
won't be recoverable.

The number of cylinders for this disk is set to 10443.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 105

First cylinder (1-10443, default 1): Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-10443, default 10443): 100

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table
sd 0:0:0:0: [sda] 167772160 512-byte hardware sectors (85899 MB)
sd 0:0:0:0: [sda] Write Protect is off
sd 0:0:0:0: [sda] Asking for cache data failed
sd 0:0:0:0: [sda] Assuming drive cache: write through
 sda: sda1

[root@pX0XX /root]# mke2fs /dev/sda1
mke2fs 1.34 (25-Jul-2003)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
100576 inodes, 200804 blocks
10040 blocks (5.00%) reserved for the super user
First data block=0
7 block groups
32768 blocks per group, 32768 fragments per group
14368 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 31 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

[root@pX0XX /root]# mkdir sda1_test
[root@pX0XX /root]# mount /dev/sda1 sda1_test/
[root@pX0XX /root]# cp /bin/tar sda1_test/
[root@pX0XX /root]#

Ethernet Card Test Procedure

• plug Intel Pro/1000e network card into standard PCI-E slot on a board. After linux bootup, ifconfig ethx ip address and netmask,
then do ping testing.

Tips: x ethernet interface number, an example is as the following for Intel e1000 network card is eth0.

For example:

After kernel boot up, bring up with the pci Ethernet card

ifconfig ethx 192.168.20.100

ip address should not be conficted with other Ethernet port.

In Linux window, run ping 192.168.20.101

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
106 NXP Semiconductors

Known Bugs, Limitations, or Technical Issues

• LSI-SAS card cannot be used on the second PCIe controller when system enables more than one PCIe controller. Use
code modification below to workaround this issue:

--- a/arch/powerpc/sysdev/fsl_pci.c
+++ b/arch/powerpc/sysdev/fsl_pci.c
@@ -511,7 +511,7 @@ int __init fsl_add_bridge(struct platform_device *pdev, int is_primary)
 printk(KERN_WARNING "Can't get bus-range for %s, assume"
 " bus 0\n", dev->full_name);

- pci_add_flags(PCI_REASSIGN_ALL_BUS);
+ pci_add_flags(PCI_ENABLE_PROC_DOMAINS);
 hose = pcibios_alloc_controller(dev);
 if (!hose)
 return -ENOMEM;
@@ -846,7 +846,7 @@ int __init mpc83xx_add_bridge(struct device_node *dev)
 " bus 0\n", dev->full_name);
 }

- pci_add_flags(PCI_REASSIGN_ALL_BUS);
+ pci_add_flags(PCI_ENABLE_PROC_DOMAINS);
 hose = pcibios_alloc_controller(dev);
 if (!hose)
 return -ENOMEM;

4.2.6.2 PCIe Advanced Error Reporting User Manual

Description
How to test the PCI Express Advanced Error Reporting (AER) function.

Testing the PCIe AER error recovery code in actual environment is quite difficult because it is hard to trigger real hardware
errors. So we use a software tool based error injection to fake various kinds of PCIe errors.

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Bus options --->
 [*] PCI Express support
 [*] Root Port Advanced Error Reporting
support
 <*> PCIe AER error injector support

enable PCI-Express AER and AER-INJECTOR in kernel

Kernel compile-time Configuration Options

Option Values Default Value Description

CONFIG_PCIEAER y/n y Enable AER

CONFIG_PCIEAER_INJECT y/n n Enables AER INJECT

Source Files

The driver source is maintained in the Linux kernel source tree.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 107

Source File Description

drivers/pci/pcie/aer/*.c AER driver support

• Prepare aer-inject test tool

1, Download aer-inject test utility.

2, Write a test config file
e.g. $ vi aer-cfg
 AER
 DOMAIN 0001
 BUS 1
 DEV 0
 FN 0
 COR_STATUS BAD_TLP
 HEADER_LOG 0 1 2 3

NOTE:
error type can be ["COR_STATUS", "UNCOR_STATUS"]

Corrected error can be:
["BAD_TLP", "RCVR", "BAD_DLLP", "REP_ROLL", "REP_TIMER"]

Uncorrected non-fatal error can be:
["POISON_TLP", "COMP_TIME", "COMP_ABORT", "UNX_COMP", "ECRC", "UNSUP"]

Uncorrected fatal error can be:
 ["TRAIN", "DLP", "FCP", "RX_OVER", "MALF_TLP"]

• Test Steps

1, insert a pcie device in PCI slot of board, ensure the pcie device has AER capability, e.g. e1000e
PCIe NIC network card.

2, In u-boot prompt, add "pcie_ports=native" in bootargs command-line.
=> setenv othbootargs pcie_ports=native

3, boot the kernel and filesystem.

4, check AER device and config
zcat /proc/config.gz|grep -i CONFIG_PCIEAER_INJECT
CONFIG_PCIEAER_INJECT=y

cat /proc/cmdline
root=/dev/ram rw console=ttyS0,115200 pcie_ports=native
check "pcie_ports=native" has been set.

ls /dev/aer_inject
Check if the aer injector device is created.

lspci
00:00.0 Class 0604: 1957:0410
01:00.0 Class 0200: 8086:10d3
e.g. here device "01:00.0" is the PCIe NIC e1000 network card in the test scenario.

5, Download aer-inject and aer-cfg from host to test-board
$ scp aer-inject aer-cfg root@test-board-ip:~

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
108 NXP Semiconductors

6, ensure the pcie device domain-number/bus-number/device-number/function-number in aer-cfg is
accordant to those in the output of lspci

7, Run aer-inject, corresponding error information will be reported as below and AER will recover
PCIE device according to the type of errors.
./aer-inject aer-cfg
example of error report as below:
pcieport 0000:00:00.0: AER: Corrected error received: id=0100
e1000e 0000:01:00.0: PCIe Bus Error: severity=Corrected, type=Data Link Layer, id=0100(Receiver ID)
e1000e 0000:01:00.0: device [8086:10d3] error status/mask=00000040/00002000
e1000e 0000:01:00.0: [6] Bad TLP
root@lsxxxx:~#

8, The pcie device(e1000e PCIE NIC) should still work after AER error recovery.
ping 192.168.1.1 -c 2 -s 64
PING 192.168.1.1 (192.168.1.1): 64 data bytes
72 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=0.272 ms
72 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.210 ms
--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.210/0.241/0.272/0.031 ms

Note:

On some legacy platforms with legacy PCI conroller(e.g. some non-DPAA platforms), hardware doesn't support Fatal error type
for AER, just support Non-Fatal error.

Generally, DPAA platforms with new PCIE controller can support both Fatal error and Non-Fatal error.

4.2.6.3 PCI-e Remove and Rescan User Manual

Description
Describes how to remove and rescan a PCI-e device under runtime Linux system.

U-boot Configuration
Use the default configurations.

Kernel Configure Options
Use the default configurations, make sure the configure option is set while doing "make menuconfig" for kernel.

Kernel Configure Tree View Options Description

Device Drivers --->
[*] Network device support--->
[*] Ethernet (1000 Mbit) --->
[*] Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support

This option enables kernel support for Intel PCI-e e1000e
network card

Below are the configure identifiers which are used in kernel source code and default configuration files.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 109

Option Values Default Value Description

CONFIG_E1000E y/n y Intel PCI-e e1000e network
card driver

Device Tree Binding

Use the default dtb file.

Verification in Linux

Make sure the PCI-e controller which you add the PCI-e e1000e network card to works as RC mode. Use the kernel, dtb and
ramdisk rootfs to boot the board.

1. Suppose the PCI-e device under /sys/bus/pci/devices/0001\:03\:00.0 is the Intel PCI-e e1000e
network card, recognized as eth0. The
/sys/bus/pci/devices/0001\:02\:00.0 is the bus of network card. Configure an ip and ping another host
which is in the same subnet, make sure the network card works well.

 # ls /sys/bus/pci/devices/0001\:03\:00.0/net
 eth0
 # ifconfig eth0 10.193.20.100
 # ping -I eth0 10.193.20.31

2. Remove the PCI-e network card from system.
 # echo 1 > /sys/bus/pci/devices/0001\:03\:00.0/remove
 e1000e 0001:03:00.0 eth0: removed PHC

3. Check whether the PCI-e network card still exist in system. All should fail.
 # ifconfig eth0
 # ls /sys/bus/pci/devices/0001\:03\:00.0

4. Rescan it from the bus.
 # echo 1 > /sys/bus/pci/devices/0001\:02\:00.0/rescan

5. Check whether the device is rescanned and works well.
 # ls /sys/bus/pci/devices/0001\:03\:00.0
 # ifconfig eth0 10.193.20.100
 # ping -I eth0 10.193.20.31

6. All the commands of step 5 should success.

Known Bugs, Limitations, or Technical Issues
None

4.2.7 CAAM Direct Memory Access (DMA)

Description

The CAAM DMA module implements a DMA driver that uses the CAAM DMA controller to provide both SG and MEMCPY DMA
capability to be used by the platform. It is based on the CAAM JR interface that must be enabled in the kernel config as a
prerequisite for the CAAM DMA driver.

The driver is based on the DMA engine framework and it is located under the DMA Engine support category in the kernel config
menu.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
110 NXP Semiconductors

Kernel Configure Options

Tree Overview

To enable the CAAM DMA module, set the following options for make menuconfig:

-*- Cryptographic API --->
 [*] Hardware crypto devices --->
 <*> Freescale CAAM-Multicore driver backend
 <*> Freescale CAAM Job Ring driver backend
Device Drivers --->
 <*> DMA Engine support --->
 <*> CAAM DMA engine support

Be aware that the CAAM DMA driver depends on the CAAM and CAAM JR drivers, which also have to be enabled.

 NOTE

Identifier

The following configure identifier is used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_CRYPTO_DEV_FS
L_CAAM_DMA

y/m/n n CAAM DMA engine support

Device Tree Node

Below is an example device tree node required by this feature.

caam_dma {
 compatible = "fsl,sec-v5.4-dma";
};

Source Files

The following source file is related to this feature in the Linux kernel.

Source File Description

drivers/dma/caam_dma.c The CAAM DMA driver

Verification in Linux

On a successful probing, the driver will print the following message in dmesg:

 [1.443940] caam-dma 1700000.crypto:caam_dma: caam dma support with 4 job rings

Additionally, you can also run the following commands:

ls -l /sys/class/dma/
total 0
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan0 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan0
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan1 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan1

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 111

lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan2 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan2
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan3 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan3

Component Testing

To test both the SG and memcpy capability of the CAAM DMA driver use the dmatest module provided by the kernel.

Build dmatest

Build the dmatest utility as a module by running the command:

$ make menuconfig

Then select from the kernel menuconfig to build the dmatest.ko as a module:

Device Drivers --->
 <*> DMA Engine support --->
 <M> DMA Test client

Configure dmatest

Before testing insert the module:

$ insmod dmatest.ko

The configure the dmatest. There is a general configuration that applies for both the sg and memcpy functionality:

$ echo 1 > /sys/module/dmatest/parameters/max_channels
$ echo 2000 > /sys/module/dmatest/parameters/timeout
$ echo 0 > /sys/module/dmatest/parameters/noverify
$ echo 4 > /sys/module/dmatest/parameters/threads_per_chan
$ echo 0 > /sys/module/dmatest/parameters/dmatest
$ echo 1 > /sys/module/dmatest/parameters/iterations
$ echo 2000 > /sys/module/dmatest/parameters/test_buf_size

The above configuration is self explanatory except a few:

If you set the 'noverify' parameter to 0 it will not perform check of the copied buffer at the end of each testing round. This should
be used for performance testing. Set the 'noverify' parameter to 1 for functional testing.

Set the 'dmatest' parameter to 0 to test the memcpy functionality and to 1 to test the sg functionality.

Perform the test

To perform the test simply run the command:

$ echo 1 > /sys/module/dmatest/parameters/run

Depending on the type of test performed (sg/memcpy) the output may vary. Here is an example of output obtained with the above
parameters:

[72.113769] dmatest: Started 4 threads using dma0chan0
[72.105334] dmatest: dma0chan0-copy0: summary 1 tests, 0 failures 9009 iops 9009 KB/s (0)
[72.113649] dmatest: dma0chan0-copy1: summary 1 tests, 0 failures 119 iops 119 KB/s (0)
[72.114927] dmatest: dma0chan0-copy2: summary 1 tests, 0 failures 24390 iops 0 KB/s (0)
[72.115098] dmatest: dma0chan0-copy3: summary 1 tests, 0 failures 37037 iops 0 KB/s (0)

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
112 NXP Semiconductors

4.2.8 Networking

4.2.8.1 DPAA1-specific Software

4.2.8.1.1 DPAA1 software architecture overview

4.2.8.1.1.1 Introduction
Multicore processing, or multiple execution thread processing, introduces unique considerations to the architecture of networking
systems, including processor load balancing/utilization, flow order maintenance, and efficient cache utilization. Herein is a review
of the key features, functions, and properties enabled by the QorIQ DPAA1 (Data Path Acceleration Architecture first generation)
hardware and demonstrates how to best architect software to leverage the DPAA1 hardware.

In most hardware and other past documentation, DPAA first generation is refered to as DPAA. To avoid confusion

with DPAA2 (second generation), we will refer to the first generation as DPAA1 in this documentation set.

 NOTE

By exploring how the DPAA1 is configured and leveraged in a particular application, the user can determine which elements and
features to use. This streamlines the software development stage of implementation by allowing programmers to focus their
technical understanding on the elements and features that are implemented in the system under development, thereby reducing
the overall DPAA1 learning curve required to implement the application.

Our target audience is familiar with the material in QorIQ Data Path Acceleration Architecture (DPAA1) Reference Manual.

Benefits of DPAA1

The primary intent of DPAA1 is to provide intelligence within the IO portion of the System-on-Chip (SOC) to route and manage
the processing work associated with traffic flows to simplify ordering and load balance concerns associated with multi core
processing. The DPAA1 hardware inspects ingress traffic and extracts user defined flows from the port traffic. It then steers specific
flows (or related traffic) to a specific core or set of cores.

Architecting a networking application with a multicore processor presents challenges, such as workload balance and maintaining
flow order, which are not present in a single core design. Without hardware assistance, the software must implement techniques
that are inefficient and cumbersome, reducing the performance benefit of multiple cores. To address workload balance and flow
order challenges, DPAA1 determines and separates ingress flows then manages the temporary, permanent, or semi-permanent
flow-to-core affinity. DPAA1 also provides a work priority scheme, which ensures ingress critical flows are addressed properly and
frees software from the need to implement a queuing mechanism on egress. As the hardware determines which core will process
which packet, performance is boosted by direct cache warming/stashing as well as by providing biasing for core-to-flow affinity,
which ensures that flow-specific data structures can remain in the core’s cache.

By understanding how the DPAA1 is leveraged in a particular design, the system architect can map out the application to meet
the performance goals and to utilize the DPAA1 features to leverage any legacy application software that may exist. Once this
application map is defined, the architect can focus on more specific details of the implementation.

4.2.8.1.1.1.1 General architectural considerations
As the need for processing capability has grown, the only practical way to increase the performance on a single silicon part is to
increase the number of general purpose processing cores (CPUs). However, many legacy designs run on a single processor;
introducing multiple processors into the system creates special considerations, especially for a networking application.

4.2.8.1.1.1.2 Multicore design
Multicore processing, or multiple execution thread processing, introduces unique considerations. Most networking applications
are split between data and control plane tasks. In general, control plane tasks manage the system within the broad network of
equipment. While the control plane may process control packets between systems, the control plane process is not involved in
the bulk processing of the data traffic. This task is left to the data plane processing task or program.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 113

The general flow of the data plane program is to receive data traffic (in general, packets or frames), process or transform the data
in some way and then send the packets to the next hop or device in the network. In many cases, the processing of the traffic
depends on the type of traffic. In addition, the traffic usually exists in terms of a flow, a stream of traffic where the packets are
related. A simple example could be a connection between two clients that, at the packet level, is defined by the source and
destination IP address. Typically, multiple flows are interleaved on a single interface port; the number of flows per port depends
on the interface bandwidth as well as on the bandwidth and type of flows involved.

4.2.8.1.1.1.3 Parse/classification software offload
DPAA1 provides intelligence within the IO subsection of the SoC to split traffic into user-defined queues. One advantage is that
the intelligence used to divide the traffic can be leveraged at a system level.

In addition to sorting and separating the traffic, DPAA1 can append useful processing information into the stream; offloading the
need for the software to perform these functions (see the following figure).

Note that DPAA1 is not intended to replace significant packet processing or to perform extensive classification tasks. However,
some applications may benefit from the streamlining that results from the parse/classify/distribute function within DPAA1. The
ability to identify and separate flow traffic is fundamental to how DPAA1 solves other multicore application issues.

Data Plane Programs

Protocol1_packet1+info

Protocol1_packet2+info

Protocol1_packet2+info

Protocol2_packet1+info

Protocol2_packet2+info

Protocol3_packet1+info

Protocol3_packet2+info

get_packet

xxxx

xxxx

process_protocol1

xxxx

xxxx

send_packet

xxxx

xxxx

get_packet

xxxx

xxxx

process_protocol2

xxxx

xxxx

send_packet

xxxx

xxxx

get_packet

xxxx

xxxx

process_protocol3

xxxx

xxxx

send_packet

xxxx

xxxx

Figure 12. Hardware-sorted protocol flow

4.2.8.1.1.1.4 Flow order considerations
In most networking applications, individual traffic flows through the system require that the egress packets remain in the order
they are received. In a single processor core system, this requirement is easy to implement. As long as the data plane software
follows a run-to-completion model on a per-packet basis, the egress order will match the ingress packet order. However, if multiple
processors are implemented in a true Symmetrical Multicore Processing (SMP) model in the system, the egress packet flow may
be out of order with respect to the ingress flow. This may be caused when multiple cores simultaneously process packets from
the same flow.

Even if the code flow is identical, factors such as cache hits/misses, DRAM page hits/misses, interrupts, control plane and OS
tasks can cause some variability in the processing path, allowing egress packets to “pass” within the same flow, as shown in the
below figure.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
114 NXP Semiconductors

Progam run duration
variability:

get_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

- Cache hit/miss
- DDR Page hit/miss
- Interrupts
- OS tasks
- Control plan tasks

CPU1

CPU2

CPU3

Data Plane Program

Out of Order
Flows

in
gr

es
s

pa
ck

et
 fl

ow
s

E
gress packet flow

s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P2

F1_P2

F2_P3

F3_P1

F1_P3

F2_P2

F3_P3

Figure 13. Multicore Flow Reordering

For some applications, it is acceptable to reorder the flows from ingress to egress. However, most applications require that order
is maintained. When no hardware is available to assist with this ordering, the software must maintain flow order. Typically, this
requires additional code to determine the sequence of the packet currently being processed, as well as a reference to a data
structure that maintains order information for each flow in the system. As multiple processors need to access and update this
state information, access to this structure must be carefully controlled, typically by using a lock mechanism that can be expensive
with regard to program cycles and processing flow (see the below figure). One of the goals of the DPAA1 architecture is to provide
the system designer with hardware to assist with packet ordering issues.

Flow state info:
Access must be controlled/locked

get_packet
xxxx
xxxx
check/reorder_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

CPU1

CPU2

CPU3

Data Plane Program

In
gr

es
s

pa
ck

et
 fl

ow
s

E
gress packet flow

s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

Flow 1
xxxx
xxxx
Flow 2
xxxx
xxxx
Flow 3
xxxx
xxxx

Figure 14. Implementing Order in Software

4.2.8.1.1.1.5 Managing flow-to-core affinity
Multicore processing, or multiple execution thread processing, introduces unique considerations to the architecture of networking
systems, including processor load balancing/utilization, flow order maintenance, and efficient cache utilization. Herein is a review

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 115

of the key features, functions, and properties enabled by the QorIQ DPAA1 (Data Path Acceleration Architecture) hardware and
demonstrates how to best architect software to leverage the DPAA1 hardware.

In a multicore networking system, if the hardware configuration always allows a specific core to process a specific flow then the
binding of the flow to the core is described as providing flow affinity. If a specific flow is always processed by a specific processor
core then for that flow the system acts like a single core system. In this case, flow order is preserved because there is a single
thread of operation processing the flow; with a run-to-completion model, there is no opportunity for egress packets to be reordered
with respect to ingress packets.

Another advantage of a specific flow being affined to a core is that the cache local to that core (L1 and possibly L2, depending
on the specific core type) is less likely to miss when processing the packets because the core’s data cache will not fetch flow state
information for flows to which it is not affined. Also, because multiple processing entities have no need to access the same
individual flow state information, the system need not lock the access to the individual flow state data. DPAA1 offers several options
to define and manage flow-to-core affinity.

CPU3

Flow state info:
No locks required

get_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

Data plane program:
No order checking required

In
gr

es
s

pa
ck

et
flo

w
s

E
gress packet

flow
s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

Flow 1
xxxx
xxxx
Flow 2
xxxx
xxxx
Flow 3
xxxx
xxxx

DS
Flow3
xxxxx

CPU2

DS
Flow2
xxxxx

CPU1

DS
Flow1
xxxxx

Figure 15. Managing flow-to-core affinity

Many networking applications require intensive, repetitive algorithms to be performed on large portions of the data stream(s).
While software in the processor cores could perform these algorithms, specific hardware offload engines often better address
specific algorithms. Cryptographic and pattern matching accelerators are examples of this in the QorIQ family. These accelerators
act as standalone hardware elements that are fed blocks or streams of data, perform the required processing, and then provide
the output in a separate (or perhaps overwritten) data block within the system. The performance boost is significant for tasks that
can be done by these hardware accelerators as compared to a software implementation.

In DPAA1-equipped SoCs, these offload engines exist as peers to the cores and IO elements, and they use the same queuing
mechanism to obtain and transfer data. The details of the specific processing performed by these offload engines is beyond the
scope of this document; however, it is important to determine which of these engines will be leveraged in the specific application.
DPAA1 can then be properly defined to implement the most efficient configuration or definition of the DPAA1 elements.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
116 NXP Semiconductors

4.2.8.1.1.2 DPAA1 Goals
A brief overview of the DPAA1 elements in order to contextualize the application mapping activities. For more details on the
DPAA1 architecture, see the QorIQ Data Path Acceleration Architecture (DPAA1) Reference Manual

The primary goals of DPAA1 are as follows:

• To provide intelligence within the IO portion of the SoC.

• To route and manage the processing work associated with traffic flows.

• To simplify the ordering and load balance concerns associated with multicore processing.

DPAA1 achieves these goals by inspecting and separating ingress traffic into Frame Queues (FQs). In general, the intent is to
define a flow or set of flows as the traffic in a particular FQ. The FQs are associated to a specific core or set of cores via a channel.
Within the channel definition, the FQs can be prioritized among each other using the Work Queue (WQ) mechanism. The egress
flow is similar to the ingress flow. The processors place traffic on a specific FQ, which is associated to a particular physical port
via a channel. The same priority scheme using WQs exists on egress, allowing higher priority traffic to pass lower priority traffic
on egress without software intervention.

4.2.8.1.1.3 FMan Overview
The FMan inspects traffic, splits it into FQs on ingress, and sends traffic from the FQs to the interface on egress.

On ingress traffic, the FMan is configured to determine the traffic split required by the PCD (Parse, Classify, Distribute) function.
This allows the user to decide how he wants to define his traffic: typically, by flows or classes of traffic. The PCD can be configured
to route all traffic on one port to a single queue or with a higher level of complexity where large numbers of queues are defined
and managed. The PCD can identify traffic based on the specific content of the incoming packets (usually within the header) or
packet reception rates (policing).

The parse function is used to identify which fields within the data frame determine the traffic split. The fields used may be defined
by industry standards, or the user may employ a programmable soft parse feature to accommodate proprietary field (typically
header) definition(s). The results of the parse function may be used directly to determine the frame queue; or, the contents of the
fields selected by the parse function may be used as a key to select the frame queue. The parse function employs a programmed
mask to allow the use of selected fields.

The resultant key from the parse function may be used to assign traffic to a specific queue based on a specific exact match
definition of fields in the header. Alternatively, a range of queues can be defined either by using the resultant key directly (if there
are a small number of bits in the key) or by performing a hash of the key to use a large number of bits in the flow identifier and
create a manageable number of queues.

The FMan also provides a policer function, which is rate-based and allows the user to mark or drop a specific frame that exceeds
a traffic threshold. The policing is based on a two-rate, three-color marking algorithm (RFC2698). The sustained and peak rates
as well as the burst sizes are user-configurable.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 117

F1_P1

F2_P1F3_P1F1_P2 F2_P2

F2_P3

F1_P1

F2_P1 F3_P1

F3_P2

F1_P3 F3_P3

F1_P2 F2_P2

FMan

Ingress flow

Traffic Enqueued to FQ's

Figure 16. Ingress FMan Flow

The figure above shows the FMan splitting ingress traffic on an external port into a number of queues. However, the FMan works
in a similar way on egress: it receives traffic from FQs then transmits the traffic on the designated external port. Alternatively, the
FMan can be used to process flows internally via the offline port mechanism: traffic is dequeued (from some other element in the
system), processed, then enqueued onto a frame queue processing further within the system.

On ingress traffic, the FMan generates an internal context (IC) data block, which it uses as it performs the PCD function. Optionally,
some or all of this information may be added into the frames as they are passed along for further processing. For egress or offline
processing, the IC data can be passed with each frame to be processed. This data is mostly the result of the PCD actions and
includes the results of the parser, which may be useful for the application software.

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

Traffic Dequeued from FQ's

FMan

Egress flow

F1_P2 F3_P1 F2_P2 F2_P1 F1_P1

Figure 17. FMan Egress Flow

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
118 NXP Semiconductors

Traffic Dequeued from FQ's Traffic Enqueued to FQ's

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

FMan

Figure 18. FMan Offline Flow

4.2.8.1.1.4 QMan Overview
The QMan links the FQs to producers and consumers (of data traffic) within the SoC. The producers/consumers are either
FMan, acceleration blocks, or CPU cores.

All the producers/consumers have one channel, each of which is referred to as a dedicated channel. Additionally, there are a
number of pool channels available to allow multiple cores (not FMan or accelerators) to service the same channel. Note that there
are channels for each external FMan port, the number of which depends on the SoC, as well as the internal offline ports.

Pool
Channel

Pool
Channel

Pool
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

FMan 1
Port N

FMan 1
Port 2

FMan 1
Port 1

Core 1 Core 2 Core N

SEC PME

Figure 19. DPAA1 Channel Types

Each channel provides for eight levels of priority, each of which has its own work queue (WQ). The two highest level WQs are
strict priority: traffic from WQ0 must be drained before any other traffic flows; then traffic from WQ1 and then traffic from the other
six WQs is allowed to pass. The last six WQs are grouped together in two groups of three, which are configurable in a weighted
round robin fashion. Most applications do not need to use all priority levels. When multiple FQs are assigned to the same WQ,

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 119

QMan implements a credit-based scheme to determine which FQ is scheduled (providing frames to be processed) and how many
frames (actually the credit is defined by the number of bytes in the frames) it can dequeue before QMan switches the scheduling
to the next FQ on the WQ. If a higher priority WQ becomes active (that is, one of the FQs in the higher priority WQ receives a
frame to become non-empty) then the dequeue from the lower priority FQ is suspended until the higher priority frames are
dequeued. After the higher priority FQ is serviced, when the lower priority FQ restarts servicing, it does so with the remaining
credit it had before being pre-empted by the higher priority FQ.

When the DPAA1 elements of the SoC are initialized, the FQs are associated with WQs, allowing the traffic to be steered to the
desired core (dedicated connect channel), set of cores (pool channel), FMan, or accelerator, using a defined priority.

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

F4_P1

F4_P2

F4_P3

WQ0 Highest

To core, set of
cores, FMan, SEC,
PME...

Weighted Round Robin

Low

Mid

Low

Notes:

- FQ1 (i.e. F1_Px) must be empty before
 any other traffic is enqueued to a
 consumer
- FQ2/3 (i.e. F2_Px and F3_Px) same
 priority, higher than FQ4 because they
 are in the higher priority group

WQ1

WQ2

WQ3

WQ4

WQ5

WQ6

WQ7

Hi

Weighted Round Robin

Mid

Hi

High

F1_P1

Figure 20. Prioritizing Work

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
120 NXP Semiconductors

QMan: Portals

A single portal exists for each non-core DPAA1 producer/consumer (FMan, SEC, and PME). This is a data structure internal to
the SoC that passes data directly to/from the consumer’s direct connect channel.

Software portals are associated with the processor cores and are, effectively, data structures that the cores use to pass (enqueue)
packets to or receive (dequeue) packets from the channels associated with that portal (core). Each SoC has at least as many
software portals as there are cores. Software portals are the interface through which DPAA1 provides the data processing workload
for a single thread of execution.

The portal structure consists of the following:

• The Dequeue Response Ring (DQRR) determines the next packet to be processed.

• The Enqueue Command Ring (EQCR) sends packets from the core to the other elements.

• The Message Ring (MR) notifies the core of the action (for example, attempted dequeue rejected, and so on).

• The Management command and response control registers.

Dequeue Interface

CI
(Consumer)

PI
(Producer)

Interrupts

Dequeue
Commands

PI

CI
Message Ring

(MR)

Management
Command/Response

Registers

QMan

Core

CI

PI

Enqueue Interface

Figure 21. Processor Core Portal

On ingress, the DQRR acts as a small buffer of incoming packets to a particular core. When a section of software performs a get
packet type operation, it gets the packet from a pointer provided as an entry in the DQRR for the specific core running that software.
Note that the DQRR consolidates all potential channels that may be feeding frames to a particular core. There are up to 16 entries
in each DQRR. Each DQRR entry contains:

• a pointer to the packet to be processed,

• an identifier of the frame queue from which the packet originated,

• a sequence number (when configured),

• and additional FMan-determined data (when configured).

When configured for push mode, QMan attempts to fill the DQRR from all the potential incoming channels. When configured in
pull mode, QMan only adds one DQRR entry when it is told to by the requesting core. Pull mode may be useful in cases where
the traffic flows must be very tightly controlled; however, push mode is normally considered the preferred mode for most
applications.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 121

Core 1 Core 2 Core N

DQRR

Dedicated
Channel Pool

Channel

DQRR DQRR

Dedicated
Channel

Pool
Channel

Dedicated
Channel

Figure 22. Ingress Channel to Portal Options

The DQRRs are tightly coupled to a processor core. DPAA1 implements a feature that allows the DQRR mechanism to pre-
allocate, or stash, the L1 and/or L2 cache with data related to the packet to be processed by that core. The intent is to have the
data required for packet processing in the cache before the processor runs the “get packet” routine, thereby reducing the overall
time spent processing a particular packet.

The following is data that may be warmed into the caches:

• The DQRR entry

• The packet or portion of the packet for a single buffer packet

• The scatter gather list for a multi-buffer packet

• Additional data added by FMan

• FQ context (A and B)

The FQ context is a user-defined space in memory that contains data associated with the FQ (per flow) to be processed. The
intent is to place in this data area the state information required when processing a packet for this flow. The FQ context is part of
the FQ definition, which is performed when the FQ is initialized.

The cache warming feature is enabled by configuring the capability and some definition of the FQs and QMan at system
initialization time. This can provide a significant performance boost and requires little to no change in the processing flow. When
defining the system architecture, it is highly recommended that the user enable this feature and consider how to maximize its
impact.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
122 NXP Semiconductors

DQRR

Pool
Channel

Dedicated
Channel

Pool
Channel

Other
Cores

Other
Cores

Packet

Frame Context

Main Memory
L2 Cache

Core

L1 Cache

FQ

Figure 23. Cache Warming Options

In addition to getting packet information from the DQRR, the software also manages the DQRR by indicating which DQRR entry
it will consume next. This is how the QMan determines when the DQRR (portal) is ready to process more frames. Two basic
options are provided. In the first option, the software can update the ring pointer after one or several entries have been consumed.
By waiting to indicate the consumption of multiple frames, the performance impact of the write doing this is minimized. The second
option is to use the discrete consumption acknowledgment (DCA) mode. This mode allows the consumption indication to be
directly associated with a frame enqueue operation from the portal (that is, after the frame has been processed and is on the way
to the egress queue). This tracking of the DQRR Ring Pointer CI (Consumer Index) helps implement frame ordering by ensuring
that QMan does not dequeue a frame from the same FQ (or flow) to a different core until the processing is completed.

4.2.8.1.1.5 QMan Scheduling
The QMan links the FQs to producers and consumers (of data traffic) within the SoC.

QMan: Queue schedule options

The primary communication path between QMan and the processor cores is the portal memory structure. QMan uses this interface
to schedule the frames to be processed on a per-core basis. For a dedicated channel, the process is straightforward: the QMan

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 123

places an entry in the DQRR for the portal (processor) of the dedicated channel and dequeues the frame from an FQ to the portal.
To do this, QMan determines, based on the priority scheme (previously described) for the channel, which frame should be
processed next and then adds an entry to the DQRR for the portal associated with the channel.

When configured for push mode, once the portal requests QMan to provide frames for processing, QMan provides frames until
halted. When the DQRR is full and more frames are destined for the portal, QMan waits for an empty slot to become available in
the DQRR and then adds more entries (frames to be processed) as slots become available.

When configured for pull mode, the QMan only adds entries to the DQRR at the direct request of the portal (software request).
The command to the QMan that determines if a push or pull mode is implemented and tells QMan to provide either one or from
one to three (up to three if there are that many frames to be dequeued) frames at a time. This is a tradeoff of smaller granularity
(for one frame only) versus memory access consolidation (if the up to three frames option is selected).

When the system is configured to use pool channels, a portal may get frames from more than one channel and a channel may
provide frames (work) to more than one portal (core). QMan dequeues frames using the same mechanism described above
(updating DQRR) and QMan also provides for some specific scheduling options to account for the pool channel case in which
multiple cores may process the same channel.

QMan: Default Scheduling

The default scheduling is to have an FQ send frames to the same core for as long as that FQ is active. An FQ is active until it
uses up its allocated credit or becomes empty. After an FQ uses its credit, it is rescheduled again, until it is empty. For its schedule
opportunity, the FQ is active and all frames dequeued during the opportunity go to the same core. After the credit is consumed,
QMan reactivates that FQ but may assign the flow processing to a different core. This provides for a sticky affinity during the period
of the schedule opportunity. The schedule opportunity is managed by the amount of credit assigned to the FQ.

A larger credit assigned to an FQ provides for a stickier core affinity, but his makes the processing work granularity

larger and may affect load balancing.

 NOTE

Pool
Channel

Core 1 Core 2 Core 3

''Sticky" affinity FQ2 schedule
opportunity but affinity may change
when FQ2 is rescheduled

Pooled Cores

''Sticky" affinity during FQ1's
schedule opportunity but affinity
may change when FQ1 rescheduled

Default Scheduling

FQ2 FQ1

Figure 24. Default Scheduling

QMan: Hold Active Scheduling

With the hold active option, when the QMan assigns an FQ to a particular core, that Q is affined to that core until it is empty. Even
after the FQ’s credit is consumed, hen it is rescheduled with the next schedule opportunity, the frames go to the same core for
processing. This effectively makes the flow-to-core affinity stickier than the default case, ensuring the same flow is processed by
the same core for as long as there are frames queued up for processing. Because the flow-to-core affinity is not hard-wired as in
the dedicated channel case, the software may still need to account for potential order issues. However, because of flow-to-core

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
124 NXP Semiconductors

biasing, the flow state data is more likely to remain in L1 or L2 cache, increasing hit rates and thus improving processing
performance. Because of the specific QMan implementation, only four FQs may be in held active state at a given time.

Pool
Channel

Core 1 Core 2 Core 3

Pooled Cores

HW assigns affinity with 1st frame, FQ1
stays with core 1 until the FQ is emptied

FQ2

FQ1

HW assigns affinity with 1st frame, FQ2
stays with core 3 until the FQ is emptied

Figure 25. Hold Active Scheduling

QMan: Avoid blocking scheduling

Avoid blocking scheduling QMan can also be scheduled in the avoid blocking mode, which is mutually exclusive to hold active. In
this mode, QMan schedules frames for an FQ to any available core in the pool channel. For example, if the credit allows for three
frames to be dequeued, the first frame may go to core 1. But, when that dequeue fills core 1’s DQRR, QMan finds the next available
DQRR entry in any core in the pool. With avoid blocking mode there is no biasing of the flow to core affinity. This mode is useful
if a particular flow either has no specific order requirements or the anticipated processing required for a single flow is expected
to consume more than one core’s worth of processing capability.

Alternatively, software can bypass QMan scheduling and directly control the dequeue of frame descriptors from the FQ. This mode
is implemented by placing the FQ in parked state. This allows software to determine precisely which flow will be processed (by
the core running the software). However, it requires software to manage the scheduling, which can add overhead and impact
performance.

Pool
Channel

Core 1 Core 2 Core 3

Pooled Cores

Frames spread from FQ to all
cores in the pool, QMAN finds

any available DQRR slots

FQ1

Figure 26. Avoid Blocking Scheduling

QMan: Order Definition/ Restoration

The QMan provides a mechanism to strictly enforce ordering. Each FQ may be defined to participate in the process of an order
definition point and/or an order restoration point. On ingress, an order definition point provides for a 14 bit sequence number
assigned to each frame (incremented per frame) in a FQ in the order in which they were received on the interface. The sequence

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 125

number is placed in the DQRR entry for the frame when it is dequeued to a portal. This allows software to efficiently determine
which packet it is currently processing in the sequence without the need to access a shared (between cores) data structure. On
egress, an order restoration point delays placing a frame onto the FQ until the expected next sequence number is encountered.
From the software standpoint, once it has determined the relative sequence of a packet, it can enqueue it and resume other
processing in a fire-and-forget manner.

The order definition points and order restoration points are not dependent on each other; it is possible to have one

without the other depending on application requirements. To effectively use these mechanisms, the packet software

must be aware of the sequence tagging.

 NOTE

Core 1

Core 2

Core 3

Core 4

FQ configured
as order

definition point

DQRR entries

IN
_F

4

Ingress flow

Egress flow

Hold off SN3/4
enqueue until

SN2 enqueued

Processing
delayed

Order
processed

FQ configured
as order

restoration
point

EG_F4 EG_F3 EG_F2 EG_F1

EG_F4

EG_F3

EG_F2

EG_F1

EG_F4

EG_F3

EG_F2

EG_F1

SN2

SN4

SN3

SN1

IN
_F

3

IN
_F

2

IN
_F

1

IN_F4 IN_F3 IN_F2 IN_F1

SN1

SN2

SN3

IN_F3

IN_F2

IN_F1

SN4

IN_F4

Figure 27. Order Definition/Restoration

As processors enqueue packets for egress, it is possible that they may skip a sequence number because of the nature of the
protocol being processed. To handle this situation, each FQ that participates in the order restoration service maintains its own
Next Expected Sequence Number (NESN). When the difference between the sequence number of the next expected and the
most recently received sequence number exceeds the configurable ORP threshold, QMan gives up on the missing frame(s) and
autonomously advances the NESN to bring the skew within threshold. This causes any deferred enqueus that are currently held
in the ORP link list to become unblocked and immediately enqueue them to their destination FQ. If the “skipped” frame arrives
after this, the ORP can be configured to reject or immediately enqueu the late arriving frame.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
126 NXP Semiconductors

4.2.8.1.1.6 BMan
The BMan block manages the data buffers in memory. Processing cores, FMan, SEC and PME all may get a buffer directly
from the BMan without additional software intervention. These elements are also responsible for releasing the buffers back to
the pool when the buffer is no longer in use.

Typically, the FMan directly acquires a buffer from the BMan on ingress. When the traffic is terminated in the system, the core
generally releases the buffer. When the traffic is received, processed, and then transmitted, the same buffer may be used
throughout the process. In this case, the FMan may be configured to release the buffer automatically, when the transmit completes.

The BMan also supports single or multi-buffer frames. Single buffer frames generally require the adequately defined (or allocated)
buffer size to contain the largest data frame and minimize system overhead. Multi-buffer frames potentially allow better memory
utilization, but the entity passed between the producers/consumers is a scatter-gather table (that then points to the buffers within
the frame) rather than the pointer to the entire frame, which adds an extra processing requirement to the processing element.

The software defines pools of buffers when the system is initialized. The BMan unit itself manages the pointers to the buffers
provided by the oftware and can be configured to interrupt the software when it reaches a condition where the number of free
buffers is depleted (so that software may provide more buffers as needed).

4.2.8.1.1.7 Order Handling
DPAA1 helps address packet order issues that may occur as a result of running an application in a multiple processor
environment. And there are several ways to leverage DPAA1 to handle flow order in a system. The order preservation
technique maps flows such that a specific flow always executes on a specific processor core.

For the case that DPAA1 handles flow order, the individual flow will not have multiple execution threads and the system will run
much like a single core system. This option generally requires less impact to legacy, single-core software but may not effectively
utilize all the processing cores in the system because it requires using a dedicated channel to the processors. The FMan PCD
can be configured to either directly match a flow to a core or to use the hashing to provide traffic spreading that offers a permanent
flow-to-core affinity.

If the application must use pool channels to balance the processing load then the software must be more involved in the ordering.
The software can make use of the order restoration point function in QMan, which requires the software to manage a sequence
number for frames enqueued on egress. Alternatively, the software can be implemented to maintain order by biasing the stickiness
of flow affinity with default or hold active scheduling; lock contention and cache misses can be biased to increase performance.

If there are no order requirements then load balancing can be achieved by associating the non-ordered traffic to a pool of cores.

All of these techniques may be implemented simultaneously on the same SoC; as long as the flow definition is

precise enough to split the traffic types, it is simply a matter of proper defining the FQs and associating them to

the proper channels in the system.

 NOTE

Using the exact match flow definition to preserve order

The simplest technique for preserving order is to route the ingress traffic of an individual flow to a particular core. For the particular
flow in question, the system appears as a legacy, single-core programming model and, therefore, has minimal impact on the
structure of the software. In this case, the flow definition determines the core affinity of a flow.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 127

FQ2FQ1

Core 1 Core 2 Core 3

Dedicated
Channel

FQ3

FQ4 FQ5 FQ6

Dedicated
Channel

Dedicated
Channel

FMan
Split traffic into "N"

streams based on "N"
known values in packet

FMan

Egress
Traffic

Dedicated
Channel

Assign WQ
Depending on

Priority

Figure 28. Direct Flow-to-Core Mapping (Order Preserved)

This technique is completely deterministic: the DPAA1 forces specific flows to a specific processor, so it may be easier to determine
the performance assuming the ingress flows are completely understood and well defined. Notice that a particular processor core
may become overloaded with traffic while another sits idle for increasingly random flow traffic rates.

To implement this sort of scheme, the FMan must be configured to exactly match fields in the traffic stream. This approach can
only be used for a limited number of total flows before the FMan’s internal resources are consumed.

In general, this sort of hard-wired approach should be reserved for either critical out-of-band traffic or for systems with a small
number of flows that can benefit from the highly deterministic nature of the processing.

Using hashing to distribute flows across cores

The FMan can be configured to extract data from a field or fields within the data frame, build a key from that, and then hash the
resultant key into a smaller number. This is a useful technique to handle a larger number of flows while ensuring that a particular
flow is always associated with a particular core. An example is to define a flow as an IPv4 source + IPv4 destination address.
Both fields together constitute 64 bits, so there are 264 possible combinations for the flow in that definition. The FMan then uses
a hash algorithm to compress this into a manageable number of bits. Note that, because the hash algorithm is consistent, packets
from a particular flow always go to the same FQ. By utilizing this technique, the flows can be spread in a pseudo-random, consistent
(per flow) manner to a smaller number of FQs. For example, hashing the 64 bits down to 2 bits spreads the flows among four
queues. Then these queues can be assigned to four separate cores by using a dedicated channel; effectively, this appears as a
single-core implementation to any specific flow.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
128 NXP Semiconductors

This spreading technique works best with a large number of possible flows to allow the hash algorithm to evenly spread the traffic
between the FQs. In the example below, when the system is only expected to have eight flows at a given time, there is a good
chance the hash will not assign exactly two flows per FQ to evenly distribute the flows between the four cores shown. However,
when the number of flows handled is in the hundreds, the odds are good that the hash will evenly spread the flows for processing.

FQ2FQ1

Core 1 Core 2 Core 3

Dedicated
Channel

FQ3

Dedicated
Channel

Dedicated
Channel

Hash 64 Bits to 2 Bits:
4 Possible FQ'sFMan

Egress
Traffic

Dedicated
Channel

Core 4

FQ4

FQ6FQ5 FQ7 FQ8

FMan

2^64 Possible IPv4
Flow Definitions

Dedicated
Channel

Figure 29. Simple flow distribution via hash (order preserved)

To optimize cache warming, the total number of hash buckets can be increased with flow-to-core affinity maintained. When the
number of hash values is larger than the number of expected flows at a given time, it is likely though not guaranteed that each
FQ will contain a single flow. For most applications, the penalty of a hash collision is two or more flows within a single FQ. In the
case of multiple flows within a single FQ, the cache warming and temporary core affinity benefits are reduced unless the flow
order is maintained per flow.

Note that there are 24 bits architected for the FQ ID, so there may be as many as 16 million FQs in the system. Although this total
may be impractical, this does allow for the user to define more FQs than expected flows in order to reduce the likelihood of a hash
collision; it also allows flexibility in assigning FQID’s in some meaningful manner. It is also possible to hash some fields in the
data frame and concatenate other parse results, possibly allowing a defined one-to-one flow to FQ implementation without hash
collisions.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 129

Core 1 Core 2 Core 3

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Hash 64 Bits to 7 Bits:
128 Possible FQ'sFMan Egress

Traffic

Dedicated
Channel

Core 4

FQ40FQ90 FQ80 FQ60

FMan

2^64 Possible IPv4
Flow Definitions

Dedicated
Channel

FQ2F FQ4F FQ6F FQ8F

FQ10 FQ50 FQ70FQ30

Figure 30. Using hash to assign one flow per FQ (order preserved and cache stashing effective)

4.2.8.1.1.8 Pool Channels
A user may employ a pool channel approach where multiple cores may pool together to service a specific set of flows. This
alternative approach allows potentially better processing balance, but increases the likelihood that packets may be processed
out of order allowing egress packets to pass ingress packets.

So far, the techniques discussed in this white paper have involved assigning specific flows to the same core to ensure that the
same core always processes the same flow or set of flows, thereby preserving flow order. However, depending on the nature of
the flows being processed (that is, variable frame sizes, difficulty efficiently spreading due to the nature of the flow contents, and
so on), this may not effectively balance the processing load among the cores. Alternatively, a user may employ a pool channel
approach where multiple cores may pool together to service a specific set of flows. This alternative approach allows potentially
better processing balance, but increases the likelihood that packets may be processed out of order allowing egress packets to
pass ingress packets. When the application does not require flows to be processed in order, the pool channel approach allows
the easiest method for balancing the processing load. When a pool channel is used and order is required, the software must
maintain order. The hardware order preservation may be used by the software to implement order without requiring locked access
to shared state information. When the system uses a software lock to handle order then the default scheduling and hold active
scheduling tends to minimize lock contention.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
130 NXP Semiconductors

Core 1 Core 2 Core 3

Hash 64 Bits to 7 Bits:
128 Possible FQ'sFMan Egress

Traffic

Dedicated
Channel

Core 4

FQ40FQ90 FQ80 FQ60

FMan

264 Possible IPv4
Flow Definitions

Pool
Channel

FQ2F FQ4F FQ6F FQ8F

FQ10 FQ50 FQ70FQ30

Figure 31. Using pool channel to balance processing

Order preservation using hold active scheduling and DCA mode

As shown in the examples above, order is preserved as long as two or more cores never process frames from the same flow at
the same time. This can also be accomplished by using hold active scheduling along with discrete consumption acknowledgment
(DCA) mode associated with the DQRR. Although flow affinity may change for an FQ with hold active scheduling when the FQ
is emptied, if the new work (from frames received after the FQ is emptied) is held off until all previous work completes, then the
flow will not be processed by multiple cores simultaneously, thereby preserving order.

When the FQ is emptied, QMan places the FQ in hold suspended state, which means that no further work for that FQ is enqueued
to any core until all previously enqueued work is completed. Because DCA mode effectively holds off the consumption notification
(from the core to QMan) until the resultant processed frame is enqueued for egress, this implies processing is completely finished
for any frames in flight to the core. After all the in-flight frames have been processed, QMan reschedules the FQ to the appropriate
core.

After the FQ is empty and when in hold active mode, the affinity is not likely to change. This is because the indication

of “completeness” from the core currently processing the flow frees up some DQRR slots that could be used by

QMan when it restarts enqueuing work for the flow. The possibility of the flow-to-core affinity changing when the

FQ empties is only discussed as a worst case possibility with regards to order preservation.

 NOTE

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 131

Pool Channel

Core 1 Core 2 Core 3

Pooled Cores

FQ1 non-empty currently held
active to core1. DQRR indicates
frames dequeued from FQ1 are
stil being processed by core 1
using DCA.

Core 1 Core 2 Core 3

Pooled Cores

Pool Channel

FMAN
Held Active

DQRR EQCR DQRR DQRR

DQRR EQCR DQRR
DQRRFQ1 empties scheduling now

"held suspended" state. DQRR
indicates frames dequeued from
FQ1 are still being precessed by
core 1 using DCA.

FQ1

FQ1

Figure 32. Hold active to held suspended mode

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
132 NXP Semiconductors

Pool Channel

Core 1 Core 2 Core 3

Pooled CoresFQ1

FQ1 gets more frames from
FMAN, but core 1 is still working
on packets "in flight". DQRR
consumption notification from
core occurs as frames are
enqueued for egress.

FQ1

Core 1 Core 2 Core 3

Pooled Cores

Pool Channel

FMAN

DQRR EQCR DQRR DQRR

DQRR EQCR DQRR
DQRR

Core1 finishes all processing all
"n flight" frames, notification via
DCA mechanism. QMAN restarts
work scheduling, possibly to
another core, but FQ1 frames are
never processed by more than
one core at a time.

FMAN

EQCR

Held Active

Figure 33. Held suspended to hold active mode

Congestion management

From an overall system perspective, there are multiple potential overflow conditions to consider. The maximum number of frames
active in the system (the number of frames in flight) is determined by the amount of memory allocated to the Packed Frame Queue
Descriptors (PQFD’s). Each PQFD is 64 bytes and can identify up to three frames, so the total number of frames that can be
identified by the PQFDs is equal to the amount of memory allocated for PQFD space divided by 64 bytes (per entry) multiplied
by three (frames per entry).

A pool of buffers may deplete in BMan. This depends on how many buffers have been assigned by software for BMan. BMan may
raise an interrupt to request more buffers when in a depleted state for a given pool; the software can manage the congestion state
of the buffer pools in this manner.

In addition to these high-level system mechanisms, congestion management may also be identified specific to the FQs. A number
of FQs can be grouped together to form a congestion group (up to 256 congestion groups per system for most DPAA1 SoCs).
These FQs need not be on the same channel. The system may be configured to indicate congestion either by consider the
aggregate number of bytes within the FQ’s in the congestion group or by the aggregate number of frames within the congestion
group. The frame count option is useful when attempting to manage the number of buffers in a buffer pool as they are used by a
particular core or group of cores. The byte count is useful to manage the amount of system memory used by a particular core or
group of cores.

When the total number of frames/bytes within the frames in the congestion group exceeds the set threshold, subsequent enqueues
to any of the FQs in the group are rejected; in general, the frame is dropped. For the congestion group mechanism, the decision
to reject is defined by a programmed weighted random early discard (WRED) algorithm programmed when the congestion group
is defined.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 133

In addition, a specific FQ can be set to a particular maximum allowable depth (in bytes); after the threshold is reached enqueue
attempts will be rejected. This is a maximum threshold: there is no WRED algorithm for this mechanism. Note that, when the FQ
threshold is not set, a specific FQ may fill until some other mechanism (because it’s part of a congestion group or system PQFD
depletion or BMAN depletion) prevents the FQ from getting frames. Typically, FQs within a congestion group are expected to have
a maximum threshold set for each FQ in the group to ensure a single queue does not get stuck and unfairly consume the congestion
group. Note that, when an FQ does not have a queue depth set and/or is not a part of a congestion group, the FQ has no maximum
depth. It would be possible for a single queue to have all the frames in the system, until the PQFD space or the buffer pool is
exhausted.

4.2.8.1.1.9 Application Mapping
The first step in application mapping is to determine how much processing capability is required for tasks that may be
partitioned separately.

Processor core assignment

Consider a typical networking application with a set of distinct control and data plane functionality. Assigning two cores to perform
control plane tasks and six cores to perform data plane tasks may be a reasonable partition in an eight-core device. When initially
identifying the SoC required for the application, along with the number of cores and frequencies required, the designer makes
some performance assumptions based on previous designs and/or applicable benchmark data.

Define flows

Next, define what flows will be in the system. Key considerations for flow definition include the following:

• Total number of flows expected at a given time within the system

• Desired flow-to-core affinity, ingress flow destination

• Processor load balancing

• Frame sizes (may be fixed or variable)

• Order preservation requirement

• Traffic priority relative to the flows

• Expected bandwidth requirement of specific flows or class of flows

• Desired congestion handling

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
134 NXP Semiconductors

Core 6

Core 5

Core 4

Core 3
Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Psuedo Real
Time Traffic

Work Distribution Function

Port1

Physical Interfaces

Port2 Port3 Port4 Port5

Core 1

Core 2

Figure 34. Example Application with Three Classes

In the figure above, two cores are dedicated to processing control plane traffic, four cores are assigned to process general data
traffic and special time critical traffic is split between two other cores. In this case, assume the traffic characteristics in the following
table. With this system-level definition, the designer can determine which flows are in the system and how to define the FQs
needed.

Table 30. Traffic characteristics

Characteristic Definition

Control plane traffic • Terminated in the system and any particular packet sent has no dependency
on previous or subsequent packets (no order requirement).

• May occur on ports 1, 2 or 3.

• Ingress control plane traffic on port three is higher priority than the other ports.

• Any ICMP packet on ports 1, 2 or 3 is considered control plane traffic.

• Control plane traffic makes up a small portion of the overall port bandwidth.

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 135

Table 30. Traffic characteristics (continued)

Characteristic Definition

General data plane traffic • May occur on ports 1, 2 or 3 and is expected to comprise the bulk of the traffic
on these ports.

• The function performed is done on flows and egress packets must match the
order of ingress packets.

• A flow is identified by the IP source address.

• The system can expect up to 50 flows at a time.

• All flows have the same priority and a lower priority than any control plane
traffic.

• It is expected that software will not always be able to keep up with this traffic
and the system should drop packets after some amount of packets are within
the system.

Pseudo real-time traffic • A high amount of determinism is required by the function.

• This traffic only occurs on port 4 and port 5 and is identified by a proprietary
field in the header; any traffic on these ports without the proper value in this
field is dropped.

• All valid ingress traffic on port 4 is to be processed by core 7, ingress traffic on
port 5 processed by core 8.

• There are only two flows, one from port 4 to port 5 and one from port 5 to port
4, egress order must match ingress order.

• The traffic on these flows are the highest priority.

Identify ingress and egress frame queues (FQs)

For many applications, because the ingress flow has more implications for processing, it is easier to consider ingress flows first.
In the example above, the control plane and pseudo real-time traffic FQ definitions are fairly straightforward. For the control plane
ingress, one FQ for lower priority traffic on ports 1 and 2 and one for the higher priority traffic would work. Note that two ports can
share the same queue on ingress when it does not matter for which core the traffic is destined. For ingress pseudo real-time traffic,
there is one FQ on port 4 and one FQ on port 5.

The general data plane ingress traffic is more complicated. Multiple options exist which maintain the required ordering for this
traffic. While this traffic would certainly benefit from some of the control features of the QMan (cache warming, and so on), it is
best to have one FQ per flow. Per the example, the flow is identified by the IP source (32-bits), which consists of too many bits to
directly use as the FQID. The hash algorithm can be used to reduce the 32-bits to a smaller number; in this case, six bits would
generate 64 queues, which is more than the anticipated maximum flows at a given time. However, this is not significantly more
than maximum flow expected, so more FQs can be defined to reduce hash collisions. Note that, in this case, a hash collision
implies that two flows are assigned to the same FQ. As the ingress FQs fill directly from the port, the packet order is still maintained
when there is a collision (two flows into one FQ). However, having two flows in the same FQ tends to minimize the impact of cache
warming. There may be other possibilities to refine the definition of flows to ensure a one-to-one mapping of flows to FQs (for
example, concatenating other fields in the frame) but for this example assume that an 8 bit hash (256 FQs) minimizes the likelihood
of two flows in the FQ to an acceptable level.

Consider the case in which, on ingress, there is traffic that does not match any of the intended flow definitions. The design can
handle these by placing unidentifiable packets into a separate garbage FQ or by simply having the FMan discard the packets.

On egress control traffic, because the traffic may go out on three different ports, three FQs are required. For the egress pseudo
real-time traffic, there is one queue for each port as well.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
136 NXP Semiconductors

For the egress data plane traffic, there are multiple options. When the flows are pinned to a specific core, it might be possible to
simply have one queue per port. In this case, the cores would effectively be maintaining order. However, for this example, assume
that the system uses the order definition/order restoration mechanism previously described. In this case, the system needs to
define an FQ for each egress flow. Note that, since software is managing this, there is no need for any sort of hash algorithm to
spread the traffic; the cores will enqueue to the FQ associated with the flow. When there are no more than 50 flows in the system
at one time, and number of egress flows per port is unknown, the system could define 50 FQs for each port when DPAA1 is
initialized.

Define PCD configuration for ingress FQs

This step involves defining how the FMan splits the incoming port traffic into the FQs. In general, this is accomplished using the
PCD (Parse, Classify, Distribute) function and results in specific traffic assigned to a specific FQID. Fields in the incoming packet
may be used to identify and split the traffic as required. For this key optimization case, the user must determine the correct field.
The example is as follows:

• For the ingress control traffic, the ICMP protocol identifier is the selector or key. If the traffic is from ports 1 or 2 then that traffic
goes to one FQID. If it is from port 3, the traffic goes to a different FQID because this needs to be separated and given a
higher priority than the other two ports.

• For the ingress data plane traffic, the IP source field is used to determine the FQID. The PCD is then configured to hash the
IP source to 8 bits, which will generate 256 possible FQs. Note that this is the same, regardless of whether the packet came
from ports 1, 2, or 3.

• For the ingress pseudo real-time traffic, the PCD is configured to check for the proprietary identifier. If there is a match then
the traffic goes to an FQID based on the ingress port. If there is no match then the incoming packet is discarded. Also, the
soft parser needs to be configured/programmed to locate the proprietary identifier.

Note that the FQID number itself can be anything (within the 24 bits to define the FQ). To maintain meaning, use a numbering
scheme to help identify the type of traffic. For the example, define the following ingress FQIDs:

• High priority control: FQID 0x100

• Low priority control: FQID 0x200

• General data plane: FQID 0x1000 – 0x10FF

• Pseudo real-time traffic: FQID 0x2000 (port 4), FQID 0x2100 (port 5)

The specifics for configuring the PCDs are described in the DPAA1 Reference Manual and in the Software Developer Kit (SDK)
used to develop the software.

4.2.8.1.1.10 FQ/WQ/Channel
For each class of traffic in the system, the FQs must be defined together with both the channel and the WQ to which they are
associated. The channel association affines to a specific processor core while the WQ determines priority.

Consider the following by class of traffic:

• The control traffic goes to a pool of two cores with priority given to traffic on port 3.

• The general data plane traffic goes to a pool of 4 cores.

• The pseudo real-time traffic goes to two separate cores as a dedicated channel.

Note that, when the FQ is defined, in addition to the channel association, other parameters may be configured. In the application
example, the FQs from 1000 to 10FF are all assigned to the same congestion group; this is done when the FQ is initialized. Also,
for these FQs it is desirable to limit the individual FQ length; this would also be configured when the FQ is initialized.

Because the example application is going to use order definition/order restoration mode, this setting needs to be configured for
each FQ in the general data plane traffic (FQID 0x1000-0x10FF). Note that order is not required for the control plane traffic and
that order is preserved in the pseudo real-time traffic because the ingress traffic flows are mapped to specific cores.

QMan configuration considerations include the congestion management and pool channel scheduling. A congestion group must
be defined as part of QMan initialization. (Note that the FQ initialization is where the FQ is bound to a congestion group.) This is

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 137

where the total number of frames and the discard policy of the congestion group are defined. Also, consider the QMan scheduling
for pool channels. In this case, the default of temporarily attaching an FQ to a core until the FQ is empty will likely work best. This
tends to keep the caches current, especially for the general data plane traffic on cores 3-6.

Core 2

Core 1

Core 6

Core 5

Core 4

Core 3
Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Pseudo Real
Time Traffic

FQ100

Port 1 Port 2 Port 3 Port 4 Port 5

FMan

Hash 3.2 Bits to
8 Bits 256
Possible FQsControl traffic

from port 3

FQ200

FQ1500 FQ2000 FQ2100

Pool Channel Pool Channel Dedicated Channel Dedicated Channel

FQ1000

W
Q

2

W
Q

3

W
Q

4

W
Q

2

W
Q

2

Figure 35. Ingress application map

Define egress FQ/WQ/channel configuration

For egress, the packets still flow through the system using DPAA1, but the considerations are somewhat different. Note that each
external port has its own dedicated channel; therefore, to send traffic out of a specific port, the cores enqueue a frame to an FQ
associated with the dedicated channel for that port. Depending on the priority level required, the FQ is associated with a specific
work queue.

For the example, the egress configuration is as follows:

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
138 NXP Semiconductors

• For control plane traffic, there needs to be separate queues for each port this traffic may use. These FQs must be assigned
to a WQ that is higher in priority then the WQ used for the data plane traffic. The example shown includes a strict priority
(over the data plane traffic) for ports 1 and 2 with the possibility of WRED with the data plane traffic on port 3.

• Because the example assumes that the order restoration facility in the FQs will be utilized, there must be one egress FQ for
each flow. The initial system assumptions are for up to 50 flows of this type; however, the division by port is unknown, the
FQs can be assigned so that there are at least 50 for each port. Note that FQs can be added when the flow is discovered or
they can be defined at system initialization time.

• For the pseudo real-time traffic, per the initial assumptions, core 7 sends traffic out of port 4 and core 8 sends traffic out of
port 5. As the flows are per core, the order is preserved because of this mapping. These are assigned to WQ2, which allows
definition for even higher priority traffic (to WQ1) or lower priority traffic for future definition on these ports.

As stated before, the FQIDs can be whatever the user desires and should be selected to help keep track of what type of traffic
the FQ’s are associated. For this example:

• Control traffic for ports 1, 2, 3 are FQID 300, 400, 500 respectively.

• Data plane traffic for ports 1, 2, 3 are FQID 3000-303F, 4000-403F, and 5000-503F respectively, this provides for 64 FQ’s per
port on egress.

• The pseudo real-time traffic uses FQID 6000 for port 4 and 7000 for port 5.

Because this application makes use of the order restoration feature, an order restoration point must be defined for each data plane
traffic flow. Also, congestion management on the FQs may be desirable. Consider that the data plane traffic may come in on
multiple ports but may potentially be consolidated such that is egresses out a single port. In this case, more traffic may be attempted
to be enqueued to a port than the port interface rate may allow, which may cause congestion. To manage this possibility, three
congestion groups can be defined each containing all the FQs on each of the three ports that may have the control plus data
plane traffic. As previously discussed, it may be desirable to set the length of the individual FQs to further manage this potential
congestion.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 139

Core 6

Core 5

Core 4
Core 2

FQ50FFFQ40FFFQ30FF

Core 1
Core 3

Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Psuedo Real
Time Traffic

Port 1 Port 2 Port 3 Port 4 Port 5

FMan

Dedicated Channel Dedicated Channel Dedicated Channel Dedicated Channel Dedicated Channel

FQ3000 FQ400 FQ4000 FQ500 FQ5000

FQ6000 FQ7000

W
Q

2
W

Q
3

W
Q

2
W

Q
3

W
Q

3
W

Q
4

W
Q

2

W
Q

2

FQ300

Figure 36. Egress application map

End of Document

4.2.8.1.2 Linux Ethernet

4.2.8.1.2.1 Introduction
An overview of the DPAA 1.x Ethernet network driver, in the more generic context of Linux device drivers.

The primary concepts of the DPAA 1.x Ethernet driver architecture are presented in the following sections without going into too
much details as code structure. These pages are not a Linux Device Drivers tutorial, but a quick start guide which provides context
for users.

The following sections describe the Linux Ethernet driver running on Datapath Acceleration Architecture (DPAA 1.x) processors.
The driver is shipped with the standard QorIQ Layerscape SDK. The focus is on the theory and operation behind using Ethernet.
It provides a limited discussion of the BMan, QMan, and FMan, describing the layer of software which allows all of these to
interoperate. Enablement, configuration and debugging for the DPAA 1.x Ethernet Driver is also described.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
140 NXP Semiconductors

Purpose

The DPAA 1.x Ethernet Driver is meant to configure the Datapath hardware for communication via the Ethernet protocol. This
includes assisting in:

• Allocating buffer pools and buffers

• Allocating frame queues

• Assigning frame queues and buffer pools to specified FMan ports

• Transferring packets between frame queues and the Linux stack

• Controlling Link Management features

Overview

Ethernet features are enabled on DPAA 1.x hardware by interconnecting the BMan, QMan, and FMan. The primary interactions
are between the Linux Kernel and the QMan. Ethernet frames are exchanged between the Ethernet driver and the hardware
Frame Queues via QMan Portals.

Usually, the Frame Queues are connected to an ingress or egress FMan port. Each FMan port has at least two queues assigned
to it: a default queue and an error queue. This assignment can be specified in the device tree, or created dynamically by the driver
on initialization.

Ethernet frames are often stored in buffers acquired from a BMan Buffer Pool. The driver sets up this pool, and either seeds it
with buffers, or maps the buffers which are put into the pool. Depending on the use case, the buffers may be allocated and freed
by the Kernel during network activity, or they may be allocated once and recycled by returning to the pool when not in use by the
DPAA 1.x hardware.

DPAA 1.x Ethernet Driver types

The complexity of DPAA 1.x allows a variety of possible use cases. Although speed is the key factor for performance in most use
cases, customization or community support are preferred in others. Building a single Ethernet driver to address all requests proved
difficult without making compromises. Instead, we developed two Ethernet driver variants to approach both performance driver
and community driven scenarios:

• The Private DPAA 1.x Ethernet Driver resembles the common Linux Ethernet driver. It is highly improved for performance and
uses all the features that DPAA 1.x offers;

• The Upstream DPAA 1.x Ethernet Driver is integrated and maintained in the official Linux kernel tree. While younger, it benefits
from streamline ease of use and community support.

Both drivers reside in the LSDK Linux kernel tree and can be built independently. The drivers can not be enabled or used at the
same time. The Private Ethernet driver is enabled by default in the LSDK. Please refer to the Upstream Ethernet driver chapter
for details on enabling it instead.

4.2.8.1.2.2 The DPAA1-Ethernet view of the world
This section presents the primary concepts behind the DPAA1-Ethernet driver design.

As a Linux driver, one of DPAA1-Ethernet driver's main goals is proper integration with the Linux kernel ecosystem. As a hardware
device driver, the DPAA1-Ethernet driver integrates functions of several DPAA1 IP blocks, within the scope of the defined/supported
use cases.

4.2.8.1.2.2.1 The Linux kernel APIs
The DPAA1-Ethernet drivers interface with the Linux kernel via the latter’s networking stack APIs. This is a strong requirement,
mandated by the integration with the Linux kernel.

Another type of interaction with the kernel code is at boot time, via the Open-Firmware API. That API is used to parse the ARM
platform device tree and discover the hardware modules that need to be configured. In particular, the DPAA1-Ethernet driver uses
the platform device tree to discover:

• What net devices to probe and what type of hardware is underlying those devices;

• Which DPAA1 resources are involved; FQIDs, BPIDs, CGRIDs, FMan port IDs.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 141

<<drivers>>

DPAA-Ethernet

<<core kernel>>

IP Stack

<<core kernel>>

Device Probing

<<run-time>>
Networking API

<<boot-time>>
Open Firmware API

The DPAA-Ethernet driver uses standard kernel APIs for:
- Device probing
- Interfacing with the IP networking stack.

Figure 37. Platform device tree

Generally, we prefer driver configurations to be dynamic and transparent to the rest of the system. Among the benefits of dynamic
resource allocations, we count:

• Portability of the drivers across multiple QorIQ platforms

• Seamless support of platform changes (For example, via booting with different RCWs)

• Seamless support of multiple partitions under the control of a hypervisor

• Cohabitation with other DPAA1 drivers (For example, a SEC driver) in the Layerscape SDK

4.2.8.1.2.2.2 The Driver's building blocks
This section presents the main structures and data entities with which the DPAA1-Ethernet driver operates.

The driver's building blocks are the relating components of the main entities with which it interacts, which are:

• The kernel’s IP stack

• The DPAA1 hardware blocks and their drivers

4.2.8.1.2.2.2.1 Net Devices
A net device (struct net_device in C representation) is the fundamental structure of any Linux network device driver.

A net device describes a (physical or virtual) device capable of sending and receiving packets over a (virtual or physical) network.
All incoming and outgoing traffic is accounted and processed on behalf of the net device it comes or goes on.

Each supported type of net device has its own kernel driver. If there are several such devices present in a system, there will be
as many device driver instances.

A net device is accessible to the Linux user via the standard tools, such as ‘ifconfig’ or ‘ethtool’.

Not all net devices have real underlying hardware; tunnel endpoints, for examples, are represented by net devices but are not
directly backed by hardware. Same holds for drivers such as “bonding” or “dummy”.

It is worth emphasizing, however, that every Linux interface is represented by a net device. This is a fundamental design aspect
of all Linux networking drivers, including DPAA1-Ethernet. One can describe the Linux IP stack as being a netdev-centric
construction. Nearly all of the kernel networking APIs receive a struct net_device as a parameter. The net_device structure
is the handle through which the driver and the network stack communicate.

The following diagram illustrates what has just been described:

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
142 NXP Semiconductors

eth0

kernel

fm2-gb1

user-space

struct
net
device

network
driver

networking
stack API

The kernel networking APIs are generally netdevice-centric.
A network driver interfaces with the IP stack on behalf of a net device

struct
net
device

network
driver

fmX-macY

Figure 38. Every Linux Interface is Represented by a Net Device

4.2.8.1.2.2.2.2 Frame Queues
The Frame Queue is one of the fundamental concepts of DPAA1. In the case of DPAA1-Ethernet, it is the main interface
between the network driver and the hardware blocks.

Ingress frames received by the DPAA1-Ethernet driver on one of the Frame Queues it is servicing are sent to the IP stack on
behalf of the net device structure that the driver is associated with. Conversely, outgoing frames coming from the IP stack into the
driver are enqueued to one of the egress Frame Queues.

4.2.8.1.2.2.2.3 Buffer Pools
Buffer pool configuration is another fundamental part of the DPAA1-Ethernet driver design.

Unlike the Frame Queue utilization – which is more flexible – the Buffer Pool utilization is conditioned by several design
assumptions:

• The source and ownership of the ingress frame buffers are presumed by the DPAA1-Ethernet driver.

For instance, the driver seeds the Buffer Pools at predefined checkpoints on the Rx path. There are also buffer utilization
counters maintained by the driver, which influence the buffer allocation logic.

• The layout of incoming frames is also presumed by the driver. The actual buffer layout is outside the scope of this document
and should not be assumed upon by driver users.

4.2.8.1.2.3 DPAA1 resources initialization
The rationale behind the “what”s, “why”s and “how”s of DPAA1 resource initializations made by the DPAA1-Ethernet driver are
presented. This description does not go into the full detail of driver configuration.

4.2.8.1.2.3.1 What, Why and How resources are initialized
Following are the DPAA1 resources initialized by the various configurations of the DPAA1-Ethernet driver.

• FQs and FQIDs (where static config applies)

• BPs and BPIDs (where static config applies)

• Buffers (not quite “DPAA1” resources, rather “system” resources)

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 143

• CGRs (CGRIDs are always dynamic)

• FMan’s online ports (Note that the offline ports are configured by a different driver than DPAA1-Ethernet)

Frame Queues and Buffer Pools have been covered at length in the previous sections. CGRs are of lesser interest from the
initialization viewpoint.

FMan online ports are initially probed by the FMan Driver (FMD) and later in the boot process, they are configured by the DPAA1-
Ethernet driver instances according to the specifications in the .dts.

4.2.8.1.2.3.2 Private Ethernet driver: Hashing/PCD frame queues
Among the frame queues initialized by the DPAA1-Ethernet driver, there is a predefined set of 128 core-affined Rx FQs,
automatically initialized by the driver. They are there because most performance-enhanced setups must use a PCD configuration;
to that end, the standard Layerscape SDK provides a “hashing PCDs” configuration that can be applied by the user via the FMC
tool. Since FMC does not support dynamic FQID specification in its .xml configuration files, the “hashing PCD” Frame Queues
also have static, hard-coded FQIDs.

Furthermore, apart from the core-affined Rx FQs, there is another set of 128 core-affined Rx FQs, which have a higher priority
than the former. They are named throughout this documentation "Rx PCD High Priority Frame Queues". Likewise, the queues in
this set are also core-affined and have static, hard-coded FQIDs.

For details about the “hashing PCD” Frame Queues and the Rx PCD High Priority Frame Queues, refer to the Core Affined Queues
on page 157 section.

4.2.8.1.2.4 The (Simplified) Life of a packet
The following sections present a packet’s lifecycle in the DPAA1-Ethernet driver.

4.2.8.1.2.4.1 Private net device: Tx

kernel

ndo_start_xmit

memory allocator

alloc_skb

Network

Stack

(SLAB)

DPAA-Eth driver

FMan port

Tx TxConfirm

recycle_Tx_buffer

BPool

kfree_skb

(free Tx buffer)

Figure 39. Buffers on the egress path

Arrows in the above diagram represent the direction of the buffer/packet flow.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
144 NXP Semiconductors

A packet on the egress path is allocated by the network stack using the kernel’s standard memory allocator. The DPAA1-Ethernet
driver enqueues the packet to the FMan port with an indication to recycle the buffer if possible. If recycling is not possible, the
DPAA1-Ethernet driver itself frees the buffer memory back to the kernel’s allocator, when Tx delivery is confirmed by FMan.

4.2.8.1.2.4.2 Private net device: Rx

kernel

netif_receive_skb

memory allocator

kfree_skb

Network

Stack

(SLAB)

DPAA-Eth driver

FMan port

Rx

acquire_buffer

BPool

alloc_skb

(free Rx buffer)

seed_pool

Figure 40. Buffers on the ingress path

Buffers on the ingress path are acquired by FMan directly from a Buffer Pool which was seeded by the DPAA1-Ethernet driver.
Buffer layout is important to the driver, which assumes ownership on the BP. Arrows in the above diagram represent the direction
of the buffer/packet flow.

4.2.8.1.2.5 Private Ethernet Driver
The Private DPAA 1.x Ethernet driver manages the network interfaces which are fully owned by the Linux partition who runs them.
Therefore, it is possible to take advantage of the DPAA 1.x facilities in order to increase the performance in both termination and
forwarding scenarios.

The Private DPAA 1.x Ethernet driver will be further referenced as the Private driver.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 145

4.2.8.1.2.5.1 Network driver
The main characteristics of the private driver are:

• The private driver is a multiqueue driver - it uses 1 TX queue per CPU

• All private interfaces use a single BPID - usually dynamically allocated

• The FQIDs for the common types of queues - RX, TX, RX Error, TX Error, TX Confirm - are dynamically allocated

• The Hashing/PCD frame queues are hardcoded in the device tree. The private driver imports the PCD frame queue
configuration from the device tree at startup

• The above resources are allocated and visible only to the private driver

All network traffic takes place between the Linux kernel and the physical FMan port private to that partition.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
146 NXP Semiconductors

<<kernel>>
net_device

DPAA-Ethernet driver

Rx (Hashing) PCD

PCD

FM port

Tx

TxConfirm
RxDefault

RxError

replenish

consume

BufferPool

<<hashing PCD>>

/etc/fmc/config/8c-128fq-p/xml<<singleton>>

There is one Buffer Pool used by all driver instances from this Linux partition.

The buffer lifecycle is entirely between the DPA-Ethernet driver and the FMan port

and all buffers in the pool are dynamically allocated by the driver.

The BPID itself can be static, although this is not encouraged.

In the standard configuration, each driver instance dynamically allocates a

private set of default Rx and Tx FQs (in red).

Additionally, there are 128 "hashing PCD FQs" (in blue), statically allocated

for user's convenience. A standard FMC configuration file is shipped with

the SDK enabling the "hashing PCD FQ's".

FMC

Figure 41. Network traffic between the Linux kernel and the physical FMan port

4.2.8.1.2.5.2 Configuration
This section presents the configuration options for the Private DPAA1 ethernet driver.

4.2.8.1.2.5.2.1 Device tree configuration

The compatible string used to define a private interface in device tree is "fsl,dpa-ethernet". The default structure for the device
tree node that specifies a private interface should be similar to the below snippet of a LS1043ARDB device tree node:

ethernet@0 {
 compatible = "fsl,dpa-ethernet";
 fsl,fman-mac = <&enet0>;
};

“fsl,fman-mac” is the reference to the MAC device connected to this interface. This property is used to determine which RX and
TX ports are connected to this interface.

Buffer pools

A single buffer pool is currently defined and used by all the private interfaces. The buffer pool ID is dynamically allocated and
provided by the buffer manager. The number and size of the buffers in the pool are decided internally by the private driver therefore
no device tree configuration is accepted.

Frame queues

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 147

The frame queues are allocated by the private driver with IDs dynamically allocated and provided by the queue manager. The
frame queues can also be statically defined using two additional device tree properties.

ethernet@0 {
 compatible = "fsl,dpa-ethernet";
 fsl,fman-mac = <&enet0>;
 fsl,qman-frame-queues-rx = <0x100 1 0x101 1 0x180 128>;
 fsl,qman-frame-queues-tx = <0x200 1 0x201 1 0x300 8>;
};

Within the example above, a value of 0x100 was assigned to the RX error frame queue ID and 0x101 to the RX default frame
queue ID. In addition, 128 PCD frame queues raging between 0x180-0x1ff are defined and assigned to the core-affined portals
in a round-robin fashion.

There is exactly one RX error and one RX default queue hence a value of "1" for the frame count. Optionally, one can specify a
value of "0" for the base to instruct the driver to dynamically allocate the frame queue IDs.

Within the example above, a value of 0x200 was assigned to the TX error queue ID and 0x201 to the TX confirmation queue ID.
The third entry specifies the queues used for transmission.

If the qman-frame-queues-rx and qman-frame-queues-tx are not present in the device tree, the number of dynamically allocated
TX queues is equal to the number of cores available in the partition.

4.2.8.1.2.5.2.2 Kconfig options

The private driver has a number of parameters which can be tuned at compile time from menuconfig. These can be found in:

Device Drivers
 +- Network device support
 +- Ethernet driver support
 +- Freescale devices
 +- DPAA Ethernet

FSL_DPAA_ETH_JUMBO_FRAME - "Optimize for jumbo frames"

Optimizes the DPAA1 ethernet driver throughput for large frames termination traffic (For example, 4K and above).

Using this option in combination with small frames increases significantly the driver's memory footprint and may even deplete the
system memory. Also, the skb truesize is altered and messages from the stack that warn against this are bypassed.

FSL_DPAA_1588 - "IEEE 1588-compliant timestamping"

Enables IEEE1588 support code.

FSL_DPAA_TS - "Linux compliant timestamping"

Enables Linux API compliant timestamping support.

FSL_DPAA_CEETM - "DPAA1 CEETM QoS"

Enables QoS offloading support through the CEETM hardware block.

FSL_DPAA_CEETM_CCS_THRESHOLD_1G - "CEETM egress congestion threshold on 1G ports"

The size in bytes of the CEETM egress Class Congestion State threshold on 1G ports. The threshold needs to be configured
keeping in mind the following factors:

• A threshold too large will buffer frames for a long time in the TX queues, when a small shaping rate is configured. This will
cause buffer pool depletion or out of memory errors. This in turn will cause frame loss on RX.

• A threshold too small will cause unnecessary frame loss by entering congestion too often.

FSL_DPAA_CEETM_CCS_THRESHOLD_10G - "CEETM egress congestion threshold on 10G ports"

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
148 NXP Semiconductors

The size in bytes of the CEETM egress Class Congestion State threshold on 10G ports.

FSL_DPAA_ETH_USE_NDO_SELECT_QUEUE - "Use driver's Tx queue selection mechanism"

The DPAA1-Ethernet driver defines a ndo_select_queue() callback for optimal selection of the egress FQ. That will override the
XPS support for this netdevice. If you want to be in control of the egress FQ-to-CPU selection and mapping, or do not want to
use the driver's ndo_select_queue() callback, then unselect this and use the standard XPS support instead.

FSL_DPAA_ETH_MAX_BUF_COUNT - "Maximum number of buffers in private bpool"

Defaults to 128. The maximum number of buffers to be by default allocated in the DPAA1-Ethernet private port's buffer pool. One
need not normally modify this, as it has probably been tuned for performance already. This cannot be lower than
DPAA_ETH_REFILL_THRESHOLD.

FSL_DPAA_ETH_REFILL_THRESHOLD - "Private bpool refill threshold"

Defaults to 128. The maximum number of buffers to be by default allocated in the DPAA1-Ethernet private port's buffer pool. One
need not normally modify this, as it has probably been tuned for performance already. This cannot be lower than
DPAA_ETH_REFILL_THRESHOLD.

FSL_DPAA_CS_THRESHOLD_1G - "Egress congestion threshold on 1G ports"

The size in bytes of the egress Congestion State notification threshold on 1G ports. Ranges from 0x1000 to 0x10000000. Defaults
to 0x06000000. This option can help when:

• The device stays congested for a prolonged time (risking the netdev watchdog to fire - see also the tx_timeout module
param)

• Preventing the Tx cores from tightly-looping (as if the congestion threshold was too low to be effective)

This might also implies some risks:

• Affecting performance of protocols such as TCP, which otherwise behave well under the congestion notification
mechanism

• Running out of memory if the CS threshold is set too high

FSL_DPAA_CS_THRESHOLD_10G - "Egress congestion threshold on 10G ports"

The size in bytes of the egress Congestion State notification threshold on 10G ports. Ranges from 0x1000 to 0x20000000. Defaults
to 0x10000000.

FSL_DPAA_INGRESS_CS_THRESHOLD - "Ingress congestion threshold on FMan ports"

The size in bytes of the ingress tail-drop threshold on FMan ports. Defaults to 0x10000000. Traffic piling up above this value will
be rejected by QMan and discarded by FMan.

FSL_DPAA_ETH_DEBUG - "DPAA1 ethernet debug support"

This option compiles debug code for the DPAA1 Ethernet driver.

4.2.8.1.2.5.2.3 Bootargs

The following bootarg parameters are defined for the Frame Manager driver. However, they also influence the behavior of the
Private driver:

• fsl_fm_max_frm

• fsl_fm_rx_extra_headroom

fsl_fm_max_frm

The Frame Manager discards both Rx and Tx frames that are larger than a specific Layer2 MAXFRM value. The DPAA1 Ethernet
driver won't allow one to set an interface’s MTU too high such that it would produce Ethernet frames larger than MAXFRM. The
maximum value one can use as the MTU for any interface is (MAXFRM - 22) bytes, where 22 is the size of an Eth+VLAN header
(18 bytes), plus the Layer2 FCS (4 bytes).

Currently, the value of MAXFRM is set at boot time and cannot be changed without rebooting the system.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 149

The default MAXFRM is 1522, allowing for MTUs up to 1500. If a larger MTU is desired, one would have to reboot and reconfigure
the system as described next. The maximum MAXFRM is 9600.

The MAXFRM can be set in the following two ways.

• As a Kconfig option (CONFIG_FSL_FM_MAX_FRAME_SIZE):

Device Drivers
+-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> Frame Manager support
 +-> Freescale Frame Manager (datapath) support
 +-> Maximum L2 frame size

• As a bootarg: In the U-Boot environment, add "fsl_fm_max_frm=<your_MAXFRM>" directly to the "bootargs" variable.

Note that any value set directly in the kernel bootargs will override the Kconfig default. If not explicitly set in the bootargs, the
Kconfig value will be used.

Symptoms of misconfigured MAXFRM

MAXFRM directly influences the partitioning of FMan's internal MURAM among the available Ethernet ports, because it
determines the value of an FMan internal parameter called FIFO Size. Depending on the value of MAXFRM and the number of
ports being probed, some of these may not be probed because there is not enough MURAM for all of them. In such cases, one
will see an error message in the boot console.

fsl_fm_rx_extra_headroom

Configure this to communicate the Frame Manager to reserve some extra space at the beginning of a data buffer on the receive
path, before Internal Context fields are copied. This is in addition to the private data area already reserved for driver internal use.
The option does not affect in any way the layout of transmitted buffers. The default value (64 bytes) offers best performance for
the case when forwarded frames are being encapsulated (For example, IPSec).

The RX extra headroom can be set in the following two ways.

• As a Kconfig option (CONFIG_FSL_FM_RX_EXTRA_HEADROOM):

Device Drivers
+-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> Frame Manager support
 +-> Freescale Frame Manager (datapath) support
 +-> Add extra headroom at beginning of data buffers

• As a bootarg: in the U-Boot environment, add "fsl_fm_rx_extra_headroom=< your_rx_extra_headroom>" directly to the
"bootargs" variable.

4.2.8.1.2.5.2.4 ethtool options

The private driver implements the following ethtool operations.

-a --show-pause
 Queries the specified Ethernet device for pause parameter information.
-A --pause
 Changes the pause parameters of the specified private devices.
 rx on|off
 Specifies whether RX pause should be enabled.
 tx on|off
 Specifies whether TX pause should be enabled.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
150 NXP Semiconductors

-k --show-features
 Lists the offloadable DPAA driver features. Specifies which features can be changed.
-K --features
 Changes a driver feature.
 feature on|off
 Specifies weather a certain feature should be enabled.
-s --change
 msglvl N
 msglvl type on|off ...
 Sets the driver message type flags by name or number. type names the type of message to
enable or disable; N specifies the new flags numerically.
-S --statistics
 Shows driver statistics and counters: interrupt counter, packet counters, error counters,
congestion state, and more.
--show-eee
 Shows the Energy-Efficient Ethernet configurations.
--set-eee
 Configures the EEE behavior.

4.2.8.1.2.5.3 Features
This section present the private DPAA1 ethernet driver features.

4.2.8.1.2.5.3.1 Congestion management

QMan offers the following three methods of managing congestion.

• WRED

• Congestion State Tail Drop (CSTD)

• FQ Tail Drop (FQTD)

The Private driver implements CSTD both on TX and RX. When the number of bytes residing in a TX FQ congestion group reaches
a congestion threshold (high watermark), the QMan rejects any further incoming frames, until the sum of all the frames contained
in the congestion groups drops under a low watermark, which is 7/8 of the high watermark. The high watermark can be configured
from menuconfig. For more details, see section Kconfig options on page 148.

4.2.8.1.2.5.3.2 Scatter/Gather support

On the Rx path, the first S/G entry is used to build the skb linear part and the other entries are used as fragments.

The Private driver can access the egress skbufs allocated in high memory (For example, mapped directly from user-space, as is
the case of the sendfile() system call). This eliminates the kernel need to copy such skbufs into newly-allocated low memory
buffers, allowing zero-copy on the egress path.

On LS1043A, Scatter/Gather frames are not supported on Tx.

 NOTE

4.2.8.1.2.5.3.3 Jumbo frames support

Termination traffic with large frames performs better if only linear skbs (and single buffer frames) are used. The driver has the
option to allocate Rx buffers large enough to accommodate the entire frame (of max 9.6K).

This option needs to be used with caution, as the memory footprint can be a real problem when small frames are used.

The option can be enabled from the menuconfig option:

Device Drivers
 +-> Network device support

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 151

 +-> Ethernet driver support
 +-> Freescale devices
 +-> DPAA Ethernet
 +-> Optimize for jumbo frames

In addition to enabling this feature from menuconfig, the user is required to set the L2 maximum frame size to 9600, otherwise
the configuration is not valid. This can be achieved by either setting fsl_fm_max_frm=9600 in the bootargs, or configuring
CONFIG_FSL_FM_MAX_FRAME_SIZE from menuconfig. For more details, see Bootargs on page 149.

4.2.8.1.2.5.3.4 GRO/GSO Support

Generic Receive Offload (GRO) is tied to NAPI support and works by keeping a list of GRO flows per each NAPI instance. These
flows can then "merge" incoming packets, until some termination condition is met or the current NAPI cycle ends, at which point
the flows are flushed up the protocol stack. Flows merging several packets share the protocol headers and coalesce the payload
(without memcopying it). This results in a CPU load decrease and/or network throughput increase. Packets which don't match
any of the stored flows (in the current NAPI cycle) are sent up the stack via the normal, non-GRO path.

GRO is commonly supported in hardware as a set of "GRO assists", rather than full packet coalescing. The following features
count as GRO assists:

• RX hardware checksum validation

• Receive Traffic Distribution (RTD)

• Multiple RX/TX queues

• Receive Traffic Hashing

• Header prefetching

• Header separation

• Core affinity

• Interrupt affinity

Note: With the exception of header separation, the DPAA1 platforms feature all other hardware assists. Most notably, they are
implicitly achieved through the mechanisms that accompany PCDs.

Generic Segmentation Offload (GSO) is also a well-established feature in the Linux kernel. Normally, a TCP segment is composed
in the Layer 4 of the Linux stack, based on the current MSS (Maximum Segment Size) connection setting. It has been observed,
though, that delaying segmentation is a better approach in terms of CPU load, because fewer headers are processed. Linux has
taken an optimization approach, called GSO, whereby the L4 segments are only composed just before they are handed over to
the L2 driver.

GRO and GSO support are available by default in the Private driver and can be independently switched on and off at runtime, via
ethtool -k.

Note: Older versions of ethtool do not support this. Ethtool version 3.0 does - and possibly others before it, too.

Generic optimizations that enhance the driver's performance in the general case also apply to the GRO/GSO-enabled driver.
PCD support is therefore recommended in this regard. We have found that these optimizations yield the best results on 10 Gbit/
s traffic, and to a lesser extent (if any) on 1 Gbit/s traffic. TCP tests, especially, can benefit from GRO by shedding CPU load and
upping the network throughput. The improvements are the more visible with smaller network MTU - with MTU=1500 and below,
the benefits are higher, while starting from MTU=4k they are no longer observable.

One optimization that boosts GSO performance is the zero-copy egress path. That is available thanks to the sendfile() system
call, which may be used instead of the plain send() syscall, and which certain benchmark applications know about. Netperf for
instance has sendfile support in its TCP_SENDFILE tests.

GRO and GSO are no panacea, one-button-fix-all kind of optimization. While under most circumstances they should be transparent
(this being why GRO is by default enabled in the Linux kernel), there are scenarios and configurations where they may in fact

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
152 NXP Semiconductors

under-perform. Traffic on 1 Gbit/s ports sees little benefit from GRO/GSO. Also, if the Private Driver detects that PCDs are not in
place, GRO is automatically by-passed.

4.2.8.1.2.5.3.5 Transmit packet steering

The Private driver exposes to the Linux networking stack a TX-multiqueue interface. This provides the stack with better control of
the transmission queues and reduces the need for locking. The user may also control the mapping of egress FQs to the CPUs
via a standard Linux feature called Transmit Packet Steering (XPS) and documented here: http://lwn.net/Articles/412062/

The kernel transmission queues are different entities than the Private driver Frame Queues.

 NOTE

The Private driver, however, matches the two realms by mapping the DPAA1 FQs onto kernel's own queue structures. To that
end, the Private driver provides a standard callback (net-device operation, or NDO) called ndo_select_queue(), which the stack
can interrogate to find out the specific queue mapping it needs for transmitting a frame. The existence of that NDO (which is
otherwise optional) overrides the kernel queue selection via XPS. This is why the Private driver provides a compile-time choice
to disable the ndo_select_queue() callback, leaving it to the stack to choose a transmission queue.

To use the Private driver's builtin ndo_select_queue() callback, select the Kconfig option
FSL_DPAA_ETH_USE_NDO_SELECT_QUEUE.

To disable the Private driver's queue selection mechanism and use XPS instead, unselect this Kconfig option. Further on, the
users can configure their own txq-to-cpu mapping, as described in the LWN article above.

4.2.8.1.2.5.3.6 TX and RX Hardware Checksum

Introduction

The FMan block supports calculation of the L3 and/or L4 checksum for certain standard protocols.

This can be used, on the TX path, for calculating the checksum of the outgoing frame, and on the RX path, for validating the L3/
L4 checksum of the incoming frame and making classification, or distribution decisions.

TX Checksum Support

On TX, the checksum computation is enabled on a per-frame basis by the Private driver. The TX checksum support for standard
protocols is as follows:

Table 31. TX checksum support

Header IPv4 IPv6 Other

IP header yes not available no

TCP header yes yes no

UDP header yes yes no

IP Header checksum capability also exists in SEC block (see IPSEC).

 NOTE

Ethernet CRC is calculated on a per frame basis during frame transmission.

 NOTE

The main precondition for TX checksum to be enabled in hardware is that IP tunneling must not be present (i.e.,

not GRE, not MinEnc, not IPIP). Other conditions pertain to the validity and integrity of the frame.

 NOTE

RX Checksum Support

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 153

http://lwn.net/Articles/412062/

This feature is disabled by default. In order to enable RX checksum computation for supported protocols, a PCD scheme must
be applied to the respective RX port. In the current release, L3 and L4 are both enabled if a PCD is applied.

If enabled, L3 and L4 checksum validation is performed for TCP, UDP and IPv4.

Controlling this feature via ethtool is not yet supported.

 NOTE

4.2.8.1.2.5.3.7 Priority Flow Control

The DPAA1 Ethernet Driver offers experimental support for IEEE standards 802.1Qbb (Priority Flow Control) and 802.1p.

These standards aim to implement lossless Ethernet, in which the highest-priority classes of traffic benefit from maximum
bandwidth and minimum delay. Up to 8 classes of service can be used, but only a minimum of 3 is required.

The terms “Class of Service (CoS)” and “priority” will be used interchangeably in this section.

Enabling PFC Support

To enable PFC support, enable the following options from menuconfig

Device Drivers
+ Network device support
 + Ethernet driver support
 + Freescale devices
 + Frame Manager support
 + Freescale Frame Manager (datapath) support
 + FMan PFC support (EXPERIMENTAL)
 + (3) Number of PFC Classes of Service
 + (65535) The pause quanta for PFC CoS 0
 + (65535) The pause quanta for PFC CoS 1
 + (65535) The pause quanta for PFC CoS 2

The number of Classes of Service can range between 1 and 4. It defines the number of Work Queues used and the number of
priorities that are set when a PFC frame is issued. 3 is the default value. Changing this value also changes the number of WQs
and priorities.

The pause time can be adjusted for each CoS individually.

Enabling and disabling CoS and their pause time is unavailable at runtime. It is only possible at compile time in this release.

Selecting the Class of Service

When PFC support is enabled, the egress traffic flowing on a DPAA1 Private interface is distributed on the first 3 Work Queues
of a TX port, namely WQ0, WQ1 and WQ2.

These function in strict priority. WQ0 has the highest priority and WQ2 the lowest priority. FMan cannot dequeue frames from
WQ1 unless WQ0 is empty and from WQ2 unless WQ1 and WQ0 are empty.

The work queue a frame will be enqueued on is determined from the socket buffer priority. skb_prio is just an internal tag that the
kernel applies to the frames on the egress path and is not visible to the receiver.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
154 NXP Semiconductors

The default skb_prio is 0, which means all frames will be distributed to WQ0. skb_prio can be modified using a number of methods,
including traffic control.

To edit a socket buffer’s priority using tc, one needs to enable the following options from menuconfig.

Networking support
+ Networking options
 + QoS and/or fair queueing
 + Multi Band Priority Queueing (PRIO)
 + Elementary classification (BASIC)
 + Universal 32bit comparisons w/ hashing (U32)
 + Extended Matches
 + U32 key
 + Actions
 + SKB Editing

The following commands assign a skb_prio of 1 to traffic destined to TCP and UDP port 5000 and implicitly direct it on WQ1.

tc qdisc del dev fm1-mac9.0 root
tc qdisc add dev fm1-mac9.0 root handle 1: prio
tc filter add dev fm1-mac9.0 parent 1: protocol ip u32 match ip dport 5000 action skbedit priority 1

VLAN tagging

In order to be classified by the receiver according to 802.1p the egress traffic must be VLAN tagged, with the Class of Service
contained in the PCP field. The PCP priority is also determined from skb_prio.

create a subinterface of fm1-mac9, with VLAN ID 0
vconfig add fm1-mac9 0
all frames tagged with skb_prio 1, will have PCP priority of 1.
vconfig set_egress_map fm1-mac9.0 1 1

If no mapping is specified the PCP field will be set to 0 by default.

The dependence between skb_prio, work queues and VLAN PCP priority:

Receiving PFC Frames

Unlike ordinary 802.3x PAUSE frames, PFC frames can selectively pause a certain priority/CoS.

WQ0 responds to PFC frames that have priority 0 set. Example: When a PFC frame arrives containing priority 0 and having a
100 pause time for priority 0, WQ0 i.e. all traffic from CoS 0 is ignored for dequeing for 100 bit times, and dequeing is done from
WQ1 and WQ2.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 155

Generating PFC frames

All DPAA1 Private interfaces share a single buffer pool which accounts for the buffers in which the frames are stored upon receiving.

When the Buffer Pool reaches the refill/depletion threshold, PFC frames are sent back to the sender in order to pause frames
transmission and thus avoid frame loss.

FMan sends PFC frames that pause all Classes of Traffic defined. The only difference between the classes is the pause time.

The pause time can be configured from menuconfig. A pause time of 0 disables that Class of Service.

When the common buffer pool depletes, issued PFC frames look like this.

Enabling and disabling PFC using ethtool

Display PFC settings in use for an interface:

ethtool -a intf_name

Triggering PFC frames ON/OFF

PFC frames can be enabled/disabled on Rx/Tx using ethtool -A, like in the following examples:

ethtool -A intf_name rx on
ethtool -A intf_name tx off
ethtool -A intf_name rx off tx off

Autonegotiation

When autonegotiation is enabled and the user enables/disables PFC frames on Rx/Tx, these will not automatically be triggered
on/off. Instead, the local and the peer PFC symmetric/asymmetric capabilities will be considered. If the peer does not match the
local capabilities, the following commands may have no effect:

ethtool -A intf_name rx on
ethtool -A intf_name rx off
ethtool -A intf_name tx on
ethtool -A intf_name tx ff

When autonegotiation is disabled, ethtool settings override the results of link negotiation.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
156 NXP Semiconductors

PFC frame autonegotiation can also be enabled/disabled using ethtool -A:

ethtool -A intf_name autoneg on
ethtool -A intf_name autoneg off

4.2.8.1.2.5.3.8 Core Affined Queues

The driver automatically creates 128 core-affined queues, intended to be used as RX PCD frame queues. These frame queues
can be used in PCD configuration files to process certain types of frames on particular CPUs. In order to enhance the PCD files
creation, the /etc/fmc/config/ directory from rootfs contains the default configuration and policy files for each platform.

The driver calculates the frame queue IDs based on the address of the MAC registers corresponding to the port using the following
formula:

((MAC register address) & 0x1fffff) >> 6

Following are the values for various QorIQ DPAA1 platforms:

Table 32. FMan devices core affined queues

Interface FQID base LS1043A LS1046A

fm1-mac1 0x3800 Y

fm1-mac2 0x3880 Y

fm1-mac3 0x3900 Y Y

fm1-mac4 0x3980 Y Y

fm1-mac5 0x3a00 Y Y

fm1-mac6 0x3a80 Y Y

fm1-mac9 0x3c00 Y Y

fm1-mac10 0x3c80 Y

These queues are assigned to cores in a round-robin fashion. For instance, if there are 8 cores, 0x3800 will be serviced by core
0, 0x3801 by core 1, 0x3808 by core 0, etc. Currently, if one specifies extra RX PCD queues in the device tree, these queues will
also be assigned in this round-robin fashion.

High Priority Core Affined Queues

Starting with SDK 2.0, a new set of RX PCD frame queues has been added, to aid in implementing complex traffic management
scenarios. This set of frame queues has a higher priority than the normal RX PCD frame queues, and as such, traffic coming in
on these frame queues has a higher precedence than the traffic coming on on the default RX PCD frame queues. One scenario
where this is useful is the back-to-back IPsec testing scenario, where the encrypted traffic (RX) is desirable to have a higher
priority than the plain text traffic.

The driver calculates the high priority frame queue IDs based on the address of the MAC registers corresponding to the port using
the following formula:

65536 + ((MAC register address) & 0x1fffff) >> 6

Following are the values for various QorIQ DPAA1 platforms:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 157

Table 33. FMan devices high priority core affined queues

Interface FQID base LS1043A LS1046A

fm1-mac1 0x13800 Y

fm1-mac2 0x13880 Y

fm1-mac3 0x13900 Y Y

fm1-mac4 0x13980 Y Y

fm1-mac5 0x13a00 Y Y

fm1-mac6 0x13a80 Y Y

fm1-mac9 0x13c00 Y Y

fm1-mac10 0x13c80 Y

4.2.8.1.2.5.4 Quality of Service
DPAA1 platforms can offload QoS functions such as policing, shaping, scheduling and prioritization to dedicated hardware blocks.

Traffic policing is achieved on ingress through the FMan. A two rate three color marker algorithm can be configured through the
Frame Manager Configuration (FMC) tool.

Traffic scheduling, shaping, and prioritization is executed on the egress path in the QMan. Multiple algorithms, such as dual rate
shaping and strict prioritization, are implemented and can be configured through queuing disciplines.

4.2.8.1.2.5.4.1 Policing

The FMan's Policer sub block implements a two rate, three color marker (trTCM) traffic policing algorithm. The algorithm has two
configurable flavors: RFC2698 and RFC4115.

The FMC tool, described in detail in Frame Manager Configuration Tool User's Guide, is used to enable the Policer and set up its
parameters.

For more information regarding the FMan Policer and how it can be configured, see the Policer Section on page 315.

4.2.8.1.2.5.4.2 Scheduling and Shaping
4.2.8.1.2.5.4.2.1 Description

Specific DPAA1 platforms offer scheduling, shaping and prioritization capabilities through CEETM (Customer Edge Egress Traffic
Management). The CEETM hardware block is a member of the QMan. Its purpose is to enhance the performances of DPAA1
platforms by moving the egress QoS logic from software to hardware.

This section briefly describes the CEETM block and its capabilities. Furthermore, it presents how it can be configured through
the Linux traffic control tool (tc) by using a custom queuing discipline.

4.2.8.1.2.5.4.2.1.1 The CEETM architecture

CEETM is a sub block of the QMan and is an alternative to the regular frame queue - work queue - channel scheduling mode.
For more information regarding this workflow, or on DCPs and sub-portals, please refer to the QMan Overview section.

Refer the figure below for a CEETM block, which is available for each FMan and it is intended to be used by FMan sub-portals
linked to Ethernet interfaces.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
158 NXP Semiconductors

DCP0

LNI 0

LNI 7

CQ
channel 0

CQ
channel n

CQ 0
CQ ... Sub-portal 0

Sub-portal n

CEETM

CQ 15

CQ 0
CQ ...
CQ 15

FMan

Port 0

Port n

Figure 42. CEETM block

CEETM uses 8 Logical Network Interfaces (LNIs) that can be mapped to the FMan’s DCP sub-portals. Depending on the platform
used, there are 8 or 32 class queue channels (or CQ channels) that can be mapped to the LNIs. Multiple CQ channels can be
mapped to the same LNI.

Each CQ channel contains 16 class queues. 8 CQs are independent while the other 8 can be grouped into 1 class group or 2
class groups of 4 queues each. The first group is called group A and the second is called group B.

4.2.8.1.2.5.4.2.1.2 Features

CEETM implements the following algorithms:

• Strict Priority scheduling

• Weighted Bandwidth Fair Scheduling (WBFS)

• dual-rate shaping with committed and excess rates (CR/ER)

• shaped and unshaped Fair Queueing scheduling (shFQ, uFQ)

These algorithms are used together in specific combinations based on the CEETM’s architecture described previously and
pictured below:

Strict Priority

ER
C

R

LNI

Channel Scheduler

D
ual-rate shaper

ER
C

R shFQ
uFQ

CQ channel

Class Scheduler

ER
C

R

D
ual-rate shaper

CQ channel

Class Scheduler

Strict Priority

CQ 0
CQ 1
CQ 2
CQ 3
CQ 4
CQ 5
CQ 6
CQ 7

CQ 8
CQ 9
CQ10
CQ11
CQ12
CQ13
CQ14
CQ15

W
BFS

CQ 0
CQ 1
CQ 2
CQ 3
CQ 4
CQ 5
CQ 6
CQ 7

CQ 8
CQ 9
CQ10
CQ11
CQ12
CQ13
CQ14
CQ15

W
BFS

W
BFS

Strict Priority

G
roup B

G
roup A

G
roup A

Figure 43. CEETM architecture

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 159

All the CQs connected to a CQ channel pass through a Strict Priority scheduler. The lower the CQ’s ID, the higher the CQ’s priority
(e.g. CQ#3 has a higher priority than CQ#4, thus, as long as there are frames queued to CQ#3, CQ#4 will not be dequeued).

The priority of the CQ groups is configurable. All frames coming from the grouped CQs pass through the WBFS algorithm. Each
CQ belonging to a group is assigned a weight portion of the bandwidth available to the group. The weight is a value from 1 to 248
in pseudo logarithmic steps of 1.5%. A list of available weights can be found in the platform’s QorIQ DPAA Reference Manual.

The CQ channels can be shaped or unshaped. For CQs leading to a shaped channel, all frames will pass through a dual-rate
shaper before entering the LNI. The independent CQs, as well as the class groups, can be configured to lead their frames through
the CR shaper, the ER shaper, or both.

Each LNI aggregates frames from the CQ channels linked to it. All the unshaped frames from the unshaped CQ channels mapped
to the LNI pass through the uFQ algorithm. The CR/ER frames from the shaped CQ channels pass through the shFQ algorithm
and through another dual-rate shaper. Lastly, all frames pass through the LNI’s Strict Priority module that schedules the unshaped
frame (with high priority), the CR frames (with medium priority) and the ER frames (with low priority).

The shFQ algorithm schedules a channel for transmitting if the channel’s shaper is time eligible (the shaper has a positive number
of tokens in its bucket). When a channel finished its tokens, it is added to a waiting queue where it must wait for any other time
eligible channels ahead of it finish transmitting.

The uFQ algorithm is similar to the shFQ. In the uFQ algorithm, all channels are time eligible. After finishing to transmit all their
available data, they are added to the back of the time eligible waiting queue where their bucket is instantly refilled. The token
bucket limit of the unshaped channels is configurable.

For more information regarding the CEETM’s capabilities and detailed descriptions of the mentioned algorithms, take a look at
your platform’s QorIQ DPAA Reference Manual.

4.2.8.1.2.5.4.2.1.3 Integration with queuing disciplines

The CEETM block can be configured through the ceetm queuing discipline. A comparison between the hardware block and the
traffic control’s terminology is drawn in figure below:

root qdisc

root class
[unshaped]

root class
[shaped]

prio qdisc

prio class [1-8]

wbfs qdisc

wbfs class [4/8]

prio qdisc

prio class [1-8]

wbfs qdisc

wbfs class [4/8]

LNI

uFQ shFQ

CQ channel CQ channel

Strict Priority

CQs [1-8]

WBFS group

CQs [4/8]

Strict Priority

CQs [1-8]

WBFS group

CQs [4/8]

qdisc

class

leaf class

automatic
class

Figure 44. Comparison between CEETM and tc terminology

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
160 NXP Semiconductors

A LNI can be mapped to a FMan port by adding a root ceetm qdisc to a network interface. The LNI shaper's CR and ER are
configured by setting a rate, and optional ceil and overhead, on the qdisc.

A CQ channel can be linked to a LNI by creating a ceetm root class mapped to the root qdisc. For an unshaped channel, the
uFQ's token bucket limit (tbl) needs to be configured. For a shaped channel, the rate, and optional ceil, set the CR and ER.

Note: Shaped CQ channels can be linked to the LNI only if the LNI's shaper is enabled.

A channel’s independent CQs are configured when a prio qdisc is linked to a root class. Between 1 and 8 prio classes are
generated, each class corresponding to a CQ linked to the channel’s Strict Priority scheduler. The qcount parameter indicates
the number of child classes. If the channel is shaped, all generated classes participate by default in both CR and ER shaping. In
order to disable one or the other, the CQ's corresponding prio class's cr and er parameters can be changed.

CQs linked to a shaped CQ channel can not have both CR and ER shaping disabled.

 NOTE

In order to configure the CQ groups, a wbfs qdisc is linked to one of the prio classes. Either 4 or 8 wbfs classes are generated,
depending on the number of CQs in the group indicated by the qcount parameter. The group is placed right after its parent in the
channel's Strict Priority list (e.g. if the wbfs qdisc is linked to the prio class #2, the priority list becomes: class #1, class #2, group,
class #3, class #4, etc). The CQ weights are configured through the qweight parameter and can be changed for each CQ
individually. For groups linked to shaped CQ channels, the CR and ER shaping are enabled by the cr and er parameters.

Groups linked to a shaped CQ channel can not have both CR and ER shaping disabled.

 NOTE

For more details on the ceetm qdisc's parameters and configuration, see the Usage on page 162 section.

4.2.8.1.2.5.4.2.2 User guide
4.2.8.1.2.5.4.2.2.1 Supported platforms

The CEETM block is present and configurable through the ceetm qdisc on the LS1043A/LS1046A platforms.

4.2.8.1.2.5.4.2.2.2 Getting started

1. Enable the networking QoS support in the kernel along with any classifiers or other features that might be needed, as
well as the ceetm qdisc.

-> Networking support (NET [=y])
 -> Networking options
 -> QoS and/or fair queueing (NET_SCHED [=y])
 -> Universal 32bit comparisons w/ hashing (u32) (NET_CLS_U32 [=y])

-> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet driver support (ETHERNET [=y])
 -> Freescale devices (NET_VENDOR_FREESCALE [=y])
 -> DPAA Ethernet (FSL_SDK_DPAA_ETH [=y])
 -> DPAA CEETM QoS (FSL_DPAA_CEETM [=y])

2. Modify the Class Congestion State thresholds if necessary. The default values are chosen keeping in mind the following
factors:

• A threshold too large will buffer frames for a long time in the TX queues, when a small shaping rate is configured.
This will cause buffer pool depletion or out of memory errors. This in turn will cause frame loss on RX.

• A threshold too small will cause unnecessary frame loss by entering congestion too often.

-> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet driver support (ETHERNET [=y])

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 161

 -> Freescale devices (NET_VENDOR_FREESCALE [=y])
 -> DPAA Ethernet (FSL_SDK_DPAA_ETH [=y])
 -> CEETM egress congestion threshold on 1G ports
 (FSL_DPAA_CEETM_CCS_THRESHOLD_1G [=0x000a0000])
 -> CEETM egress congestion threshold on 10G ports
 (FSL_DPAA_CEETM_CCS_THRESHOLD_10G [=0x00640000])

3. Build the ceetm app with the flexbuilder.

./flex-builder -c ceetm -a arm64

4.2.8.1.2.5.4.2.2.3 Limitations

• CEETM is supported on DPAA1 Private Ethernet interfaces only.

• CEETM isn't supported on top of Linux bonding interfaces.

4.2.8.1.2.5.4.2.2.4 Usage

You can see the ceetm qdisc’s help message by running the following command:

~# tc qdisc add ceetm help
Usage:
... qdisc add ... ceetm type root [rate R [ceil C] [overhead O]]
... class add ... ceetm type root (tbl T | rate R [ceil C])
... qdisc add ... ceetm type prio qcount Q
... qdisc add ... ceetm type wbfs qcount Q qweight W1 ... Wn [cr CR] [er ER]

Update configurations:
... qdisc change ... ceetm type root [rate R [ceil C] [overhead O]]
... class change ... ceetm type root (tbl T | rate R [ceil C])
... class change ... ceetm type prio [cr CR] [er ER]
... qdisc change ... ceetm type wbfs [cr CR] [er ER]
... class change ... ceetm type wbfs qweight W

Qdisc types:
root - configure a LNI linked to a FMan port
prio - configure a channel's Priority Scheduler with up to eight classes
wbfs - configure a Weighted Bandwidth Fair Scheduler with four or eight classes

Class types:
root - configure a shaped or unshaped channel
prio - configure an independent class queue

Options:
R - the CR of the LNI's or channel's dual-rate shaper (required for shaping scenarios)
C - the ER of the LNI's or channel's dual-rate shaper (optional for shaping scenarios, defaults to 0)
O - per-packet size overhead used in rate computations (required for shaping scenarios, recommended
value is 24 i.e. 12 bytes IFG + 8 bytes Preamble + 4 bytes FCS)
T - the token bucket limit of an unshaped channel used as fair queuing weight (required for unshaped
channels)
CR/ER - boolean marking if the class group or prio class queue contributes to CR/ER shaping (1) or
not (0) (optional, at least one needs to be enabled for shaping scenarios, both default to 1 for prio
class queues)
Q - the number of class queues connected to the channel (from 1 to 8) or in a class group (either 4
or 8)
W - the weights of each class in the class group measured in a log scale with values from 1 to 248
(when adding a wbfs qdisc, either four or eight, depending on the size of the class group; when
updating a wbfs class, only one)

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
162 NXP Semiconductors

Filters need to be added on each qdisc layer in order to allow packets to reach the leaf classes. Likewise, all filters need to be
removed from each qdisc layer when no longer used.

4.2.8.1.2.5.4.2.3 Examples
4.2.8.1.2.5.4.2.3.1 Rate limit two streams

Setup

In the following example a platform with CEETM support (LS1043ARDB - Client) is connected to another board (LS1046ARDB -
Server) through a 1G link. The described setup is pictured in Figure 45. on page 163.

TCP 80

TCP 21

Client
LS1043ARDB

Server
LS1046ARDB

iperf clients

iperf servers

QoS rules 1G link

Figure 45. Rate example setup

The iperf clients run on the Client while the iperf servers run on the Server. The Server listens on 2 TCP ports (21 and 80).

root@ls1046ardb:~# iperf -s -p 21 &
root@ls1046ardb:~# iperf -s -p 80 &

PCDs are applied on both platforms in advance.

root@ls1046ardb:~# fmc -c /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/config.xml -
p /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/policy_ipv4.xml -a
root@ls1043ardb:~# fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /etc/fmc/
config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a

In order to keep this example minimal, ARP frames aren't filtered and classified. Thus, MAC addresses need to be exchanged
and saved in advance as well.

root@ls1043ardb:~# arp -s <server IP address> <server HW address>
root@ls1046ardb:~# arp -s <client IP address> <client HW address>

After adding the qdiscs, the Client runs the iperf clients.

root@ls1043ardb:~# iperf -c <server IP address> -p 21 &
root@ls1043ardb:~# iperf -c <server IP address> -p 80 &

Execution

This example's corresponding qdisc and class hierarchy is pictured in Figure 46. on page 164.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 163

root qdisc 1:

root class 1:1 root class 1:2

prio qdisc 2: prio qdisc 3:

prio class 2:1 prio class 3:1

TCP 21TCP 80

qdisc

class

leaf class

automatic
class

Figure 46. Rate example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root rate 1000mbit overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 150mbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root rate 150mbit

Add another shaped channel to the LNI and configure its dual-rate shaper with a CR of 850mbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:2 ceetm type root rate 850mbit

Configure one of the first channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 1

Configure one of the second channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:2 handle 3: ceetm type prio qcount 1

Add filters that will classify all packets with the destination port equal to 80 and lead them through the priority class of the first
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the priority class of the second
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 21
0xffff flowid 1:2
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip dport 21
0xffff flowid 3:1

4.2.8.1.2.5.4.2.3.2 Prioritization of two streams

Setup

The same setup is used as for the rate limit example.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
164 NXP Semiconductors

Execution

This example's corresponding qdisc and class hierarchy is pictured below:

root qdisc 1:

root class 1:1

prio qdisc 2:

qdisc

class

leaf class

prio class 2:2prio class 2:1

TCP 80 TCP 21

automatic
class

Figure 47. Prioritization example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root rate 1000mbit overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root rate 1000mbit

Configure two of the channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 2

Add filters that will classify all packets with the destination port equal to 80 and lead them through the highest priority class of the
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the second (lowest) priority
class of the channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 8000
0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip dport 8000
0xffff flowid 2:2

4.2.8.1.2.5.4.2.3.3 Assigning weights to two streams

Setup

The same setup is used as for the rate limit example.

Execution

This example's corresponding qdisc and class hierarchy is pictured below:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 165

root qdisc 1:

root class 1:1

prio qdisc 2:

wbfs qdisc 3:

wbfs class 3:2 wbfs class 3:4

TCP 21

wbfs class 3:1

TCP 80

wbfs class 3:3

prio class 2:1

qdisc

class

leaf class

automatic
class

Figure 48. WBFS example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root rate 1000mbit overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root rate 1000mbit

Configure one of the channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 1

Configure a class group of four classes, place it after the 2:1 class in the priority list, and assign different weights to each class
(10, 50, 120 and 200).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 2:1 handle 3: ceetm type wbfs qcount 4 qweight
10 50 120 200 cr 1 er 1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the class with the highest weight
of the group.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 21
0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip dport 21
0xffff flowid 2:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip dport 21
0xffff flowid 3:1

Add filters that will classify all packets with the destination port equal to 80 and lead them through another classes of the group.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 2:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 3:3

4.2.8.1.2.5.4.2.3.4 Unshaped Fair Queuing of two streams

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
166 NXP Semiconductors

Setup

In the following example a platform with CEETM support (LS1043ARDB - Main) is connected to two other boards: a LS1043ARDB
(Client) through a 10G link and a LS1046ARDB (Server) through a 1G link. The described setup is pictured below:

TCP 80
TCP 81

Client
LS1043ARDB

Main
LS1043ARDB

Server
LS1046ARDB

iperf clients
10G link

QoS rules
1G link

iperf servers

Figure 49. Unshaped Fair Queuing example setup

The iperf clients run on the Client while the iperf servers run on the Server. The Server listens on two TCP ports (80 and 81).

root@ls1046ardb:~# iperf -s -p 80 &
root@ls1046ardb:~# iperf -s -p 81 &

PCDs are applied on all platforms in advance.

root@ls1043ardb:~# fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /etc/fmc/
config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a
root@ls1046ardb:~# fmc -c /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/config.xml -
p /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/policy_ipv4.xml -a

In order to keep this example minimal, ARP frames aren't filtered and classified. Thus, MAC addresses need to be exchanged
and saved in advance as well.

Server:
root@ls1046ardb:~# arp -s <main IP address> <main HW address>
Main:
root@ls1043ardb:~# arp -s <client IP address> <client HW address>
root@ls1043ardb:~# arp -s <server IP address> <server HW address>
Client:
root@ls1043ardb:~# arp -s <main IP address> <main HW address>

IP forwarding is enabled on the Main board. Routes are added on the Server and Client boards as well.

Main:
root@ls1043ardb:~# echo 1 > /proc/sys/net/ipv4/ip_forward
Client:
root@ls1043ardb:~# route add -net <server network address> <server network mask> gw <main IP address>
Server:
root@ls1046ardb:~# route add -net <client network address> <client network mask> gw <main IP address>

After adding the qdiscs, the Client runs the iperf clients.

root@ls1043ardb:~# iperf -c <server IP address> -p 80 &
root@ls1043ardb:~# iperf -c <server IP address> -p 81 &

Execution

This example's corresponding qdisc and class hierarchy is pictured in Figure 50. on page 168.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 167

prio qdisc 3:

root qdisc 1:

root class 1:1 root class 1:2

prio qdisc 2:

prio class 2:1 prio class 3:1

TCP 81TCP 80

qdisc

class

leaf class

 automatic
class

Figure 50. Unshaped Fair Queuing example class hierarchy

Add a ceetm qdisc to the interface and don’t configure the LNI’s dual-rate shaper.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root

Add an unshaped channel to the LNI and configure its CR’s token bucket limit to 1000 bytes.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root tbl 1000

Add another unshaped channel to the LNI and configure its CR’s token bucket limit to 500 bytes.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:2 ceetm type root tbl 500

Configure one of the first channel’s priority classes.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 1

Configure one of the second channel’s priority classes.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:2 handle 3: ceetm type prio qcount 1

Add filters that will classify all packets with the destination port equal to 80 and lead them through the priority class of the first
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip dport 80
0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 81 and lead them through the priority class of the second
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip dport 81
0xffff flowid 1:2
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip dport 81
0xffff flowid 3:1

4.2.8.1.2.5.5 Debugging
This section describes the debugging capabilities of the DPAA1 Ethernet driver.

4.2.8.1.2.5.5.1 Ethtool support

Various counters and statistics are exported through ethtool such as the number of interrupts per core, the number of frames per
core, the number of available buffers, congestion detection, etc.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
168 NXP Semiconductors

Following is an example of an ethtool output:

root@ls1043ardb:~# ethtool -S fm1-mac1
NIC statistics:
 interrupts [CPU 0]: 1
 interrupts [CPU 1]: 1
 interrupts [CPU 2]: 2
 interrupts [CPU 3]: 2
 interrupts [TOTAL]: 6
 rx packets [CPU 0]: 0
 rx packets [CPU 1]: 0
 rx packets [CPU 2]: 0
 rx packets [CPU 3]: 0
 rx packets [TOTAL]: 0
 tx packets [CPU 0]: 0
 tx packets [CPU 1]: 0
 tx packets [CPU 2]: 6
 tx packets [CPU 3]: 0
 tx packets [TOTAL]: 6
 tx recycled [CPU 0]: 0
 tx recycled [CPU 1]: 0
 tx recycled [CPU 2]: 0
 tx recycled [CPU 3]: 0
 tx recycled [TOTAL]: 0
 tx confirm [CPU 0]: 1
 tx confirm [CPU 1]: 1
 tx confirm [CPU 2]: 2
 tx confirm [CPU 3]: 2
 tx confirm [TOTAL]: 6
 tx S/G [CPU 0]: 0
 tx S/G [CPU 1]: 0
 tx S/G [CPU 2]: 0
 tx S/G [CPU 3]: 0
 tx S/G [TOTAL]: 0
 rx S/G [CPU 0]: 0
 rx S/G [CPU 1]: 0
 rx S/G [CPU 2]: 0
 rx S/G [CPU 3]: 0
 rx S/G [TOTAL]: 0
 tx error [CPU 0]: 0
 tx error [CPU 1]: 0
 tx error [CPU 2]: 0
 tx error [CPU 3]: 0
 tx error [TOTAL]: 0
 rx error [CPU 0]: 0
 rx error [CPU 1]: 0
 rx error [CPU 2]: 0
 rx error [CPU 3]: 0
 rx error [TOTAL]: 0
 bp count [CPU 0]: 128
 bp count [CPU 1]: 128
 bp count [CPU 2]: 128
 bp count [CPU 3]: 128
 bp count [TOTAL]: 512
 rx dma error: 0
 rx frame physical error: 0
 rx frame size error: 0
 rx header error: 0
 rx csum error: 0
 qman cg_tdrop: 0

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 169

 qman wred: 0
 qman error cond: 0
 qman early window: 0
 qman late window: 0
 qman fq tdrop: 0
 qman fq retired: 0
 qman orp disabled: 0
 congestion time (ms): 0
 entered congestion: 0
 congested (0/1): 0

4.2.8.1.2.5.5.2 Read/Write of FMan Registers

Most of the FMan configuration registers are mapped into the system memory space. Efficient debugging and testing can be done
by making read/write operations on the registers through specialized tools. For example, the number of pause frames received
on a particular MAC device can be computed summing the base relative address of every component:

0x1a00000 (FMan) +
 0xe8000 (MAC 5) +
 0x014 (Maximum frame length register) =

0x1ae8014

A memory print of the 0x1ae8014 address will display the maximum frame length configured for the fifth MAC device from the
FMan on a LS1046A platform.

The entire memory map for all mapped registers of the DPAA1 hardware components ca be found in each platform's Reference
Manual.

4.2.8.1.2.5.5.3 Sysfs support

To enable Sysfs in the Linux kernel one must set the CONFIG_SYSFS option in Kconfig. The DPAA1 Ethernet Driver exports a
series of information in Sysfs such as the buffer pool IDs, the frame queue IDs used by the interface, and MAC registers and
statistics, as shown in the following examples:

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/bpids
32

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/fqids
Rx error: 259
Rx default: 260
Rx PCD: 14592 - 14719
Rx PCD High Priority: 80128 - 80255
Tx confirmation (mq): 261 - 324
Tx error: 325
Tx default confirmation: 326
Tx: 327 - 390

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/mac_regs

FM MAC - MEMAC - 2 (0xFFFF8000801D6000)
--

0xFFFF8000801D6008: 0x00020840 command_config
0xFFFF8000801D600C: 0x38ca0568 mac_addr0.mac_addr_l
0xFFFF8000801D6010: 0x0000de30 mac_addr0.mac_addr_u
[...]

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
170 NXP Semiconductors

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/mac_rx_stats

FM MAC - MEMAC - 2 Rx stats (0xFFFF8000801D6000)
--

0xFFFF8000801D6100: 0x00000000 reoct_l
0xFFFF8000801D6104: 0x00000000 reoct_u
[...]

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/mac_tx_stats

FM MAC - MEMAC - 2 Tx stats (0xFFFF8000801D6000)
--

0xFFFF8000801D6200: 0x00000000 teoct_l
0xFFFF8000801D6204: 0x00000000 teoct_u
[...]

4.2.8.1.2.5.6 Frequently Asked Questions
1. How do I send a frame up the network stack?

The frame-processing network stack only exists in the context of a net device. So, “sending a frame into the stack” is an
inaccurate statement: the frame must first be associated to a net device, and then the respective instance of the Ethernet
driver will deliver the frame to the stack, on behalf of that net device. To achieve that, the frame must arrive via the physical
device that underlies the driver.

2. Can I allocate a buffer and inject it as a frame into a private interface’s ingress queues?

This is probably a mistake. The DPAA1-Ethernet driver makes hard assumptions on buffer ownership, allocation and layout.
In addition, the driver expects FMan Parse Results to be placed in the frame preamble, at an offset which is implementation-
dependent. In short, while a carefully crafted code might work, it would make for very brittle design, and hard to maintain,
too.

3. But can I acquire a buffer directly from a private interface’s Buffer Pool, and inject it as such into the private interface’s Rx
FQs?

It is not an intended use-case for private interfaces.

4. What format must an ingress frame have, from the standpoint of the DPAA1-Ethernet driver and the Linux kernel stack?

The DPAA1-Ethernet driver is expected to perform an initial validation of the ingress frame, but does not look at the Layer-2
fields directly. The current kernel networking code does make a check on the MAC addresses of the frame and the protocol
(Ethertype) field. One should not make assumptions on such details of frame processing, because the kernel stack
implementation is not bound by any contract.

5. What channel are the FQs assigned to?

Each interface uses by default one pool channel across all Software Portals and also the dedicated channels of each CPU.
Note that any of these channels may be shared with other DPAA1 Ethernet devices, and even with other DPAA1 drivers
such as SEC. The default and error FQs are assigned to the pool channel. The Tx queues are assigned to the (direct
connect) channel linked to the Tx port associated with the interface. Any other statically-defined queues will be assigned
in a round-robin fashion to the core-affine portals.

6. What work queue are the FQs assigned to?

• Tx Confirmation FQs go to WQ1

• Rx Error and Tx Error FQs go to WQ2

• Rx Default, Tx and PCD FQs go to WQ3

7. How do I use the core-affined queues?

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 171

The anticipated way of using the core-affined queues is to use one of the default FMC policy files:

/etc/fmc/config/private/common/policy_ipv4.xml
/etc/fmc/config/private/common/policy_ipv6.xml

Default FMC configuration files are provided for each reference board:

/etc/fmc/config/private/<name of reference board>/<RCW directory>/<name of configuration file>

Here are two examples showing FMC commands using the default configuration and policy files:

(1) fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /etc/fmc/config/private/
ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a

Note that /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml is a soft link to /etc/fmc/config/
private/common/policy_ipv4.xml.

(2) fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /etc/fmc/config/private/
ls1043ardb/RR_FQPP_1455/policy_ipv6.xml -a

Note that /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv6.xml is a soft link to /etc/fmc/config/
private/common/policy_ipv6.xml.

If you create a configuration file instead of using one of the default configuration files, be sure to use the appropriate policies
found in the default policy files:

/etc/fmc/config/private/common/policy_ipv4.xml
/etc/fmc/config/private/common/policy_ipv6.xml

4.2.8.1.2.5.7 Known Issues
• The MTU currently defaults to a maximum of 1522. If you want a higher MTU, it is necessary to pass fsl_fm_max_frm=N

on the kernel bootargs, where "N" is the desired maximum MTU + 22.

• Scatter Gather frames are not supported on LS1043A due to the FMan A010022 errata.

4.2.8.1.2.6 Upstream Ethernet Driver
The DPAA 1.x Upstream Ethernet driver variant has been actively maintained in the Linux kernel community since v4.10. Most
features and fixes have been back ported to the kernel versions of this current LSDK release.

An overview of the driver, along with its main features and configuration options, is written in the Linux kernel's source tree in the
documentation section at Documentation/networking/dpaa.txt.

Configuration

The Upstream and Private Ethernet driver variants are independent from one another and are built separately. The Private driver
variant is enabled by default by the LSDK. If you wish to build the Upstream driver variant instead, enable the following build
options:

CONFIG_FSL_DPAA=y
CONFIG_FSL_FMAN=y
CONFIG_FSL_DPAA_ETH=y
CONFIG_FSL_XGMAC_MDIO=y

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
172 NXP Semiconductors

Device Trees

The Upstream and Private Ethernet drivers use different Device Tree Source files. The LSDK enables the device trees associated
with the Private driver by default. These end with the -sdk flag. The device trees that are used by the Upstream driver variant do
not have a flag at the end. For example:

fsl-ls1046a-frwy.dts - used by the Upstream Ethernet driver
fsl-ls1046a-frwy-sdk.dts - used by the Private Ethernet driver

After building the kernel with the Upstream Ethernet driver enabled, also compile the correct Device Tree Blob for your platform.
For example:

make freescale/fsl-ls1046a-frwy.dtb - build the DTB for the Upstream Ethernet driver
make freescale/fsl-ls1046a-frwy-sdk.dtb - build the DTB for the Private Ethernet driver

Limitations

A workaround for the LS1046A FMan A010022 errata is integrated into the Upstream Ethernet driver. Egress Scatter Gather
frames cannot be used on this platform.

4.2.8.1.3 Queue Manager (QMan) and Buffer Manager (BMan)

4.2.8.1.3.1 QMan/BMan Drivers Introduction

Description

This document describes Linux and USDPAA drivers for the QMan and BMan hardware blocks underlying the QorIQ data path.
QMan and BMan have independent drivers but their implementation and interfaces are very much analogous due to the similar
CCSR and Corenet programming interfaces for each. As such, we will describe here "the driver", when in fact the description
applies to both the QMan and BMan drivers equally and independently.

The driver targets the Linux and USDPAA environments. The majority of the code is shared between the environments.
Environmental differences are dealt with by including a compatibility layer in the USDPAA code. This code redefines Linux-specific
functionality for use in the other environments (for example irqs and spinlocks).

The driver has two parts to it, "config" and "portal", corresponding to the two complimentary programming interfaces exposed by
the device itself - these are described below. Additionally there is a self-test module for each driver that uses the portal interface
to perform some basic tests provided one or more portals are made available to the OS via its device-tree.

CCSR, or "global config"

The CCSR map and associated registers allows the device to be configured and controlled in a global/un-partitioned manner.
This includes such basic notions as configuring the device's private memory region(s), configuring the hardware interfaces that
are exposed by QMan/BMan to the dependent hardware blocks (CAAM, PME, Fman), managing global device error interrupts,
etc. Only one "control" operating system should map to this CCSR register space in the case that a hypervisor is managing multiple
guests. Other operating systems like secondary Linux instances or USDPAA applications do not have access to CCSR registers.

Functionality

Configuration

The QMan device is configured via device-tree nodes and by some compile-time options controlled via Linux's Kconfig system.
See the “QMan and BMan Kernel Configure Options” section for more info.

API

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 173

For the Linux kernel, the C interface of the QMan and BMan drivers provides access to portal-based functionality for arbitrary
higher-layer code, hiding all the mux/demux/locking details required for shared use by multiple driver layers (networking, pattern
matching, encryption, IPC, etc.) The driver makes 1-to-1 associations between cpus and portals to improve cache locality and
reduce locking requirements. The QMan API permits users to work with Frame Queues and callbacks, independently of other
users and associated portal details. The BMan API permits users to work with Buffer Pools in a similar manner.

For USDPAA, the driver associates portals with threads (in the pthreads sense), so the above comments about “shared use by
multiple driver layers” only applies with respect to code executed within the thread owning a portal. To benefit from cache locality,
and particularly from portal stashing, USDPAA-enabled threads are generally expected to be configured to execute on the same
core that the portal is assigned to. Indeed, the USDPAA API for threads to call to initialise a portal takes the core as a function
parameter. Please see the USDPAA User Guide for more information (as well as the “QMan BMan API Reference on page
180”).

DPAA1 allocator

The DPAA1 allocator is a purely software-based range-allocator, but this must be explicitly seeded with a hard-coded range of
values and is not shared between operating systems. The DPAA1 allocator is used to allocate all QMan and BMan resource, i.e
bman-bpid, qman-fqid, qman-pool, qman-cgrid, ceetm-sp, ceetm-lni, ceetm-lfqid, ceetm-ccgrid.

Sysfs Interface

QMan and BMan have a sysfs interface. Refer to the Queue Manager, Buffer Manager API reference Manual for details.

Debugfs Interface

Both the QMan and BMan have a debugfs interface available to assist in device debugging. The code can be built either as a
loadable module or statically.

Module Loading

The drivers are statically linked into the kernel. Driver self-tests and the debugfs interface may be built as dynamically loadable
modules.

QMan and BMan Kernel Configure Options

Common Kernel Configure Options Description

CONFIG_STAGING Required in order to make “staging” drivers such as QMan/
BMan available.

CONFIG_FSL_DPA Required to build either QMan and/or BMan drivers.

CONFIG_FSL_DPA_CHECKING Compiles in additional sanity-checks, at the expense of minor
performance degradation. Recommended for debugging, but
not for benchmarking.

CONFIG_FSL_DPA_CAN_WAIT Compiles in support for interfaces and functionality that allow
callers to optionally be put to “sleep” waiting for temporarily
blocked resources to become available rather than returning
errors. Eg. enqueuing when an enqueue ring is full. This is
enabled unconditionally on linux.

CONFIG_FSL_DPA_CAN_WAIT_SYNC Similar to “_CAN_WAIT”, but supports additional API flags for
waiting for asynchronous operatoins to complete. Eg. after
starting a volatile dequeue, wait for all dequeues to complete.
This is enabled unconditionally on linux.

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
174 NXP Semiconductors

Table continued from the previous page...

Common Kernel Configure Options Description

CONFIG_FSL_DPA_PIRQ_FAST If set, causes portals to initialise with fast-path interrupt
sources enabled. (Otherwise, polling APIs must be called to
perform fast-path processing.) This is enabled unconditionally
on linux.

CONFIG_FSL_DPA_PIRQ_SLOW If set, causes portals to initialise with slow-path interrupt
sources enabled. (Otherwise, polling APIs must be called to
perform slow-path processing.) This is enabled
unconditionally on linux.

CONFIG_FSL_DPA_PORTAL_SHARE Compiles in support for sharing one CPU's portal with all
online CPUs that do not have their own. Useful when
assigning most portals to USDPAA applications and leaving
only a minimum for kernel requirements, in which case Tx
events on all CPUs can be handled by the network driver.
This is enabled by default, as the microscopic performance
overhead of checking this option is not noticable in the kernel
environment.

QMan Kernel Configure Options Description

CONFIG_FSL_QMAN Required to build the QMan driver

CONFIG_FSL_QMAN_CONFIG Handles config/CCSR nodes in the device-tree and initialises
the corresponding devices

CONFIG_FSL_QMAN_TEST Builds a self-test kernel module (static or dynamic) that will, if
QMan portal nodes are available in the device-tree, exercise
one of the portals and panic() the kernel if any errors are
detected.

CONFIG_FSL_QMAN_TEST_STASH_POTATO This requires the presence of multiple unused cpu-affine
portals, and performs a "hot potato" style test enqueuing/
dequeuing a frame across a series of FQs scheduled to
different portals (and cpus). The intention is to test stashing.
The "potato" will visit each "spoon" (portal/cpu pair) during
the test. Each "potato" frame has a single cacheline of data
that is read-modify-written by each cpu/portal before passing
it to the next.

CONFIG_FSL_QMAN_TEST_HIGH This requires the presence of cpu-affine portals, and performs
high-level API testing with them (whichever portal(s) are
affine to the cpu(s) the test executes on).

CONFIG_FSL_QMAN_TEST_ERRATA This requires the presence of cpu-affine portals, and performs
testing that handling for known hardware-errata is correct.

CONFIG_FSL_QMAN_DEBUGFS This option enables files in the debugfs filesystem.

BMan Kernel Configure Options Description

CONFIG_FSL_BMAN Required to build the BMan driver

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 175

Table continued from the previous page...

BMan Kernel Configure Options Description

CONFIG_FSL_BMAN_CONFIG Handles config/CCSR nodes in the device-tree and initialises
the corresponding devices

CONFIG_FSL_BMAN_TEST Builds a self-test kernel module (static or dynamic) that will, if
BMan portal nodes are available in the device-tree, exercise
one of the portals and panic() the kernel if any errors are
detected.

CONFIG_FSL_BMAN_TEST_HIGH Performs high-level API testing.

CONFIG_FSL_BMAN_TEST_THRESH Multi-threaded testing of BMan pool depletion handling.

CONFIG_FSL_BMAN_DEBUGFS This option enables files in the debugfs filesystem.

Device-tree nodes

Device tree nodes are used to describe QMan/BMan resources to the driver, some of which are specific to control-plane s/w (i.e.
depending on CCSR access) and some of which relate to portal usage for control and data plane s/w.

CCSR, or "global config"

The "fsl,qman" and "fsl,bman" nodes (i.e. these "compatible" property types) indicate the presence and location of the 4Kb
"Configuration, Control, and Status Register" (CCSR) space, for use by a single control-plane driver instance to initialise and
manage the device. The device-tree usually groups all such CCSR maps as sub-nodes under a parent node that represents the
SoCs entire CCSR map, usually named "soc" or "ccsr". For example;

 soc {
 #address-cells = <1>;
 #size-cells = <1>;
 device_type = "soc";
 compatible = "simple-bus";

 ddr1: memory-controller@8000{
 [...]
 };
 i2c@118000 {
 [...]
 };
 mpic: pic@40000 {
 [...]
 };

 qman: qman@318000 {
 compatible = "fsl,qman";
 reg = <0x318000 0x1000>;
 interrupts = <16 2 1 3>;
 /* Commented out, use default allocation */
 /* fsl,qman-fqd = <0x0 0x20000000 0x0 0x01000000>; */
 /* fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>; */
 };
 bman: bman@31a000 {
 compatible = "fsl,bman";
 reg = <0x31a000 0x1000>;
 interrupts = <16 2 1 3>;
 /* Same as fsl,qman-*, use default allocation */
 /* fsl,bman-fbpr = <0x0 0x22000000 0x0 0x01000000>; */

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
176 NXP Semiconductors

 };
 [...]
 };

Contiguous memory

The fsl,qman-fqd, fsl,qman-pfdr, and fsl,bman-fbpr properties can be used to specify which contiguous sub-regions of
memory should be used for the various memory requirements of QMan/BMan. The properties use 64-bit values, so 4 cells express
the address/size 2-tuple to use. In the above example, if uncommented, the QMan/BMan resources would be allocated in the
range 0x2000000-0x221fffff, with 16MB each for QMan FQD and PFDR memory and BMan FBPR memory. If these properties
are not specified (or they are commented out) in the device tree, then default values hard-coded within the QMan and BMan
drivers are used instead. The linux kernel will reserve these memory ranges early on boot-up. Note that in the case of a hypervisor
scenario, these memory ranges are relative to the partition memory space of the control-plane guest OS.

QMan FQID-range allocation

The "fsl,fqid-range" node (i.e. these "compatible" property types) indicates a range of FQIDs to use for FQID allocation by the
QMan driver. The range within the node is specified using a property of the same name, and whose two cells are the starting
FQID value and the count. Multiple nodes can be provided to seed the allocator with a discontiguous set of FQIDs.

Eg. to specify that the allocator use FQIDs between 256 and 512 inclusive;

 qman-fqids@0 {
 compatible = "fsl,fqid-range";
 fsl,fqid-range = <256 256>;
 };

BMan BPID-range allocation

The "fsl,bpool-range" node (i.e. these "compatible" property types) indicates a range of BPIDs to use for BPID allocation by the
BMan driver. The range within the node is specified using a property of the same name, and whose two cells are the starting
BPID value and the count. Multiple nodes can be provided to seed the allocator with a discontiguous set of BPIDs.

Eg. to specify that the allocator use BPIDs between 32 and 64 inclusive;

 bman-bpids@0 {
 compatible = "fsl,bpid-range";
 fsl,bpid-range = <32 32>;
 };

Compile-time Configuration Options

The "Kernel Configure Options" above describe the compile-time configuration options for the kernel. The device tree entries are
also "compile-time", and are described above.

Source Files

As mentioned earlier, the QMan/BMan drivers support Linux and USDPAA environments. Many of the files have the same contents
between the different environments, though the files are located at different paths to satisfy the different build systems for each.

For DPAA1 QBMan drivers, all the files are located in drivers/soc/fsl/qbman directory

USDPAA

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 177

Source Files Description

include/usdpaa/fsl_qman.h The QMan driver APIs

include/usdpaa/fsl_bman.h The BMan driver APIs

include/usdpaa/fsl_usd.h The USDPAA-specific APIs for QMan/BMan (eg. Binding
portals to threads, support for UIO-based interrupt handling,
etc.)

include/usdpaa/compat.h The QMan/BMan driver compatibility shims

include/usdpaa/compat_list.h The QMan/BMan driver compatibility shims, linked-list
support.

src/qbman/qman_*.* The QMan driver

src/qbman/bman_*.* The BMan driver

src/qbman/dpa_sys.h USDPAA-specific definitions shared by the QMan/BMan
drivers.

src/qbman/dpa_alloc.c USDPAA support for dpa allocator.

src/qbman/06-usdpaa-uio.rules Udev rules to create appropriately-named /dev entries when
the kernel registers portals as UIO devices.

Build Procedure

The procedure is a standard SDK build, which includes Linux kernel and USDPAA drivers by default.

Test Procedure

The QMan/BMan drivers are used by all Linux kernel software that communicates with datapath functionality such as CAAM,
PME, and/or Fman. (The exception is that kernel cryptographic acceleration presently bypasses QMan/BMan interfaces by using
the device's own “job queue” interface.) Use of such datapath-based functionality provides test-coverage of user-facing features
of the QMan/BMan drivers in the Linux environment. This complements the QMan/BMan unit tests that are run during development
but are not part of the release. For USDPAA, all applications and tests use QMan and BMan interfaces in a fundamental way, so
all imply a degree of test-coverage.

Additionally, for Linux, the QMan and BMan self-tests target QMan and BMan directly without involving other datapath blocks. If
these are built statically into the kernel and the device-tree makes one or more QMan and/or BMan portals available, then the
self-tests will run during the kernel boots and log output to the boot console. The output of both QMan and BMan tests resembles
the following excerpts;

Detecting the CCSR and portal device-tree nodes;

[...]
Qman ver:0a01,01,02
[...]
Bman ver:0a02,01,00
[...]
BMan err interrupt handler present

BMan portal initialised, cpu 0

BMan portal initialised, cpu 1

BMan portal initialised, cpu 2

BMan portal initialised, cpu 3

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
178 NXP Semiconductors

BMan portal initialised, cpu 4

BMan portal initialised, cpu 5

BMan portal initialised, cpu 6

BMan portal initialised, cpu 7

BMan portals initialised

BMan: BPID allocator includes range 32:32

QMan err interrupt handler present

QMan portal initialised, cpu 0

QMan portal initialised, cpu 1

QMan portal initialised, cpu 2

QMan portal initialised, cpu 3

QMan portal initialised, cpu 4

QMan portal initialised, cpu 5

QMan portal initialised, cpu 6

QMan portal initialised, cpu 7

QMan portals initialised

QMan: FQID allocator includes range 256:256

QMan: FQID allocator includes range 32768:32768

QMan: CGRID allocator includes range 0:256

QMan: pool channel allocator includes range 33:15

[...]

Running the QMan and BMan self-tests;

[...]
BMAN: --- starting high-level test ---
BMAN: --- finished high-level test ---
[...]
qman_test_high starting
VDQCR (till-empty);
VDQCR (4 of 10);
VDQCR (6 of 10);
scheduled dequeue (till-empty)
Retirement message received
qman_test_high finished
[...]

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 179

Running the BMan threshold test;

[...]
bman_test_thresh: start
bman_test_thresh: buffers are in
thread 0: starting
thread 1: starting
thread 2: starting
thread 3: starting
thread 4: starting
thread 5: starting
thread 6: starting
thread 7: starting
thread 0: draining...
cb_depletion: bpid=62, depleted=2, cpu=0
cb_depletion: bpid=62, depleted=2, cpu=1
cb_depletion: bpid=62, depleted=2, cpu=2
cb_depletion: bpid=62, depleted=2, cpu=3
cb_depletion: bpid=62, depleted=2, cpu=4
cb_depletion: bpid=62, depleted=2, cpu=5
cb_depletion: bpid=62, depleted=2, cpu=6
cb_depletion: bpid=62, depleted=2, cpu=7
thread 0: draining done.
thread 0: exiting
thread 1: exiting
thread 2: exiting
thread 3: exiting
thread 4: exiting
thread 5: exiting
thread 6: exiting
thread 7: exiting
bman_test_thresh: done
[...]

Running the QMan hot potato test;

[...]
qman_test_hotpotato starting
Creating 2 handlers per cpu...
Number of cpus: 8, total of 16 handlers
Sending first frame
Received final (8th) frame
qman_test_hotpotato finished
[...]

If the self-tests detect any errors, they will panic() the kernel immediately, so if the kernel gets beyond the QMan/BMan self-tests
then the tests passed.

4.2.8.1.3.2 QMan BMan API Reference

4.2.8.1.3.2.1 Introduction to the Queue Manager and the Buffer Manager
The Queue Manager (QMan) and Buffer Manager (BMan) devices each expose two interfaces to software control. One interface
is the Configuration and Control Status Register map (CCSR), which provides global configuration of the device, registers related
to global device errors, performance, statistics, debugging, etc. The other interface is the CoreNet interface, which provides a
memory map with multiple "portals" located in separable sub-regions for independent/parallel run-time use of the devices.

The software described in this document is targeted to the Linux kernel and Linux user-space (USDPAA) system targets. However,
only Linux supports operating as the controller for the devices, so all interfaces related to CCSR access are Linux-only. Also,

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
180 NXP Semiconductors

remember platform-specific considerations when working with the interfaces described here. See Operating system specifics on
page 228for more details.

4.2.8.1.3.2.2 Buffer Manager
4.2.8.1.3.2.2.1 Buffer Manager (BMan) Overview

Function

The QorIQ Buffer Manager (BMan) SoC block manages pools of buffers for use by software and hardware in the “Datapath”
architecture.

In particular;

1. provides an efficient use of buffer resources because the output will only occupy as many buffers as required (whereas
pre-allocation must provide for the worst-case scenario each time if it wishes to avoid truncation and information-loss),

2. software does not need to provision resources for every queued operation nor handle the complications of recycling
unused output buffers, etc.,

3. the footprint for buffer resources for a variety of different flows (and even different guest operating systems) can be
"pooled".

With respect to "buffers", BMan really acts as an allocator of any 48-bit tokens the user wishes - BMan does not interpret these
tokens at all, it is only the software and hardware blocks that use BMan that may assume these to be memory addresses. In many
cases, the BMan acquire and release interfaces are likely to be more efficient than software-managed allocators due to the
proximity of BMan's corenet-based interfaces to each CPU and its on-board caching and pre-fetching of pool data. Possible
examples include; a BMan-oriented page-allocator for operating system memory-management, a "frame queue" allocator to
manage unused QMan frame queue descriptors (FQD), etc. In particular, the frame queue example provides a simple mechanism
for sharing a range of frame-queue IDs across different partitions/operating systems in a virtualized environment without needing
inter-partition communications in software.

Interfaces

The BMan block has a CCSR register space and interrupt line associated with the block for global configuration and management,
specifically;

• the private system memory range (invisible to software) needed by BMan,

• software and hardware depletion interrupt thresholds for each pool,

• device error handling uses the global interrupt line and the CCSR register space contains error-capture and error-status
registers.

The BMan block also exposes a Corenet memory space for low-latency interaction by the multiple SoC cores, and this corenet
region is divided into a geometry of "portals" to allow independent access to BMan functionality in a partitioned (and/or virtualized)
environment. Each portal consists of one 16KB cache-enabled and one 4KB cache-inhibited sub-range of the Corenet region, as
well as a per-portal interrupt line. There are a variety of possible reasons for using distinct portals;

• for partitioning between distinct guest operating systems,

• to dedicate a portal for each CPU to reduce locking and improve cache-affinity,

• to make distinct portal configurations available,

• to give certain applications their own portal rather than enforcing a mux/demux layer to share a portal between
applications,

• [etc.]

Each portal presents the following BMan functionality;

• a "release command ring" (RCR), a pipelined mechanism for software to hardware commands that release buffers to
BMan-managed buffer pools,

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 181

• a "management command" interface (MC), a low-latency command/response interface for acquiring buffers from buffer
pools, and querying the status of all buffer pools,

• an interrupt line and associated status, disable, enable, and inhibit registers.

These portal interfaces will be described in more detail in their respective sections.

4.2.8.1.3.2.2.2 BMan configuration interface
The BMan configuration interface is an encapsulation of the BMan CCSR register space and the global/error interrupt line.
Whereas BMan portals provide independent channels for accessing BMan functionality, the configuration interface represents
the BMan device itself. The BMan configuration interface is presently limited to the device-tree node that represents it, with one
exception: an API exists to set per-buffer-pool depletion thresholds. This API is only available in the linux control-plane - that is,
a kernel compiled with BMan control support that has the BMan CCSR device-tree node present. In a hypervisor scenario, this
implies that only the control-plane linux guest OS can set buffer pool depletion thresholds.
4.2.8.1.3.2.2.2.1 BMan Device-Tree Node

The BMan device tree node represents the BMan device and its CCSR configuration space. When a linux kernel has BMan control
support compiled in, it will react to this device tree node by configuring and managing the BMan device. The device-tree node
sits within the CCSR node ("soc") and is of the following form;

 soc@fe000000 {
 [...]
 bman: bman@31a000 {
 compatible = "fsl,bman";
 reg = <0x31a000 0x1000>;
 fsl,liodn = <0x20>;
 };
 [...]
 };

'compatible' and 'reg' are standard ePAPR properties.

4.2.8.1.3.2.2.2.1.1 Free Buffer Proxy Records

As previously mentioned, BMan buffer pools needn't be used only for managing memory buffers, but in fact can manage pools of
arbitrary 48-bit token values, whatever those tokens might represent. This is possible because BMan never uses those token
values as memory locations - all management of buffer pools is maintained in memory that is private to the BMan block.
Specifically, BMan uses some internal memory together with a private range of contiguous system memory for backing store. The
internal units of the backing store memory are called "free buffer proxy records" (FBPRs), each of which occupies a 64-byte
cacheline of memory, and can hold 8 tokens.

The current driver implementation allows this memory resource to be specified via the 'fsl,bman-fbpr' device-tree property, or by
resorting to a default allocation of contiguous memory early during kernel boot. The 'fsl,bman-fbpr' property specifies a 2-tuple
of address and size, specifying the physical address range to assign to BMan. The example given configures 16MB for FBPR
memory (262,144 FBPR entries or 2,097,152 buffer tokens). These elements are expressed as 64-bit values, so take two cells
each:

 fsl,fbpr = <0x0 0x20000000 0x0 0x01000000>;

If the hypervisor is in use, this address range is "guest physical". If the given memory range falls within the range used by the
linux control-plane OS, it will attempt to reserve the range against use by the OS.

For all BMan and QMan private memory resources, the alignment of the memory region must match its size.

 NOTE

4.2.8.1.3.2.2.2.1.2 Logical I/O Device Number (BMan)

Reads and writes to BMan's FBPR memory are subject to processing by the PAMU IO-MMU configuration of the SoC. In particular,
BMan has an LIODN (Logical I/O Device Number) register setting that will be used by PAMU authorise and possibly translate

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
182 NXP Semiconductors

memory accesses. The bootloader (u-boot) will program BMan's LIODN register and it will add this value as the "fsl,liodn" property
before passing it along to the booted software.

 fsl,liodn = <0x20>;

This property is only used by the hypervisor, in order to ensure that any translation between guest physical and real physical
memory for the linux guest OS is similarly applied to BMan transactions. If linux is booted natively (no hypervisor), then the PAMU
is either left in bypass mode or it is configured without translation. In any case the LIODN is of little practical importance to the
configuration or use of BMan driver software.

4.2.8.1.3.2.2.2.2 Buffer Pool Node

The BMan buffer pool device tree node represents one of a BMan device's buffer pools and its associated configuration. When a
linux kernel has BMan control support compiled in, it will react to this device tree node by configuring and managing the BMan
buffer pool, in particular the pool will be marked as reserved by the driver so that it is not available for dynamic assignment. The
device-tree nodes usually sit within a BMan portals parent node ("bman-portals") and is of the following form;

 bman-portals@f4000000 {

 [...]

 buffer-pool@0 {

 compatible = "fsl,bpool";

 fsl,bpid = <0x0>;

 fsl,bpool-cfg = <0x0 0x100 0x0 0x1 0x0 0x100>;

 fsl,bpool-thresholds = <0x8 0x20 0x0 0x0>;

 };

 [...]

 };

4.2.8.1.3.2.2.2.2.1 Buffer Pool ID

The BMan device supports hardware managed buffer pools. Specifications and valid ID ranges vary between SoC's. Refer to the
appropriate SoC Reference Manual for more information. The example above configures buffer pool 0, which is used by the QMan
driver as an inter-partition allocator of unused QMan Frame Queue IDs;

 fsl,bpid = <0x0>;

Buffer pool nodes in the device-tree indicate that the corresponding buffer pool IDs are reserved, ie. that they are not to be used
for ad-hoc allocation of unused pools.

4.2.8.1.3.2.2.2.2.2 Seeding Buffer Pools

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 183

It is also possible to have the control plane linux BMan driver seed the buffer pool with an arbitrary arithmetic sequence of values,
using the "fsl,bpool-cfg" property. This property is a 3-tuple of 64-bit values (each taking 2 cells) defining the arithmetic sequence;
the count, the increment, and the base.

 fsl,bpool-cfg = <0x0 0x100 0x0 0x1 0x0 0x100>;

In this example, the QMan FQ allocator implemented using BMan buffer pool ID 0 is seeded with 256 FQIDs in the range
[256...511].

4.2.8.1.3.2.2.2.2.3 Depletion Thresholds

Each of the 64 buffer pools has CCSR registers related to depletion-handling. A pool is considered "depleted" once the number
of buffers in that pool crosses a "depletion-entry" threshold from above, and this ends when the number of buffers subsequently
crosses a "depletion-exit" threshold from below (the depletion-exit threshold should be higher than the depletion-entry threshold).

Each pool maintains two independent depletion states - one for software use and another for hardware blocks. Hardware blocks
(like CAAM, FMan, PME) use the hardware depletion state primarily for the purpose of implementing push back (e.g. by stalling
input-processing, issuing "pause frames", etc). There is a depletion-entry and -exit threshold for each buffer pool related to this
hardware depletion state. The software depletion state serves two possible purposes - one is to allow software to implement push
back too. The other use of software depletion thresholds is to allow software to manage "replenishment" of buffer pools. It is
software that seeds buffer pools with blocks of memory initially and if desired, it can also use this mechanism to selectively provide
additional blocks at run-time during depletion.

 fsl,bpool-thresholds = <0x8 0x20 0x0 0x0>;

Here, software depletion thresholds have been set for the buffer pool used for the FQ allocator, but hardware depletion thresholds
are disabled (the pool is for software use only). The pool will enter depletion when it drops below 8 "buffers" (in this case, FQIDs),
and exit depletion when it rises above 32.

4.2.8.1.3.2.2.2.3 BMan Portal Device-Tree Node

The BMan Corenet portal interface in QorIQ P4080 provides up to 10 distinct memory-mapped interfaces for use by software to
interact efficiently with BMan functionality. Specifically, each portal provides the following sub-interfaces; RCR (Release Command
Ring), MC (Management Command), and ISR (Interrupt Status Register). For non-P4080 specifications, refer to the appropriate
QorIQ SoC Reference Manual.

The BMan driver determines the available corenet portals from the device tree. The portal nodes are at the physical address
scope (unlike the device-tree node for the BMan device itself, which is within the “soc” physical address node that represents
CCSR). These nodes indicate the physical address ranges of the cache-enabled and cache-inhibited sub-regions of the portal
(respectively), and look something like the following;

 bman-portal@0 {
 compatible = "fsl,bman-portal";
 reg = <0xe4000000 0x4000 0xe4100000 0x1000>;
 interrupts = <0x69 2>;
 interrupt-parent = <&mpic>;
 cell-index = <0x0>;
 cpu-handle = <&cpu3>;
 };

The most note-worthy property is "cpu-handle", which is used to express an affinity/association between the given BMan portal
and the CPU represented by the referenced device-tree node.

4.2.8.1.3.2.2.2.3.1 Portal Initialization (BMan)

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
184 NXP Semiconductors

The driver is informed of the BMan portals that are available to it via the device-tree passed to the system from the boot process.
For those portals that aren’t reserved for USDPAA usage via the “fsl,usdpaa-portal” property, it will automatically create TLB
entries to map the BMan portal corenet sub-regions as cpu-addressable and cache-inhibited or cache-enabled as appropriate.

The BMan driver will automatically associate initialised BMan portals with the CPU to which they are configured, only a one-per-
CPU basis (if multiple portals are configured for the same CPU, only one is used). The purpose of this is to provide a canonical
portal that software can use for whichever CPU it is running on, with the advantages of a cpu-affine interface being improved
cache-locality and reduced locking. This requires that each CPU have at least one portal device-tree node dedicated to it using
the “cpu-handle” property.

4.2.8.1.3.2.2.2.3.2 Portal sharing

If there are CPUs that have no affine portal associated with them (for example if most portals have been reserved for USDPAA
use), then the driver will select the highest-index portal to be configured for “sharing” with the CPUs that have no affine portal,
otherwise called “slave CPUs” in this document. In this mode of operation, a coarser locking scheme is used for the portal in order
to properly synchronise use by more than one CPU.

One key point to understand with portal sharing is that hardware-instigated portal events will continue to be processed only by
the CPU to which the portal is affine, they are not shared. One consequence of this is that slave CPUs can not use *_irqsource_*()
APIs to alter the interrupt-vs-polling state of the portal, nor can they call *_poll_*() APIs to perform run-to-completion servicing of
the portal. The sharing of the portal is only to allow software-instigated portal functionality to be available to slave CPUs, such as
creating and manipulating objects, performing commands, etc.

4.2.8.1.3.2.3 BMan CoreNet portal APIs
The following sections describe interfaces provided by the BMan driver for manipulating portals, as defined in BMan Portal Device-
Tree Node on page 184.

4.2.8.1.3.2.3.1 BMan High-Level Portal Interface
4.2.8.1.3.2.3.1.1 Overview (BMan)

The high-level portal interface provides management and encapsulation of a portal hardware interface. The operations performed
on the portal are co-ordinated internally, hiding the user from the I/O semantics, and allowing multiple users/contexts to share
portals without collaboration between them. This interface also provides an object representation for buffer pools, with optional
assists for cases where the user wishes to track depletion entry and exit events.

This interface provides locking and arbitration of portal operations from multiple software contexts and/or threads (ie. the portal
is shared). In cases where a resource is busy, the interface also gives callers the option of blocking/sleeping until the resouce is
available. In any case where sleeping is an option, the caller can also specify whether the sleep should be interruptible.

4.2.8.1.3.2.3.1.2 Portal management (BMan)

The portal management API provides bman_affine_cpus(), which returns a mask that indicates which CPUs have auto-initialized
portals associated with them. See BMan Portal Device-Tree Node on page 184. All other BMan API functions must be executed
on CPUs contained within this mask, and any interactions they require with h/w will be performed on the corresponding portals.

/**
 * bman_affine_cpus - return a mask of cpus that have portal access
 */
const cpumask_t *bman_affine_cpus(void);

4.2.8.1.3.2.3.1.2.1 Modifying interrupt-driven portal duties (BMan)

Portals have various servicing duties they must perform in reaction to hardware events. The portal management API allows
applications to control which of these duties/events are triggered by interrupt-handling versus those which are performed at the
application’s explicit request via bman_poll(). If portal-sharing is in effect, refer to Portal sharing on page 185. These APIs will
not succeed when called from a slave CPU.

#define BM_PIRQ_RCRI 0x00000002 /* RCR Ring (below threshold) */
#define BM_PIRQ_BSCN 0x00000001 /* Buffer depletion State Change */

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 185

/**
 * bman_irqsource_get - return the portal work that is interrupt-driven
 *
 * Returns a bitmask of BM_PIRQ_**I processing sources that are currently
 * enabled for interrupt handling on the current cpu's affine portal. These
 * sources will trigger the portal interrupt and the interrupt handler (or a
 * tasklet/bottom-half it defers to) will perform the corresponding processing
 * work. The bman_poll_***() functions will only process sources that are not in
 * this bitmask. If the current CPU is sharing a portal hosted on another CPU,
 * this always returns zero.
 */
u32 bman_irqsource_get(void);
/**
 * bman_irqsource_add - add processing sources to be interrupt-driven
 * @bits: bitmask of BM_PIRQ_**I processing sources

 * Adds processing sources that should be interrupt-driven, (rather than
* processed via bman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int bman_irqsource_add(u32 bits);
/**
* bman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of BM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via bman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU. */
int bman_irqsource_remove(u32 bits);

4.2.8.1.3.2.3.1.2.2 Processing non-interrupt-driven portal duties (BMan)

If portal-sharing is in effect, refer to Portal sharing on page 185. These APIs will not succeed when called from a slave CPU.

/**
 * bman_poll_slow - process anything that isn't interrupt-driven.
 *
 * This function does any portal processing that isn't interrupt-driven. NB,
 * unlike the legacy wrapper bman_poll(), this function will deterministically
 * check for the presence of portal processing work and do it, which implies
 * some latency even if there's nothing to do. The bman_poll() wrapper on the
 * other hand (like the qman_poll() wrapper) attenuates this by checking for
 * (and doing) portal processing infrequently. Ie. such that qman_poll() and
 * bmna_poll() can be called from core-processing loops. Use bman_poll_slow()
 * when you yourself are deciding when to incur the overhead of processing. If
* the current CPU is sharing a portal hosted on another CPU, this function will
* return -EINVAL, otherwise returns zero for success.
*/
int bman_poll_slow(void);
/**
 * bman_poll - process anything that isn't interrupt-driven.
 *
 * Dispatcher logic on a cpu can use this to trigger any maintenance of the
 * affine portal. This function does whatever processing is not triggered by
 * interrupts. This is a legacy wrapper that can be used in core-processing
 * loops but mitigates the performance overhead of portal processing by
 * adaptively bypassing true portal processing most of the time. (Processing is
 * done once every 10 calls if the previous processing revealed that work needed
 * to be done, or once very 1000 calls if the previous processing revealed no

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
186 NXP Semiconductors

 * work needed doing.) If you wish to control this yourself, call
 * bman_poll_slow() instead, which always checks for portal processing work.
 */
void bman_poll(void);

4.2.8.1.3.2.3.1.2.3 Recovery support (BMan)

Note that the following functions require the BMan portal to have been initialized in "recovery mode", which is not possible with
the current release. As such, these functions are for future use only (and documented here only because they're declared in the
API header).

/**
 * bman_recovery_cleanup_bpid - in recovery mode, cleanup a buffer pool
 */
int bman_recovery_cleanup_bpid(u32 bpid);
/**
 * bman_recovery_exit - leave recovery mode
 */
int bman_recovery_exit(void);

4.2.8.1.3.2.3.1.2.4 Determining if the release ring is empty

/**
 * bman_rcr_is_empty - Determine if portal's RCR is empty
 *
 * For use in situations where a cpu-affine caller needs to determine when all
 * releases for the local portal have been processed by BMan but can't use the
 * BMAN_RELEASE_FLAG_WAIT_SYNC flag to do this from the final bman_release().
 * The function forces tracking of RCR consumption (which normally doesn't
 * happen until release processing needs to find space to put new release
 * commands), and returns zero if the ring still has unprocessed entries,
 * non-zero if it is empty.
 */
int bman_rcr_is_empty(void);

4.2.8.1.3.2.3.1.3 Pool Management

To work with BMan buffer pools, a pool object must be created. As explained in Depletion State on page 190, the pool may be
created with the BMAN_POOL_FLAG_DEPLETION flag and corresponding depletion-entry/exit callbacks if the owner wishes to
be notified of changes in the pool's depletion state. Creation of the pool object can also modify the pool's depletion entry and exit
thresolds with the BMAN_POOL_FLAG_THRESH flag, so long as the BMAN_POOL_FLAG_DYNAMIC_BPID flag is specified
(which will allocate an unreserved BPID) and when running in the control-plane (where reserved BPIDs are tracked). Depletion
thresholds for reserved BPIDs can be set in the device-tree within the nodes that reserve them, so support for setting them in the
API is not provided. The pool object can also maintain an internal buffer stockpile to optimize releases and acquires of buffers by
specifying the BMAN_POOL_FLAG_STOCKPILE flag - actual releases to and acquires from h/w will only occur when the stockpile
needs flushing or replenishing, ensuring that the interactions with hardware occur less often and are always optimized to release/
acquire the maximum number of buffers at once. If a pool object is being freed and it has been configured to use stockpiling, a
flush operation must be performed on the pool object. This will ensure that all buffers in the stockpile are flushed to h/w. The pool
object can then be freed. The stockpiling option is recommended wherever possible. One implementation note is that applications
will sometimes want to create multiple pool objects for the same BPID in order to have one for each CPU (for performance reasons)
- this means that each pool object will have its own stockpile. As a consequence, to drain a buffer pool empty would require that
all pool objects for that BPID be drained independently (whereas without stockpiling enabled, only one pool object needs to be
drained).

struct bman_pool;
/* This callback type is used when handling pool depletion entry/exit. The

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 187

 * 'cb_ctx' value is the opaque value associated with the pool object in
 * bman_new_pool(). 'depleted' is non-zero on depletion-entry, and zero on
 * depletion-exit. */
typedef void (*bman_cb_depletion)(struct bman_portal *bm,
 struct bman_pool *pool, void *cb_ctx, int depleted);
/* Flags to bman_new_pool() */
#define BMAN_POOL_FLAG_NO_RELEASE 0x00000001 /* can't release to pool */
#define BMAN_POOL_FLAG_ONLY_RELEASE 0x00000002 /* can only release to pool */
#define BMAN_POOL_FLAG_DEPLETION 0x00000004 /* track depletion entry/exit */
#define BMAN_POOL_FLAG_DYNAMIC_BPID 0x00000008 /* (de)allocate bpid */
#define BMAN_POOL_FLAG_THRESH 0x00000010 /* set depletion thresholds */
#define BMAN_POOL_FLAG_STOCKPILE 0x00000020 /* stockpile to reduce hw ops */
/* This struct specifies parameters for a bman_pool object. */
struct bman_pool_params {
 /* index of the buffer pool to encapsulate (0-63), ignored if
 * BMAN_POOL_FLAG_DYNAMIC_BPID is set. */
 u32 bpid;
 /* bit-mask of BMAN_POOL_FLAG_*** options */
 u32 flags;
 /* depletion-entry/exit callback, if BMAN_POOL_FLAG_DEPLETION is set */
 bman_cb_depletion cb;
 /* opaque user value passed as a parameter to 'cb' */
 void *cb_ctx;
 /* depletion-entry/exit thresholds, if BMAN_POOL_FLAG_THRESH is set. NB:
 * this is only allowed if BMAN_POOL_FLAG_DYNAMIC_BPID is used *and*
 * when run in the control plane (which controls BMan CCSR). This array
 * matches the definition of bm_pool_set(). */
 u32 thresholds[4];
};
/**
 * bman_new_pool - Allocates a Buffer Pool object
 * @params: parameters specifying the buffer pool behavior
 *
 * Creates a pool object for the given @params. A portal and the depletion
 * callback field of @params are only used if the BMAN_POOL_FLAG_DEPLETION flag
 * is set. NB, the fields from @params are copied into the new pool object, so
 * the structure provided by the caller can be released or reused after the
 * function returns.
 */
struct bman_pool *bman_new_pool(const struct bman_pool_params *params);
/**
 * bman_free_pool - Deallocates a Buffer Pool object
 * @pool: the pool object to release
 */
void bman_free_pool(struct bman_pool *pool);
/**
 * bman_flush_stockpile - Flush stockpile buffer(s) to the buffer pool
 * @pool: the buffer pool object the stockpile belongs
 * @flags: bit-mask of BMAN_RELEASE_FLAG_*** options
 *
 * Adds stockpile buffers to RCR entries until the stockpile is empty.
 * The return value will be a negative error code if a h/w error occured.
 * If BMAN_RELEASE_FLAG_NOW flag is passed and RCR ring is full,
 * -EAGAIN will be returned.
 */
int bman_flush_stockpile(struct bman_pool *pool, u32 flags);
/**
 * bman_get_params - Returns a pool object's parameters.
 * @pool: the pool object
 *

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
188 NXP Semiconductors

 * The returned pointer refers to state within the pool object so must not be
 * modified and can no longer be read once the pool object is destroyed.
 */
const struct bman_pool_params *bman_get_params(const struct bman_pool *pool);
/**
 * bman_query_free_buffers - Query how many free buffers are in buffer pool
 * @pool: the buffer pool object to query
 *
 * Return the number of the free buffers
 */
u32 bman_query_free_buffers(struct bman_pool *pool);
/**
 * bman_update_pool_thresholds - Change the buffer pool's depletion thresholds
 * @pool: the buffer pool object to which the thresholds will be set
 * @thresholds: the new thresholds
 */
int bman_update_pool_thresholds(struct bman_pool *pool, const u32 *thresholds);

4.2.8.1.3.2.3.1.4 Releasing and Acquiring Buffers

The following API functions allow applications to release buffers to a pool and acquire buffers from a pool. Note that the various
"WAIT" flags for bman_release() are only available on linux.

/* Flags to bman_release() */
#define BMAN_RELEASE_FLAG_WAIT 0x00000001 /* wait if RCR is full */
#define BMAN_RELEASE_FLAG_WAIT_INT 0x00000002 /* if we wait, interruptible? */
#define BMAN_RELEASE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
/**
 * bman_release - Release buffer(s) to the buffer pool
 * @pool: the buffer pool object to release to
 * @bufs: an array of buffers to release
 * @num: the number of buffers in @bufs (1-8)
 * @flags: bit-mask of BMAN_RELEASE_FLAG_*** options
 *
 * Releases the specified buffers to the buffer pool. If stockpiling is
 * enabled, this may not require a release command to be issued via the RCR
 * ring, otherwise it certainly will. If the RCR ring is full, the function
 * will return -EBUSY unless BMAN_RELEASE_FLAG_WAIT is selected, in which case
 * it will sleep waiting for space to become available in RCR. If
 * BMAN_RELEASE_FLAG_WAIT_SYNC is also specified then it will sleep until
 * hardware has processed the command from the RCR (otherwise the same
 * information can be obtained by polling bman_rcr_is_empty() until it returns
 * TRUE). If the BMAN_RELEASE_FLAG_WAIT_INT is set), then any sleeps will be
 * interruptible. If it is interrupted before producing the release command, it
 * returns -EINTR. Otherwise, it will return zero to indicate the release was
 * successfully issued. (In the case of interruptible sleeps and WAIT_SYNC,
 * check signal_pending() upon return to determine whether the wait was
 * interrupted.)
 */
int bman_release(struct bman_pool *pool, const struct bm_buffer *bufs,
 u8 num, u32 flags);
/**
 * bman_acquire - Acquire buffer(s) from a buffer pool
 * @pool: the buffer pool object to acquire from
 * @bufs: array for storing the acquired buffers
 * @num: the number of buffers desired (@bufs is at least this big)
 *
 * Acquires buffers from the buffer pool. If stockpiling is enabled, this may
 * not require an acquire command to be issed via the MC interface, otherwise

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 189

 * it certainly will. The return value will be the number of buffers obtained
 * from the pool, or a negative error code if a h/w error or pool starvation
 * was encountered.
 */
int bman_acquire(struct bman_pool *pool, struct bm_buffer *bufs, u8 num,
 u32 flags);

4.2.8.1.3.2.3.1.5 Depletion State

It is possible for portals to track depletion state changes to any of the 64 buffer pools supported in BMan. As described in Pool
Management on page 187, a pool object can invoke callbacks to convey depletion-entry and depletion-exit events if created with
the BMAN_POOL_FLAG_DEPLETION flag.

Conversely, software can issue a portal management command to obtain a snapshot of the depletion and availability status of all
BMan 64 pools at once, which is what the following interface does. Here "availability" implies that the pool is not completely empty.
Depletion on the other hand is relative to the pools depletion-entry and exit-thresholds. The state of all 64 buffer pools is
represented by the following structure types, accessor macros, and bman_query_pools() API;

struct bm_pool_state {
 [...]
};
/**
 * bman_query_pools - Query all buffer pool states
 * @state: storage for the queried availability and depletion states
 */
int bman_query_pools(struct bm_pool_state *state);
/* Determine the "availability state" of BPID 'p' from a query result 'r' */
#define BM_MCR_QUERY_AVAILABILITY(r,p) [...]
/* Determine the "depletion state" of BPID 'p' from a query result 'r' */
#define BM_MCR_QUERY_DEPLETION(r,p) [...]

4.2.8.1.3.2.4 Queue Manager
4.2.8.1.3.2.4.1 QMan Overview
4.2.8.1.3.2.4.1.1 Queue Manager's Function

The QorIQ Queue Manager (QMan) SoC block manages the movement of data (“frames”) along uni-directional flows (“frame
queues”) between different software and hardware end-points (“portals”). This allows software instances to communicate with
other software instances and/or datapath hardware blocks (CAAM, PME, FMan) using a hardware-managed queueing
mechanism. QMan provides a variety of features in the way this data movement can be managed, including tail-drop or weighted-
red congestion/flow-control, congestion group depletion notification, order restoration, and order preservation.

It is beyond the scope of this document to fully explain all the QMan-related notions that are essential to using datapath functionality
effectively. But unlike the BMan reference, we will cover at least some of the basic elements here that are fundamental to the
software interface, because QMan is more complicated than BMan and some simplistic definitions can be helpful as a place to
start. For any more information about what QMan does and how it behaves, please consult the appropriate QorIQ SoC Reference
Manual.

4.2.8.1.3.2.4.1.2 Frame Descriptors

Frames are represented by "frame descriptors" (or "FD"s) which are 16-byte structures consisting of fields to describe;

• contiguous or scatter-gather data,

• a 32-bit per-frame-descriptor token value (called "cmd/status" because of its common usage in processing data to/from
hardware blocks),

• trace-debugging bits,

• a partition ID, used for virtualizing memory access to frame data by datapath hardware blocks (CAAM, PME, FMan),

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
190 NXP Semiconductors

• a BMan buffer pool ID, used to identify frames whose buffers are sourced from (or are to be recycled to) a BMan buffer
pool.

A third ("nested") mode of the scatter-gather representation allows a frame-descriptor to reference more than one frame - this is
referred to as a compound frame, and is a mechanism for creating an indissociable binding of more than one data descriptor, eg.
this is used when sending an input descriptor to PME or CAAM and providing an output descriptor to go with it.

Frame descriptors that are under QMan's control reside in QMan-private resources, comprised of dedicated on-board cache as
well as system memory assigned to QMan on initialization. When frames are enqueued to (and dequeued from) frame queues
by QMan on behalf of software portals or hardware blocks, the frame descriptor fields are copied in to (and out of) these QMan-
private resources.

As with BMan not caring whether the 48-bit tokens it manages are real buffer addresses or not, the same is mostly true for QMan
with respect to the frame descriptors it manages. QMan ignores the memory addresses present in the frame descriptor, unless
it is dequeued via a portal configured for data stashing and is dequeued from a frame queue that is configured for frame data (or
annotation) stashing. However QMan always pays attention to the length field of frame descriptors. In general, the only field that
can be safely used as a "pass-through" value without any QMan consequences is the 32-bit cmd/status field.

4.2.8.1.3.2.4.1.3 Frame Queue Descriptors (QMan)

Frame queues are uni-directional queues of frames, where frames are enqueued to the tail of the frame queue and dequeued
from the head. A frame queue is represented in QMan by a "frame queue descriptor" (or "FQD"), and these reside in a private
system memory resource configured for QMan on initialization. A frame queue is referred to by a "frame queue identifier" (or
"FQID"), which is literally the index of that FQD within QMan's memory resource. As such, FQIDs form a global name-space,
even in an otherwise virtualized environment, so two entities of software can not simultaneously use the same FQID for different
purposes.

4.2.8.1.3.2.4.1.4 Work Queues

Work queues (or "WQ"s) are uni-directional queues of "scheduled" frame queues. We will see shortly what is meant here by a
"scheduled" frame queue, but suffice it to say that QMan supports a fixed collection of work queues, to which QMan appends
frame queues when they are due to be serviced. To summarize, multiple FDs can be linked to a single FQ, and multiple FQs can
be linked to a single WQ.

4.2.8.1.3.2.4.1.5 Channels

A channel is a fixed, hardware-defined association of 8 work queues, also thought of as "priority work queues". This grouping is
convenient in that QMan provides sophisticated prioritization support for dequeueing from entire channels rather than specific
work queues. Specifically, the 8 work queues within a channel are divided into 3 tiers according to QMan's "class scheduler" logic
- work queues 0 and 1 form the high-priority tier and are treated with a strict priority semantic, work queues 2, 3, and 4 form the
medium-priority tier and are treated with a weighted interleaved round-robin semantic, and work queues 5, 6, and 7 form the low-
priority tier and are also treated with a weighted interleaved round-robin semantic. Apart from the top-tier, the weighting within
and between the other two tiers is programmable.

4.2.8.1.3.2.4.1.6 Portals

A QMan portal is similar in nature to a BMan portal. There are hardware portals (also called "direct connect portals", or "DCP"s)
that allow QMan to be used by other hardware blocks, and there are software portals that allow QMan to be used by logically
separated units of software. A software portal consists of two sub-regions of QMan's corenet region, in precisely the same way
as with BMan.

4.2.8.1.3.2.4.1.7 Dedicated Portal Channels

Each software portal has its own dedicated channel (of 8 work queues), that only it may dequeue from. As a shorthand, one
sometimes says that a frame queue is "scheduled to a portal", when what is really meant is that the frame queue is scheduled to
a work queue within that portal's dedicated channel. Hardware portals also have their own dedicated channels, though sometimes
more than one (FMan blocks have multiple dedicated channels).

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 191

4.2.8.1.3.2.4.1.8 Pool Channels

There are also 15 "pool channels" from which any software portal can dequeue - this is typically used for load-balancing or load-
spreading.

4.2.8.1.3.2.4.1.9 Portal Sub-Interfaces

Each portal exposes cache-inhibited and cache-enabled registers that can be read and/or written by software to achieve various
ends. With some necessary exceptions, the software interface hides most of these details. However an important conceptual point
regarding portals is that they have essentially four decoupled sub-interfaces;

• EQCR (EnQueue Command Ring), this is an 8-cacheline ring containing commands from software to QMan. These
commands perform enqueues of frame descriptors to frame queues.

• DQRR (DeQueue Response Ring), this is a 16-cacheline ring containing dequeue processing results from QMan to
software. These entries usually contain a frame descriptor (except when the dequeue action produced no valid frame
descriptor) as well as status information about the dequeue action, the frame queue being dequeued from, and other
context for software's use. This ring is unique in that QMan can be configured to stash new ring entries to processor cache,
rather than relying on software to (pre)fetch ring entries into cache explicitly.

• MR (Message Ring), this is an 8-cacheline ring containing messages from QMan to software, most notably for enqueue
rejection messages and asynchronous retirement processing events. Unlike DQRR, this ring does not support stashing.

• Management commands, consisting of a Command Register (CR) and two Response Register locations (RR0 and RR1),
used for issuing a variety of other commands to QMan. EQCR and DQRR (and to a lesser extent, MR) are intended to
provide the communications with QMan that represent the fast-path of data processing logic, and the management
command interface is where "everything else happens".

4.2.8.1.3.2.4.1.10 Frame queue dequeuing
Enqueuing a frame to a frame queue is an unambiguous mechanism; an enqueue command in the EQCR specifies a frame
descriptor and a frame queue ID, and the intention is clear. Dequeuing is more subtle, and falls into two general classes
depending on what one is dequeuing from - these are "scheduled" or "unscheduled" dequeues.
4.2.8.1.3.2.4.1.10.1 Unscheduled Dequeues

One can dequeue from a specific frame queue, but that frame queue must necessarily be "idle" - or in QMan terminology,
"unscheduled". It is an illegal action to attempt to dequeue directly from a frame queue that is in a "scheduled" state. Specifically,
unscheduled dequeues require the frame queue to be in the "Parked" or "Retired" state (described in Frame Queue States on
page 194).

4.2.8.1.3.2.4.1.10.2 Scheduled Dequeues

Conversely, if a frame queue is "scheduled" then, by definition, management of the frame queue is (until further notice) under
QMan's control and may at any point change state according to events within QMan or via actions on other software or hardware
portals. So a "scheduled dequeue" does not target a specific FQ, but either a specific WQ or collection of channels. QMan
processes scheduled dequeue commands within a portal by selecting from among the non-empty WQs, dequeueing a FQ from
that selected WQ, and then dequeuing a FD from that FQ.

QMan portals implement two dequeue command modes, "push" and "pull";

4.2.8.1.3.2.4.1.10.3 Pull Mode

The "pull" mode is the less conventional of the two, as it is driven by software writing a dequeue command to a single cache-
inhibited register that will, in response, perform a single instance of that command and publish its result to DQRR. This "pull"
command (PDQCR - Pull DeQueue Command Register) could generate anywhere between 1 and 3 DQRR entries, and software
must ensure that it does not write a new command to PDQCR until it knows at least one of these DQRR entries has been published
(otherwise writing a new command could clobber the previous command before QMan has prepared its execution). The PDQCR
command register can perform scheduled and unscheduled dequeues.

4.2.8.1.3.2.4.1.10.4 Push Mode

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
192 NXP Semiconductors

The "push" mode is the mode that gives software a familiar "DMA-style" interface, ie. where hardware performs work and fills in
a kind of "Rx ring" autonomously. In the case of the QMan portal's DQRR sub-interface, this push mode is driven by two dequeue
command registers, one for scheduled dequeues (SDQCR - Static DeQueue Command Register), and one for unscheduled
dequeues (VDQCR - Volatile DeQueue Command Register). The reason for the static/volatile terminology (rather than scheduled/
unscheduled), as well as the presence of two command registers instead of one, relates to how QMan schedules execution of
the dequeue commands.

Unlike "pull" mode, QMan is not prodded by a write to the command register each time a dequeue command should occur, it must
autonomously execute commands when appropriate. So it is clear that scheduled dequeues can only be performed when the
targetted work queue or channels have Truly Scheduled frame queues available to dequeue from. Note that this is not an issue
with "pull" mode, as a scheduled dequeue command can be issued when there are no available frame queues and QMan will
simply publish a DQRR entry containing no frame descriptor to mark completion of the command - for "push" mode, this semantic
cannot work. When in "push" mode, the QMan portal has a (possibly NULL) scheduled dequeue command for dequeuing from
a selection of available channels. QMan executes this command only when there is matching scheduled dequeue work available
on one of of the channels - ie. the scheduled dequeue command (for channels) is static. If software writes SDQCR with a command
to dequeue from a specific WQ, the command is executed only once (like the pull command), at which point it reverts to the static
dequeue command for channels.

For unscheduled dequeues, a single Parked or Retired frame queue is identified for dequeuing, and as QMan does not manipulate
the state of such frame queues in reaction to enqueue or dequeue activity (ie. there is no "scheduling"), there is no mechanism
for QMan to "know" when this frame queue becomes non-empty some time in the future. So like "pull" mode, unscheduled
dequeues must be done when explicitly demanded by software, and as such they must also (a) expire after a configurable number
of frame descriptors are dequeued from frame queue or once it is empty, and (b) even if the frame queue is already empty, a
DQRR entry with no frame descriptor should be used to notify software that the unscheduled dequeue command has expired.
Ie. the unscheduled command "goes live" when written and becomes inactive once completed - it is volatile. Unlike "pull" mode
however, the volatile command can perform more than a single dequeue action, and it can even block or flow-control while active,
however it always runs to completion and then stops.

As "push" mode supports two dequeue commands (in fact one of them, SDQCR, encompasses two commands in its own right
- it has a persistent channel-dequeue command, and an optional one-shot workqueue-dequeue command can be issued without
clobbering it), it is worth pointing out that it can service both at once. The VDQCR command register contains a precedence
option that QMan uses to determine whether SDQCR or VDQCR work be favoured in the situation where both are active.

4.2.8.1.3.2.4.1.10.5 Stashing to Processor Cache

When dequeueing frame queues and publishing entries in DQRR, QMan provides stashing features that involve prepositioning
data in the processor cache. The main benefit of hardware-instigated stashing is that the data will already be in cache when the
processor needs it, avoiding the need to explicitly prefetch it in advance or stalling the processor to fetch it on-demand. As we will
see, there is another benefit in the specific case of DQRR stashing.

Each portal supports two types of stashing, for which distinct PAMU entries are configured.

DLIODN

The DLIODN setting configures PAMU authorization and/or translation of transactions to stash DQRR ring entries as they are
produced by QMan. The stashing of DQRR entries is not just a performance tweak, it changes the way driver software operates
the portal. Rather than needing to invalidate and prefetch the DQRR cachelines to see (or poll for) new DQRR entries, software
can simply reread the cached version until it "magically changes". The stashing transaction is then the only implied traffic across
the corenet bus (reducing bandwidth) and it is initiated by hardware at the first instant at which a software-initiated prefetch could
have seen anything new (minimum possible latency).

Note that if the driver does not enable DQRR stashing, then it is a requirement to manipulate the processor cache directly, so its
run time mode of operation must match device configuration. Note also that if DQRR stashing is used, software can not trust the
DQRI interrupt source nor read PI index registers to determine that a new DQRR entry is available, as they may race against the
stash transaction. On the other hand, software may use the interrupt source to avoid polling for DQRR production unnecessarily,
but it does not guarantee that the first read would show the new DQRR entry.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 193

P1023 supports DQRR stashing but since it doesn’t have Corenet and PAMU, the DLIODN is not applicable to

P1023.

 NOTE

FLIODN

QMan can also stash per-frame-descriptor information, specifically;

1. Frame data, pointed to by the frame descriptor

2. Frame annotations, which is anything prior to the data due to a non-zero offset

3. Frame queue context (for the frame queue from which the frame descriptor was dequeued).

In all cases, the FLIODN setting is used by PAMU to authorize/translate these stashing transactions.

4.2.8.1.3.2.4.1.11 Frame Queue States

Frame queues are managed by QMan via state-transitions, and some of these states are of interest to software. From software's
perspective, a simplification of the frame queue states is to group them as follows;

• Out of service: the frame queue is not in use and must be initialized. Neither enqueues nor dequeues are permitted.

• Parked: the frame queue is initialized and in an idle state. Enqueues are permitted, as are unscheduled dequeues, neither
of which change the frame queue's state. Scheduled dequeues will not result in dequeues from parked frame queues, as a
parked frame queue is never linked to a work queue.

• Scheduled: the frame queue has been scheduled, implying that hardware will modify its state as/when relevant events
occur. Enqueues are permitted, but unscheduled dequeus are not. This is not a real state, but actually a set of states that a
frame queue moves between - as hardware performs these moves internally, it's useful to treat them as one, because
changes between them are asynchronous to software. The real states are;

— Tentatively Scheduled: the frame queue is not linked to a work queue (yet), the frame queue must therefore be
empty and no retirement or force-eligible command has been issued against the frame queue.

— Truly Scheduled: the frame queue is linked to a work queue, either because it has become non-empty or a force-
eligible command has occured.

— Active: the frame queue has been selected by a portal for scheduled dequeue and so is removed from the work
queue.

— Held Active: the frame queue is still held by the portal after scheduled dequeuing has been performed, it may yet be
dequeued from again, depending on scheduling configuration, priorities, etc.

— Held Suspended: the frame queue is still held by the portal after scheduled dequeuing has been performed but
another frame queue has been selected "active" and so no further dequeuing will occur on this frame queue.

• Retired: the frame queue is being "closed". A frame queue can be put into the retired state as a means of (a) getting it
back under software's control (not under QMan's control nor the control of another hardware block), eg. for closing down
"Tx" frame queues, and (b) blocking further enqueues to the frame queue so that it can be drained to empty in a
deterministic manner. Enqueues are therefore not permitted in this state. Unscheduled dequeues are permitted, and are
the only way to dequeue frames from a frame queue in this state.

See the appropriate QorIQ SoC Reference Manual for more detailed information.

4.2.8.1.3.2.4.1.12 Hold active
The QMan portal sub-interfaces are generally decoupled or asynchronous in their operation. For example: The processing of
software-produced enqueue commands in EQCR is asynchronous to the processing of dequeue commands into DQRR, and
both of these are asynchronous to the production of messages into MR and the processing of management commands.

There is however a specific coupling mechanism between EQCR and DQRR to address a certain class of requirements for
datapath processing. Consider first that it is possible for multiple portals to dequeue independently from the same data source,
eg. for the purposes of load-balancing, or perhaps idle-time processing of low-priority work. This could occur because multiple
portals issue unscheduled dequeue commands from the same Parked (or Retired) frame queue, or because they issue scheduled

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
194 NXP Semiconductors

dequeue commands that target the same pool channels (or the same specific work queue within a pool channel). So we describe
here the "hold active" mechanisms that help maintain some synchronicity of hardware dequeue processing (and optionally
software post-processing) on multiple portals/CPUs.

The unscheduled dequeue case is not covered by the mechanisms described here - QMan will correctly handle multiple
unscheduled dequues from the same frame queue, but the "hold active" mechanisms have no effect in this case. For scheduled
dequeues however, there are two levels of "hold active" functionality that can be used for software to synchronise multiple portals
dequeuing from the same source.

4.2.8.1.3.2.4.1.12.1 Dequeue Atomicity

As described in the previous section ("Frame queue states"), the Active, Held Active, and Held Suspended states are for frame
queues that have been selected by a portal for scheduled dequeuing. These states imply that the frame queue has been detached
from the work queue that it was previously "scheduled" to, but not yet moved to the Parked state nor rescheduled to the Tentatively
Scheduled or Truly Scheduled state after the completion of dequeuing.

Normally, a frame queue is rescheduled by QMan as soon as it is done dequeuing, potentially even before the resulting DQRR
entries are visible to software. However, if the frame queue has been configured for "Held active" behavior, then this will not happen
- the frame queue will remain in the Held Active or Held Suspended state once QMan has finished dequeuing from it. QMan will
only reschedule or park the frame queue once software consumes all DQRR entries that correspond to that frame queue - the
default behavior is to reschedule, but this "held" state of the frame queue allows software an opportunity to request that the final
action for the frame queue be to park it instead.

A consequence of this mechanism is that if a DQRR entry is seen that corresponds to a frame queue configured for "held active"
behavior, software implicitly knows that there can be no other (unconsumed) DQRR entry on any other portal for that same frame
queue. (Proof: if there was, the frame queue would be currently "held" in that portal and not in this one.) For an SMP system where
each core has its own portal, this would obviate the need to (spin)lock software context related to a frame queue when handling
incoming frames - the "lock" is implicitly obtained when the DQRR entry is seen, and it is implicitly released when the DQRR
entries are consumed. This is what is meant by "dequeue atomicity".

4.2.8.1.3.2.4.1.12.2 Parking Scheduled FQs

As noted above in Dequeue Atomicity on page 195, if a FQ is currently "held active" in the portal, software can request that it be
move to the Parked state once its final DQRR entry is consumed, rather than rescheduled which is the normal behavior. This is
not necessarily limited to FQs that are configured for "hold active" behavior, but can also be applied to regular FQs by issuing a
Force Eligible command on them.

4.2.8.1.3.2.4.1.12.3 Order Preservation & Discrete Consumption Acknowledgement

In addition to the dequeue atomicity feature, it is possible to obtain a stronger property from QMan to aid with datapath situations
that "spread" incoming data over multiple portals. Specifically, if incoming frames are to be forwarded via subsequent enqueues,
then dequeue atomicity does not prevent the forwarded frames from getting out of order. Ie. multiple CPUs (using multiple portals)
may be using dequeue atomicity in order to write enqueue commands to their EQCR rings before consuming the DQRR entries,
and thus ensuring that EQCR entries are published in the same order as the incoming frames. But as there are multiple portals,
this does not ensure that QMan will necessarily process those EQCR entries in the same order. Indeed if the portals' EQCR rings
have significantly varied fill-levels, then there is a reasonable chance that two enqueue commands published in quick succession
via different portals could get processed in the opposite order by QMan.

Instead, software can elect to only consume DQRR entries when no forwarding is to be performed on the corresponding frames
(eg. when dropping a packet), and for the others, it can encode the EQCR enqueue commands to perform an implicit "Discrete
Consumption Acknowledgement" (or "DCA") - the result of which is that QMan will consume the corresponding DQRR entry on
software's behalf once it has finished processing the enqueue command. This provides a cross-portal, order preservation
semantic from end-to-end (from dequeue to enqueue) using hardware assists.

Note, QMan has other functionality called Order Restoration that is completely unrelated to the above - Order Restoration is a
mechanism to restore frames into their intended order once they been allowed to get out of order, using sequence numbers and
"reassembly windows" within QMan, see Order Restoration on page 196. The above "hold active" mechanisms are to prevent
frames from getting out of order in the first place.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 195

4.2.8.1.3.2.4.1.13 Enqueue Rejections

Enqueues may be rejected, immediately or after any delay due to order restoration, and the enqueue mechanisms themselves
do not provide any meaningful way to convey the rejection event to the software portal. For this reason, Enqueue Rejection
Notifications (ERNs) are messages received on a message ring that carry frames that did not successfully enqueue together with
the reason for their rejection.

4.2.8.1.3.2.4.1.14 Order Restoration

Frame queue descriptors can serve one or both of two complimentary purposes. A small subset of fields in the FQDs are used
to implement an "Order Restoration Point", which allows an FQD to act as a reassembly window for out-of-sequence enqueues.
FQDs also contain a sequence number field that generates increasing sequence numbers for all frames dequeued from the FQ.
This dequeue activity sequence number is also called an "Order Definition Point". The idea is that frames dequeued from a given
FQ (ODP) may get out-of-sequence during processing before they're enqueued onto an egress FQ, so the enqueue function
allows one to not only specify the desination FQD, but also an ORP that the enqueue command should first pass through - which
might hold up the intended enqueue until other, missing, sequence elements are enqueued. Ie. an ORP-enabled enqueue
command requires 2 FQID parameters, which need not necessarily be the same - indeed in many networking examples, the Rx
FQ serves as both the ODP and the ORP when enqueuing to the Tx FQ. To see why this choice of ORP FQ makes sense, consider
that many Rx flows may need to be order-restored independently, even if all of them are ultimately enqueued to the same
destination Tx FQ. It's also possible to enqueue using software-generated sequence numbers, ie. without any FQ dequeue activity
acting as an ODP. An ODP is any source of sequence numbers starting at zero and wrapping to zero at 0x3fff (214-1).

ORP-enabled enqueue functions provide various features, such as filling in missing sequence numbers (eg. when dropping
frames), advancing the "Next Expected Sequence Number" despite missing frames (that may or may not show up later), etc.
These features are options in the enqueue interfaces, eg. see Enqueue Command (without ORP) on page 207, specifically the
qman_enqueue_orp() API.

There are also numerous options that can be set in ORP-enabled FQDs, and these are achieved via the same functions that allow
you to manipulate FQDs for any other purpose. Eg. see Frame queue management on page 203, specifically the qman_init_fq()
API. Care should be taken when using a FQD as both a FQ and an ORP - in particular, a FQD can not be retired and put out-of-
service while the ORP component of the descriptor is still in use, and vice versa.

4.2.8.1.3.2.4.2 QMan configuration interface
The QMan configuration interface is an encapsulation of the QMan CCSR register space and the global/error interrupt source.
Whereas QMan portals provide independent channels for accessing QMan functionality, the configuration interface represents
the QMan device itself. The QMan configuration interface is presently limited to the device-tree node that represents it.
4.2.8.1.3.2.4.2.1 QMan device-tree node
The QMan device tree node represents the QMan device and its CCSR configuration space (as distinct from its corenet
portals). When a linux kernel has QMan control support built in, it will react to this device tree node by configuring and
managing the QMan device. The device-tree node sits within the CCSR node ("soc") and is of the following form;

 soc@fe000000 {
 [...]
 qman: qman@318000 {
 compatible = "fsl,qman";
 reg = <0x318000 0x1000>;
 fsl,qman-fqd = <0x0 0x22000000 0x0 0x00200000>;
 fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>;
 fsl,liodn = <0x1f>;
 };
 [...]
 };

'compatible' and 'reg' are standard ePAPR properties.

4.2.8.1.3.2.4.2.1.1 Frame Queue Descriptors

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
196 NXP Semiconductors

This property configures the memory used by QMan for storing frame queue descriptors. Each FQD occupies a 64-byte cacheline
of memory, so as the above example configures 2MB for FQD memory, the valid range of FQIDs is [1...32767];

 fsl,qman-fqd = <0x0 0x22000000 0x0 0x00200000>;

The treatment and alignment requirements of this property are the same as in Free Buffer Proxy Records on page 182.

4.2.8.1.3.2.4.2.1.2 Packed Frame Descriptor Records

This property configures the memory used by QMan for storing Packed Frame Descriptor Records. Each PFDR occupies a 64-
byte cacheline of memory, and can hold 3 Frame Descriptors. QMan maintains an onboard cache for holding recently enqueued
(and/or soon to be dequeued) frames, and in responsive systems that remain within their operating capacity (ie. no spikes) it can
often be unnecessary for frames to ever be stored in system memory at all. However, to handle spikes or buffering, a storage
density of 3 enqueued frames per-cacheline can be used for estimating a suitable allocation of memory to QMan for PFDRs. In
the case of handling ERNs (eg. if congestion controls exist elsewhere than on an ingress network interface), then a storage density
of 1 ERN per-cacheline should be used. The above example configures 16MB for PFDR memory (786,432 enqueued frames, or
262,144 ERNs);

 fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>;

The treatment and alignment requirements of this property are the same as in Free Buffer Proxy Records on page 182.

4.2.8.1.3.2.4.2.1.3 Logical I/O Device Number (QMan)

This property is the same as described in Logical I/O Device Number (BMan) on page 182, but for use by QMan when accessing
FQD and PFDR memory (rather than BMan's FBPR memory).

4.2.8.1.3.2.4.2.2 QMan pool channel device-tree node
Each QMan software portal has its own dedicated channel of work queues. QMan also provides "pool channels" that all
software portals can optionally dequeue from - this is described in Portals on page 191. The device-tree should declare pool
channels using device-tree nodes as follows;

 qman-pool@1 {
 compatible = "fsl,qman-pool-channel";
 cell-index = <0x1>;
 fsl,qman-channel-id = <0x21>;
 };

4.2.8.1.3.2.4.2.2.1 Channel ID

When FQs are initialized for scheduling, the target work queue is identified by the channel id (a hardware-assigned identifier) and
by one of the 8 priority levels within that channel. Channel ids are hardware constants, as conveyed by this device-tree property;

 fsl,qman-channel-id = <0x21>;

4.2.8.1.3.2.4.2.3 QMan portal device-tree node
The QMan Corenet portal interface in QorIQ P4080 provides up to 10 distinct memory-mapped interfaces for use by software to
interact efficiently with QMan functionality. These are described in Portals on page 191 and Portal Sub-Interfaces on page 192.
Refer to the appropriate SoC reference manuals for non-P4080 specifications.

The QMan driver determines the available corenet portals from the device tree. The portal nodes are at the physical address
scope (unlike the device-tree node for the BMan device itself, which is within the "soc" physical address node that represents
CCSR). These nodes indicate the physical address ranges of the cache-enabled and cache-inhibited sub-regions of the portal
(respectively), and look something like the following;

 qman-portal@c000 {
 compatible = "fsl,qman-portal";

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 197

 reg = <0xf420c000 0x4000 0xf4303000 0x1000>;
 interrupts = <0x6e 2>;
 interrupt-parent = <&mpic>;
 cell-index = <0x3>;
 cpu-handle = <&cpu3>;
 fsl,qman-channel-id = <0x3>;
 fsl,qman-pool-channels = <&qpool1 &qpool2>;
 fsl,liodn = <0x7 0x8>;
 };

As with BMan portal nodes, the "cpu-handle" property is used to express an affinity/association between the given QMan portal
and the CPU represented by the referenced device-tree node. Unlike BMan however, the "cpu-handle" property is also used by
PAMU configuration, to determine which CPU's L1 or L2 cache should receive stashing transactions emanating from this portal.
The "fsl,qman-channel-id" property is already documented in Channel ID on page 197, the other QMan-specific portal properties
are described below.

4.2.8.1.3.2.4.2.3.1 Portal Access to Pool Channels

In QorIQ P4080, P3041, P5020 hardware, all software portals can dequeue from any/all pool channels. Nonetheless, the portal
device-tree nodes allow the architect to specify this and optionally limit the range of pool channels a given portal can dequeue
from. This can be particularly useful when partitioning multiple guest operating systems, it essentially allows the architect to
partition the use of pool channels as they partition the use of portals. In the above example, the portal is only able to dequeue
from 2 pool channels;

 fsl,qman-pool-channels = <&qpool1 &qpool2>;

4.2.8.1.3.2.4.2.3.2 Stashing Logical I/O Device Number

This property, when used in QMan portal nodes, declares two LIODN values for use by QMan when performing dequeue stashing
to processor cache. These are documented in Stashing to Processor Cache on page 193. This property is filled in automatically
by u-boot, and if hypervisor is in use then it will fill in this property for guest device-trees also. PAMU drivers (linux-native or within
the hypervisor) will configure the settings for these LIODNs according to the CPU that stashing should be directed towards, as
per the cpu-handle property;

 fsl,liodn = <0x7 0x8>;
 cpu-handle = <&cpu3>;

4.2.8.1.3.2.4.2.3.3 Portal Initialization (QMan)

The driver is informed of the QMan portals that are available to it via the device-tree passed to the system from the boot process.
For those portals that aren’t reserved for USDPAA usage via the “fsl,usdpaa-portal” property, it will automatically create TLB
entries to map the QMan portal corenet sub-regions as cpu-addressable and cache-inhibited or cache-enabled as appropriate.

As with the BMan driver, the QMan driver will automatically associate initialised QMan portals with the CPU to which they are
configured, only one a one-per-CPU basis (if multiple portals are configured for the same CPU, only one is used). Please see
Portal sharing on page 185 for an explanation of this behaviour in the BMan documentation, the QMan behaviour is identical.

4.2.8.1.3.2.4.2.3.4 Auto-Initialization

As with the BMan driver, the QMan driver will, by default, automatically initialize QMan portals as they are parsed out of the device-
tree. Please see Portal sharing on page 185 for an explanation of this behavior in the BMan documentation. The QMan behavior
is identical.

4.2.8.1.3.2.5 QMan portal APIs
The following sections describe interfaces provided by the QMan driver for manipulating portals. These are defined in QMan
portal device-tree node on page 197, and described in Portals on page 191 and Portal Sub-Interfaces on page 192.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
198 NXP Semiconductors

Note, unlike the BMan documentation, we will not include many of the QMan-related data structures within this documentation
as they are significantly more elaborate. It is presumed the reader will consult the corresponding header files for structure data
details that aren't sufficiently described here.

4.2.8.1.3.2.5.1 QMan High-Level Portal Interface
4.2.8.1.3.2.5.1.1 Overview (QMan)

The high-level portal interface provides management and encapsulation of a portal hardware interface. The operations performed
on the "portal" are coordinated internally, hiding the user from the I/O semantics, and allowing multiple users/contexts to share
portals without collaboration between them. This interface also provides an object representation for congestion group records
(CGRs), with optional assists for cases where the user wishes to track congestion entry and exit events, eg. to apply back-pressure
on the affected frame queues, etc. There is also an object representation for frame queues that internally coordinates FQ
operations, demuxes incoming dequeued frames and messages to the corresponding owner's callbacks, and interprets hardware-
provided indications of changes to FQ state.

This interface provides locking and arbitration of portal operations from multiple software contexts and/or threads (ie. the portal
is shared). In cases where a resource is busy, the interface also gives callers the option of blocking/sleeping until the resouce is
available (and in the case of volatile dequeue commands, the caller may also optionally sleep until the volatile dequeue command
has finished). In any case where sleeping is an option, the caller can also specify whether the sleep should be interruptible.

Support for blocking/sleeping is limited to Linux, it is not available on run-to-completion systems such as USDPAA.

 NOTE

The demux logic within the portal interface assumes ownership of the "contextB" field of frame queue descriptors (FQDs), so
users of this interface can not modify this field. However, callers provide the cache line of memory to be used within the driver for
each FQ object when calling qman_create_fq(), so they can extend this structure into adjacent cachelines with their own data
and use this instead of contextB for their own purposes. Ie. when callbacks are invoked because of dequeued frames, enqueue
rejections, or retirement notifications, those callbacks will find their custom per-FQ data adjacent to the FQ object pointer they are
passed. Moreover, if context-stashing is enabled for the portal and the FQD is configured to stash 1 or more cachelines of context,
the QMan driver's demux function will be implicitly accelerated because the FQ object will be prefetched into processor cache.
Any adjacent data that is covered by the FQ's stashing configuration could likewise lead to acceleration of the owner's dequeue
callbacks, ie. by reducing or eliminating cache misses in fast-path processing.

4.2.8.1.3.2.5.1.2 Frame and Message Handling

When DQRR or MR ring entries are produced by hardware to software, callbacks that have been provided by the API user are
invoked to allow those entries to be handled prior to the driver consuming them. These callbacks are provided in the 'qman_fq_cb'
structure type.

struct qman_fq_cb {
 qman_cb_dqrr dqrr; /* for dequeued frames */
 qman_cb_mr ern; /* for software ERNs */
 qman_cb_mr dc_ern; /* for diverted hardware ERNs */
 qman_cb_mr fqr; /* retirement messages */
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
 struct qman_fq *fq, const struct qm_dqrr_entry *dqrr);
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
 const struct qm_mr_entry *msg);
enum qman_cb_dqrr_result {
 /* DQRR entry can be consumed */
 qman_cb_dqrr_consume,
 /* Like _consume, but requests parking - FQ must be held-active */
 qman_cb_dqrr_park,
 /* Does not consume, for DCA mode only. This allows out-of-order
 * consumes by explicit calls to qman_dca() and/or the use of implicit
 * DCA via EQCR entries. */

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 199

 qman_cb_dqrr_defer
};

4.2.8.1.3.2.5.1.3 Portal management (QMan)
The portal management API provides qman_affine_cpus(), which returns a mask that indicates which CPUs have auto-
initialiazed portals associated with them. See QMan portal device-tree node on page 197. All other QMan API functions must
be executed on CPUs contained within this mask, and any interactions they require with h/w will be performed on the
corresponding portals.

/**
 * qman_affine_cpus - return a mask of cpus that have portal access
 */
const cpumask_t *qman_affine_cpus(void);

4.2.8.1.3.2.5.1.3.1 Modifying interrupt-driven portal duties (QMan)

Portals have various servicing duties they must perform in reaction to hardware events. The portal management API allows
applications to control which of these duties/events are triggered by interrupt-handling versus those which are performed at the
application's explicit request via qman_poll() (or more specifically, via qman_poll_dqrr() and qman_poll_slow()). If portal-sharing
is in effect (see Portal sharing on page 185), these APIs won’t succeed when called from a slave CPU.

#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
 QM_PIRQ_MRI)
/**
 * qman_irqsource_get - return the portal work that is interrupt-driven
 *
 * Returns a bitmask of QM_PIRQ_**I processing sources that are currently
 * enabled for interrupt handling on the current cpu's affine portal. These
 * sources will trigger the portal interrupt and the interrupt handler (or a
 * tasklet/bottom-half it defers to) will perform the corresponding processing
 * work. The qman_poll_***() functions will only process sources that are not in
 * this bitmask. If the current CPU is sharing a portal hosted on another CPU,
 * this always returns zero.
 */
u32 qman_irqsource_get(void);
/**
 * qman_irqsource_add - add processing sources to be interrupt-driven
 * @bits: bitmask of QM_PIRQ_**I processing sources
 *
 * Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_add(u32 bits);
/**
* qman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_remove(u32 bits);

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
200 NXP Semiconductors

4.2.8.1.3.2.5.1.3.2 Processing non-interrupt-driven portal duties (QMan)

If portal-sharing is in effect (see Portal sharing on page 185), these APIs won’t succeed when called from a slave CPU.

/**
* qman_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* Ie. the value returned by qman_irqsource_get() should not include
* QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU,
* this function will return -EINVAL, otherwise the return value is >=0 and
* represents the number of DQRR entries processed.
*/
int qman_poll_dqrr(unsigned int limit);
/**
QMan Portal APIs
QMan, BMan API RM, Rev. 0.13
6-34 NXP Confidential Proprietary NXP Semiconductors
Preliminary—Subject to Change Without Notice
* qman_poll_slow - process anything (except DQRR) that isn’t interrupt-driven.
*
* This function does any portal processing that isn’t interrupt-driven. If the
* current CPU is sharing a portal hosted on another CPU, this function will
* return -EINVAL, otherwise returns zero for success.
*/
void qman_poll_slow(void);
/**
 * qman_poll - legacy wrapper for qman_poll_dqrr() and qman_poll_slow()
 *
 * Dispatcher logic on a cpu can use this to trigger any maintenance of the
 * affine portal. There are two classes of portal processing in question;
 * fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking
 * enqueue ring (EQCR) consumption), and slow-path (which involves EQCR
 * thresholds, congestion state changes, etc). This function does whatever
 * processing is not triggered by interrupts.
 *
 * Note, if DQRR and some slow-path processing are poll-driven (rather than
 * interrupt-driven) then this function uses a heuristic to determine how often
 * to run slow-path processing - as slow-path processing introduces at least a
 * minimum latency each time it is run, whereas fast-path (DQRR) processing is
 * close to zero-cost if there is no work to be done. Applications can tune this
 * behavior themselves by using qman_poll_dqrr() and qman_poll_slow() directly
 * rather than going via this wrapper.
 */
void qman_poll(void);

4.2.8.1.3.2.5.1.3.3 Recovery support (QMan)

Note that the following functions require the QMan portal to have been initialized in "recovery mode", which is not possible with
the current release. As such, these functions are for future use only (and documented here only because they're declared in the
API header).

/**
 * qman_recovery_cleanup_fq - in recovery mode, cleanup a FQ of unknown state
 */
int qman_recovery_cleanup_fq(u32 fqid);
/**
 * qman_recovery_exit - leave recovery mode

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 201

 */
int qman_recovery_exit(void);

4.2.8.1.3.2.5.1.3.4 Stopping and restarting dequeues to the portal

/**
 * qman_stop_dequeues - Stop h/w dequeuing to the s/w portal
 *
 * Disables DQRR processing of the portal. This is reference-counted, so
 * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
 * truly re-enable dequeuing.
 */
void qman_stop_dequeues(void);
/**
 * qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal
 *
 * Enables DQRR processing of the portal. This is reference-counted, so
 * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
 * truly re-enable dequeuing.
 */
void qman_start_dequeues(void);

4.2.8.1.3.2.5.1.3.5 Manipulating the portal static dequeue command

/**
 * qman_static_dequeue_add - Add pool channels to the portal SDQCR
 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
 *
 * Adds a set of pool channels to the portal's static dequeue command register
 * (SDQCR). The requested pools are limited to those the portal has dequeue
 * access to.
 */
void qman_static_dequeue_add(u32 pools);
/**
 * qman_static_dequeue_del - Remove pool channels from the portal SDQCR
 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
 *
 * Removes a set of pool channels from the portal's static dequeue command
 * register (SDQCR). The requested pools are limited to those the portal has
 * dequeue access to.
 */
void qman_static_dequeue_del(u32 pools);
/**
 * qman_static_dequeue_get - return the portal's current SDQCR
 *
 * Returns the portal's current static dequeue command register (SDQCR). The
 * entire register is returned, so if only the currently-enabled pool channels
 * are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK.
 */
u32 qman_static_dequeue_get(void);

4.2.8.1.3.2.5.1.3.6 Determining if the enqueue ring is empty

/**
 * qman_eqcr_is_empty - Determine if portal's EQCR is empty
 *
 * For use in situations where a cpu-affine caller needs to determine when all

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
202 NXP Semiconductors

 * enqueues for the local portal have been processed by QMan but can't use the
 * QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue().
 * The function forces tracking of EQCR consumption (which normally doesn't
 * happen until enqueue processing needs to find space to put new enqueue
 * commands), and returns zero if the ring still has unprocessed entries,
 * non-zero if it is empty.
 */
int qman_eqcr_is_empty(void);

4.2.8.1.3.2.5.1.4 Frame queue management
Frame queue objects are stored in memory provided by the caller, which makes the API for this object representation a little
peculiar at first sight. The motivating factors are memory management and stashing of frame queue context. Another factor is
that frame queue objects are the only objects in the QMan (or BMan) high level interfaces that are essentially arbitrary in
number, so having the caller provide storage relieves the driver of having to know the best allocation scheme for all
applications.

The qman_create_fq() API creates a new frame queue object, using the caller-supplied storage, and in which the caller has already
configured the callback functions to be used for handling hardware-produced data - namely, DQRR entries and MR entries, the
latter divided according to the type of message (software-enqueue rejections, hardware-enqueue rejections, or frame queue state
changes).

#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/FMan */
#define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */
#define QMAN_FQ_FLAG_AS_I 0x00000010 /* query h/w state */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
struct qman_fq {
 /* Caller of qman_create_fq() provides these demux callbacks */
 struct qman_fq_cb {
 qman_cb_dqrr dqrr; /* for dequeued frames */
 qman_cb_mr ern; /* for s/w ERNs */
 qman_cb_mr dc_ern; /* for diverted h/w ERNs */
 qman_cb_mr fqs; /* frame-queue state changes*/
 } cb;
 /* Internal to the driver, don't touch. */
 [...]
};
/**
 * qman_create_fq - Allocates a FQ
 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
 * @fq: memory for storing the 'fq', with callbacks filled in
 *
 * Creates a frame queue object for the given @fqid, unless the
 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
 * dynamically allocated (or the function fails if none are available). Once
 * created, the caller should not touch the memory at 'fq' except as extended to

 * adjacent memory for user-defined fields (see the definition of "struct
 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
 * pre-existing frame-queues that aren't to be otherwise interfered with, it
 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
 * causes the driver to honour any contextB modifications requested in the
 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
 * direct-connect portal (PME, CAAM, or FMan). When frame queues are consumed by

 * software portals, the contextB field is controlled by the driver and can't be

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 203

 * modified by the caller. If the AS_SI flag is specified, management commands
 * will be used on portal @p to query state for frame queue @fqid and construct
 * a frame queue object based on that, rather than assuming/requiring that it be
 * Out of Service.
 */
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
#define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */
/**
 * qman_destroy_fq - Deallocates a FQ
 * @fq: the frame queue object to release
 * @flags: bit-mask of QMAN_FQ_DESTROY_*** options
 *
 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
 * not deallocated but the caller regains ownership, to do with as desired. The
 * FQ must be in the 'out-of-service' state unless the QMAN_FQ_DESTROY_PARKED
 * flag is specified, in which case it may also be in the 'parked' state.
 */
void qman_destroy_fq(struct qman_fq *fq, u32 flags);

4.2.8.1.3.2.5.1.4.1 Querying a FQ object

The following functions do not interact with h/w, they simply return the state that the QMan driver tracks within the FQ object.

/**
 * qman_fq_fqid - Queries the frame queue ID of a FQ object
 * @fq: the frame queue object to query
 */
u32 qman_fq_fqid(struct qman_fq *fq);
enum qman_fq_state {
 qman_fq_state_oos,
 qman_fq_state_parked,
 qman_fq_state_sched,
 qman_fq_state_retired
};
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
/**
 * qman_fq_state - Queries the state of a FQ object
 * @fq: the frame queue object to query
 * @state: pointer to state enum to return the FQ scheduling state
 * @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask
 *
 * Queries the state of the FQ object, without performing any h/w commands.
 * This captures the state, as seen by the driver, at the time the function
 * executes.
 */
void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags);

4.2.8.1.3.2.5.1.4.2 Initialize a FQ

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
204 NXP Semiconductors

The qman_init_fq() API requires that the caller fill in the details of the Initialize FQ command that they desire, and uses the 'struct
qm_mcc_initfq' structure type to this end. This structure is quite elaborate, please consult the API header file and SDK examples
for more informatoin.

#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_NULL 0x00000002 /* zero 'contextB', no demux */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/**
 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
 * @fq: the frame queue object to modify, must be 'parked' or new.
 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
 * @opts: the FQ-modification settings, as defined in the low-level API
 *
 * @opts: the FQ-modification settings
*
* Select QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be
* scheduled rather than parked. Select QMAN_INITFQ_FLAG_NULL in @flags to
* configure a frame queue that will not demux to a ’struct qman_fq’ object when
* dequeued frames or messages arrive at a software portal, but which will
* instead trigger the portal’s ’null_cb’ callbacks (see qman_create_portal()).
* NB, @opts can be NULL.
 *
 * Note that some fields and options within @opts may be ignored or overwritten
 * by the driver;
 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
 * affects one frame queue: @fq).
 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
 * 'fqd' structure's 'context_b' field are sometimes overwritten;
 * - if @flags contains QMAN_INITFQ_FLAG_NULL, then context_b is initialized
 * to zero by the driver,
 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
 * initialized to a value used by the driver for demux.
 * - if context_b is initialized for demux, so is context_a in case stashing
 * is requested (see item 4).
 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
 * objects.)
 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
 * 'dest::channel' field will be overwritten to match the portal used to issue
 * the command. If the WE_DESTWQ write-enable bit had already been set by the
 * caller, the channel workqueue will be left as-is, otherwise the write-enable
 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
 * isn't set, the destination channel/workqueue fields and the write-enable bit
 * are left as-is.
 * 4. if the driver overwrites context_a/b for demux, then if
 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
 * context_a.address fields and will leave the stashing fields provided by the
 * user alone, otherwise it will zero out the context_a.stashing fields.
 */
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);

4.2.8.1.3.2.5.1.4.3 Schedule a FQ

/**
 * qman_schedule_fq - Schedules a FQ
 * @fq: the frame queue object to schedule, must be 'parked'
 *
 * Schedules the frame queue, which must be Parked, which takes it to
 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 205

 */
int qman_schedule_fq(struct qman_fq *fq);

4.2.8.1.3.2.5.1.4.4 Retire a FQ

/**
 * qman_retire_fq - Retires a FQ
 * @fq: the frame queue object to retire
 * @flags: FQ flags (as per qman_fq_state) if retirement completes immediately
 *
 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
 * the retirement was started asynchronously, otherwise it returns negative for
 * failure. When this function returns zero, @flags is set to indicate whether
 * the retired FQ is empty and/or whether it has any ORL fragments (to show up
 * as ERNs). Otherwise the corresponding flags will be known when a subsequent
 * FQRN message shows up on the portal's message ring.
 *
 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
 * Active state), the completion will be via the message ring as a FQRN - but
 * the corresponding callback may occur before this function returns!! Ie. the
 * caller should be prepared to accept the callback as the function is called,
 * not only once it has returned.
 */
int qman_retire_fq(struct qman_fq *fq, u32 *flags);

4.2.8.1.3.2.5.1.4.5 Put a FQ out of service

/**
 * qman_oos_fq - Puts a FQ "out of service"
 * @fq: the frame queue object to be put out-of-service, must be 'retired'
 *
 * The frame queue must be retired and empty, and if any order restoration list
 * was released as ERNs at the time of retirement, they must all be consumed.
 */
int qman_oos_fq(struct qman_fq *fq);

4.2.8.1.3.2.5.1.4.6 Query a FQD from QMan

The following functions perform query commands via the QMan software portal to obtain information about the FQD corresponding
to the given FQ object. The data structures used by the query are quite elaborate, please consult the API header file and SDK
examples for more information.

/**
 * qman_query_fq - Queries FQD fields (via h/w query command)
 * @fq: the frame queue object to be queried
 * @fqd: storage for the queried FQD fields
 */
int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd);
/**
 * qman_query_fq_np - Queries non-programmable FQD fields
 * @fq: the frame queue object to be queried
 * @np: storage for the queried FQD fields
 */
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
206 NXP Semiconductors

4.2.8.1.3.2.5.1.4.7 Unscheduled (volatile) dequeuing of a FQ

#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
/**
 * qman_volatile_dequeue - Issue a volatile dequeue command
 * @fq: the frame queue object to dequeue from (or NULL)
 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
 *
 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
 * the VDQCR is already in use, otherwise returns non-zero for failure. If
 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
 * the VDQCR command has finished executing (ie. once the callback for the last
 * DQRR entry resulting from the VDQCR command has been called). If @fq is
 * non-NULL, the corresponding FQID will be substituted in to the VDQCR command,
 * otherwise it is assumed that @vdqcr already contains the FQID to dequeue
 * from.
 */
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)

4.2.8.1.3.2.5.1.4.8 Set FQ flow control state

/**
 * qman_fq_flow_control - Set the XON/XOFF state of a FQ
 * @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos',
 * or 'retired' or 'parked' state
 * @xon: boolean to set fq in XON or XOFF state
 *
 * The frame should be in Tentatively Scheduled state or Truly Schedule sate,
 * otherwise the IFSI interrupt will be asserted.
 */
int qman_fq_flow_control(struct qman_fq *fq, int xon);

4.2.8.1.3.2.5.1.5 Enqueue Command (without ORP)

#define QMAN_ENQUEUE_FLAG_WAIT 0x00010000 /* wait if EQCR is full */
#define QMAN_ENQUEUE_FLAG_WAIT_INT 0x00020000 /* if wait, interruptible? */
#define QMAN_ENQUEUE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
#define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */
#define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */
#define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */
#define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \
 (((u32)(p) << 2) & 0x00000f00)
#define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */
#define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008
#define QMAN_ENQUEUE_FLAG_C_RED 0x00000010
#define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018
/**
 * qman_enqueue - Enqueue a frame to a frame queue
 * @fq: the frame queue object to enqueue to
 * @fd: a descriptor of the frame to be enqueued
 * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
 *
 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 207

 * field is ignored. The return value is non-zero on error, such as ring full
 * (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR
 * specified), etc. If the ring is full and FLAG_WAIT is specified, this
 * function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal
 * interrupt will assert when QMan consumes the EQCR entry (subject to "status
 * disable", "enable", and "inhibit" registers). If FLAG_DCA is set, QMan will
 * perform an implied "discrete consumption acknowledgement" on the dequeue
 * ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x)
 * macro. (As an alternative to issuing explicit DCA actions on DQRR entries,
 * this implicit DCA can delay the release of a "held active" frame queue
 * corresponding to a DQRR entry until QMan consumes the EQCR entry - providing
 * order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is
 * set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption
 * acknowledgement should "park request" the "held active" frame queue. Ie.
 * when the portal eventually releases that frame queue, it will be left in the
 * Parked state rather than Tentatively Scheduled or Truly Scheduled. If the
 * portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag
 * is requested, and the FQ is a member of a congestion group, then this
 * function returns -EAGAIN if the congestion group is currently congested.
 * Note, this does not eliminate ERNs, as the async interface means we can be
 * sending enqueue commands to an un-congested FQ that becomes congested before
 * the enqueue commands are processed, but it does minimise needless thrashing
 * of an already busy hardware resource by throttling many of the to-be-dropped
 * enqueues "at the source".
 */
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags);

4.2.8.1.3.2.5.1.6 Enqueue Command with ORP

/* Same flags as qman_enqueue(), with the following additions;

 * - this flag indicates "Not Last In Sequence", ie. all but the final fragment

 * of a frame. */
#define QMAN_ENQUEUE_FLAG_NLIS 0x01000000
/* - this flag performs no enqueue but fills in an ORP sequence number that
 * would otherwise block it (eg. if a frame has been dropped). */
#define QMAN_ENQUEUE_FLAG_HOLE 0x02000000
/* - this flag performs no enqueue but advances NESN to the given sequence
 * number. */
#define QMAN_ENQUEUE_FLAG_NESN 0x04000000
/*
 * qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP
 * @fq: the frame queue object to enqueue to
 * @fd: a descriptor of the frame to be enqueued
 * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
 * @orp: the frame queue object used as an order restoration point.
 * @orp_seqnum: the sequence number of this frame in the order restoration path
 *
 * Similar to qman_enqueue(), but with the addition of an Order Restoration
 * Point (@orp) and corresponding sequence number (@orp_seqnum) for this
 * enqueue operation to employ order restoration. Each frame queue object acts
 * as an Order Definition Point by providing each frame dequeued from it
 * with an incrementing sequence number, this value is generally ignored unless
 * that sequence of dequeued frames will need order restoration later. Each
 * frame queue object also encapsulates an Order Restoration Point (ORP), which
 * is a re-assembly context for re-ordering frames relative to their sequence
 * numbers as they are enqueued. The ORP does not have to be within the frame
 * queue that receives the enqueued frame, in fact it is usually the frame

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
208 NXP Semiconductors

 * queue from which the frames were originally dequeued. For the purposes of
 * order restoration, multiple frames (or "fragments") can be enqueued for a
 * single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all
 * enqueues except the final fragment of a given sequence number. Ordering
 * between sequence numbers is guaranteed, even if fragments of different
 * sequence numbers are interlaced with one another. Fragments of the same
 * sequence number will retain the order in which they are enqueued. If no
 * enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given
 * sequence number is to be "skipped" by the ORP logic (eg. if a frame has been
 * dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given
 * sequence number should become the ORP's "Next Expected Sequence Number".
 *
 * Side note: a frame queue object can be used purely as an ORP, without
 * carrying any frames at all. Care should be taken not to deallocate a frame
 * queue object that is being actively used as an ORP, as a future allocation
 * of the frame queue object may start using the internal ORP before the
 * previous use has finished.
 */
int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,

 struct qman_fq *orp, u16 orp_seqnum);

4.2.8.1.3.2.5.1.7 DCA Mode

As described in Order Preservation & Discrete Consumption Acknowledgement on page 195, FQs initialized for "hold active"
behavior can have order-preservation behavior if their DQRR entries are consumed either by implicit DCA in the enqueue
command when forwarding, or by explicit DCA if the frame is not going to be forwarded. The implicit DCA via enqueue is described
in Enqueue Command (without ORP) on page 207, this section describes the API for performing an explicit DCA on a DQRR
entry. As with the implicit DCA via enqueue, explicit DCA commands also allow the caller to specify that the FQ be Parked rather
than rescheduled once all its DQRR entries are consumed.

/**
 * qman_dca - Perform a Discrete Consumption Acknowledgement
 * @dq: the DQRR entry to be consumed
 * @park_request: indicates whether the held-active @fq should be parked
 *
 * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
 * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
 * does not take a 'portal' argument but implies the core affine portal from the

 * cpu that is currently executing the function. For reasons of locking, this
 * function must be called from the same CPU as that which processed the DQRR
 * entry in the first place.
 */
void qman_dca(struct qm_dqrr_entry *dq, int park_request);

4.2.8.1.3.2.5.1.8 Congestion Management Records

QMan supports a fixed number[4] of built-in resources called Congestion Group Records (CGRs), that can be used as containers
for related frame queues that should collectively benefit from congestion management. The precise algorithms used for congestion
management with these records is beyond the scope of the document, please see the Queue Manager section of the appropraite
QorIQ SoC Reference Manual for details.

The CGR kernel structure enables access to the CGR hardware functionality. Each object refers to an underlining hardware record
via the cgrid field. Many CGR object may reference the same cgrid, but care must be taken when this object resides on different
cores as no inter-core protection is provided.

[4] 256 for P4080/P5020/P3041

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 209

The init frame queue functionality allows the caller to associate a CGR with the associated frame queue. The interface permits
the management and modification of the underlining CGRs and notifies the user of congestion state changed. The current interface
does not provide a mechanism to manage CGR ids. The application software is expected to arbitrate use of CGR ids.

/* Flags to qman_modify_cgr() */
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
/**
 * This is a qman cgr callback function which gets invoked when the
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
 struct qman_cgr *cgr, int congested);
struct qman_cgr {
 /* Set these prior to qman_create_cgr() */
 u32 cgrid; /* 0..255 */
 qman_cb_cgr cb;
 enum qm_channel chan; /* portal channel this object is created on */
 struct list_head node;
};
/* When Weighted Random Early Discard (WRED) is used then the following
 * structure is used to configure the WRED parameters. Refer to the QMan
 * Block Guide for a detailed description of the various parameters.
 */
struct qm_cgr_wr_parm {
 union {
 u32 word;
 struct {
 u32 MA:8;
 u32 Mn:5;
 u32 SA:7; /* must be between 64-127 */
 u32 Sn:6;
 u32 Pn:6;
 } __packed;
 };
} __packed;
/* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
 * management commands, this is padded to a 16-bit structure field, so that's
 * how we represent it here. The congestion state threshold is calculated from
 * these fields as follows;
 * CS threshold = TA * (2 ^ Tn)
 */
struct qm_cgr_cs_thres {
 u16 __reserved:3;
 u16 TA:8;
 u16 Tn:5;
} __packed;
/* This identical structure of CGR fields is present in the "Init/Modify CGR"
 * commands and the "Query CGR" result. It's suctioned out here into its own
 * struct. */
struct __qm_mc_cgr {
 struct qm_cgr_wr_parm wr_parm_g;
 struct qm_cgr_wr_parm wr_parm_y;
 struct qm_cgr_wr_parm wr_parm_r;
 u8 wr_en_g; /* boolean, use QM_CGR_EN */
 u8 wr_en_y; /* boolean, use QM_CGR_EN */
 u8 wr_en_r; /* boolean, use QM_CGR_EN */
 u8 cscn_en; /* boolean, use QM_CGR_EN */
 union {
 struct {
 u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
 u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
210 NXP Semiconductors

 };
 u32 cscn_targ; /* use QM_CGR_TARG_* */
 };
 u8 cstd_en; /* boolean, use QM_CGR_EN */
 u8 cs; /* boolean, only used in query response */
 struct qm_cgr_cs_thres cs_thres;
 u8 mode; /* QMAN_CRG_MODE_FRAME not supported in rev1.0 */
} __packed
struct qm_mcc_initcgr {
 u8 __reserved1;
 u16 we_mask; /* Write Enable Mask */
 struct __qm_mc_cgr cgr; /* CGR fields */
 u8 __reserved2[2];
 u8 cgid;
 u8 __reserved4[32];
} __packed;
/**
 * qman_create_cgr - Register a congestion group object
 * @cgr: the 'cgr' object, with fields filled in
 * @flags: QMAN_CGR_FLAG_* values
 * @opts: optional state of CGR settings
 *
 * Registers this object to receiving congestion entry/exit callbacks on the
 * portal affine to the cpu portal on which this API is executed. If opts is
 * NULL then only the callback (cgr->cb) function is registered. If @flags
 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
 * any unspecified parameters) will be used rather than a modify hw hardware
 * (which only modifies the specified parameters).
 */
int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts);
/**
 * qman_create_cgr_to_dcp - Register a congestion group object to DCP portal
 * @cgr: the 'cgr' object, with fields filled in
 * @flags: QMAN_CGR_FLAG_* values
 * @dcp_portal: the DCP portal to which the cgr object is registered
 * @opts: optional state of CGR settings
 *
 */
int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
 struct qm_mcc_initcgr *opts);
/**
 * qman_delete_cgr - Deregisters a congestion group object
 * @cgr: the 'cgr' object to deregister
 *
 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
 * is executed. This must be excuted on the same affine portal on which it was
 * created.
 */
int qman_delete_cgr(struct qman_cgr *cgr);
/**
 * qman_modify_cgr - Modify CGR fields
 * @cgr: the 'cgr' object to modify
 * @flags: QMAN_CGR_FLAG_* values
 * @opts: the CGR-modification settings
 *
 * The @opts parameter can be NULL. Note that some fields and options within
* @opts may be ignored or overwritten by the driver, in particular the ’cgrid’
* field is ignored (this operation only affects the given CGR object). If
* @flags contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will
* reset any unspecified parameters) will be used rather than a modify hw

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 211

* hardware (which only modifies the specified parameters).
 */
int qman_modify_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts);
/**
 * qman_query_cgr - Queries CGR fields
 * @cgr: the 'cgr' object to query
 * @result: storage for the queried congestion group record
 */
int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result);

4.2.8.1.3.2.5.1.9 Zero-Configuration Messaging

As described in Overview (QMan) on page 199, the demux logic of the QMan portal driver uses the contextB field of FQDs, as
published in DQRR and MR entries, to determine the corresponding FQ object, and from there the DQRR or MR callback to
invoke. However, "default callbacks" can also be associated with a portal that will be used if a "NULL" FQ is dequeued from, where
NULL refers to a FQD whose contextB entry has been initialized to NULL (this occurs when using the
QMAN_INITFQ_FLAG_NULL flag to the qman_init_fq() API, described in Initialize a FQ on page 204).

The purpose of this mechanism is to allow the user of one portal to enqueue frames on any frame queue that is configured in this
way and schedule it to another portal. For virtualization or AMP scenarios, it is a difficult architectural problem to configure all
guest operating systems to agree, in advance, on run-time parameters. The use of NULL frame queues allows a control plane
guest OS to use any frame queue, configured with a NULL "contextB" field (see the QMAN_INITFQ_FLAG_NULL flag in the
"Frame queue management" section below), to send any and all such configuration to another guest by scheduling that NULL
frame queue to one of the target guest's portals. The target guest will have the portal's "NULL" callbacks invoked rather than
those of any frame queue objects, and as such this provides what could be considered a "zero-configuration" interface - no
agreement is required over what frame queue that configuration information will be arriving on, only that the configuration will
arrive via the portal as a message on a NULL frame queue.

Unless the payload of FDs passed over a zero-config FQ fits entirely within the 32-bit cmd/status field, buffers will

presumably be required and the zero-configuration mechanism described here does not address how the sending

and receiving ends should agree on what memory resources and management to use for this.

 NOTE

/**
 * qman_get_null_cb - get callbacks currently used for "null" frame queues
 *
 * Copies the callbacks used for the affine portal of the current cpu.
 */
void qman_get_null_cb(struct qman_fq_cb *null_cb);
/**
 * qman_set_null_cb - set callbacks to use for "null" frame queues
 *
 * Sets the callbacks to use for the affine portal of the current cpu, whenever
 * a DQRR or MR entry refers to a "null" FQ object. (Eg. zero-conf messaging.)
 */
void qman_set_null_cb(const struct qman_fq_cb *null_cb);

4.2.8.1.3.2.5.1.10 FQ allocation
4.2.8.1.3.2.5.1.10.1 Ad-hoc FQ allocator

As described in Seeding Buffer Pools on page 183>, BMan buffer pool ID zero is currently reserved for use as an ad-hoc FQ
allocator. As seen in Frame queue management on page 203, this feature can be used implicitly when creating a FQ object by
passing the QMAN_FQ_FLAG_DYNAMIC_FQID flag to qman_init_fq(). The advantage of this mechanism is that it works across
all cpus/portals, independent of any hypervisor or other system partitioning. The disadvantage of this mechanism is that does not
permit the atomic nor contiguous allocation of more than one FQ at a time, and in particular most high-performance uses of FMan
require contiguous ranges of FQIDs that also meet certain alignment requirements (ie. that the FQID range begins on an aligned
FQID value).

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
212 NXP Semiconductors

4.2.8.1.3.2.5.1.10.2 FQ range allocator

The following APIs allow software to allocate and release arbitrary ranges of FQIDs, but it should be noted that the current version
of the NXP Datapath software implements this without any hardware interaction. As such, multiple (guest) systems running on
the same chip will each have their own allocator and are not aware of each other's (de)allocations. The range allocator's default
state is empty, and it can be seeded by calling qman_release_fqid_range() on initialization with an appropriate FQID range to
manage. The intention is for the control-plane software to initialize this range and to perform all allocations and deallocations on
behalf of any software running on different system instances.

/**
 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
 * @result: is set by the API to the base FQID of the allocated range
 * @count: the number of FQIDs required
 * @align: required alignment of the allocated range
 * @partial: non-zero if the API can return fewer than @count FQIDs
 * Returns the number of frame queues allocated, or a negative error code. If
 * @partial is non zero, the allocation request may return a smaller range of
 * FQs than requested (though alignment will be as requested). If @partial is
 * zero, the return value will either be 'count' or negative.
 */
int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial);
/**
 * qman_release_fqid_range - Release the specified range of frame queue IDs
 * @fqid: the base FQID of the range to deallocate
 * @count: the number of FQIDs in the range
 *
 * This function can also be used to seed the allocator with ranges of FQIDs
 * that it can subsequently use. Returns zero for success.
 */
void qman_release_fqid_range(u32 fqid, unsigned int count);

4.2.8.1.3.2.5.1.10.3 Future FQ allocator changes

Please note that a future version of the NXP Datapath software will automatically seed the range allocator with all FQIDs available
to QMan, it will reimplement these APIs over an IPC layer such that all system instances share a common allocator instance, and
the BMan-based FQ allocator will be removed and the corresponding APIs being reimplemented to use this range allocator.

4.2.8.1.3.2.5.1.11 Helper functions

In cases where software running on different CPUs communicate using QMan frame queues, there can arise an initialization
problem related to synchronisation. If one side is termed the producer and the other the consumer, then the question becomes
one of when it is safe for the producer to enqueue to that FQ. It is normal for software consumers to take care of initializing and
scheduling FQs, because they must provide initialization and scheduling details in order for dequeue-handling to function correctly.
But on the producer side, any attempt to enqueue to the FQ prior to the FQ being initialized will be rejected (enqueues are not
permitted to OutOfService FQs). The following inline function can be used directly or as an example of how to determine when a
FQ has changed state.

It is safe for the producer to enqueue once the FQ has been initialized but not yet scheduled by the consumer.

 NOTE

/**
 * qman_poll_fq_for_init - Check if an FQ has been initialized from OOS
 * @fqid: the FQID that will be initialized by other s/w
 *
 * In many situations, a FQID is provided for communication between s/w
 * entities, and whilst the consumer is responsible for initialising and
 * scheduling the FQ, the producer(s) generally create a wrapper FQ object using
 * and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie;

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 213

 * qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...);
 * However, data can not be enqueued to the FQ until it is initialized out of
 * the OOS state - this function polls for that condition. It is particularly
 * useful for users of IPC functions - each endpoint's Rx FQ is the other
 * endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object
 * and then use this API on the (NO_MODIFY) Tx FQ object in order to
 * synchronise. The function returns zero for success, +1 if the FQ is still in
 * the OOS state, or negative if there was an error.
 */
static inline int qman_poll_fq_for_init(struct qman_fq *fq)
{
 struct qm_mcr_queryfq_np np;
 int err;
 err = qman_query_fq_np(fq, &np);
 if (err)
 return err;
 if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS)
 return 1;
 return 0;
}

4.2.8.1.3.2.6 Sysfs and debugfs QMan/BMan interfaces
The following section describes the QMan and BMan interfaces available via sysfs and debugfs.

Check the device-tree of each SoC to determine the interfaces available. For more information, see the Reference

Manual for the SoC, and/or examine the sysfs filesystem at run-time.

 NOTE

4.2.8.1.3.2.6.1 QMan sysfs
4.2.8.1.3.2.6.1.1 /sys/devices/platform/soc/1880000.qman/

Description:

This directory contains a snapshot of the internal state of the qman device.

4.2.8.1.3.2.6.1.2 /sys/devices/ffe000000.soc/ffe318000.qman/error_capture

Description:

This directory contains a snapshot of error related qman attributes.

4.2.8.1.3.2.6.1.3 /sys/devices/ffe000000.soc/ffe318000.qman/error_capture/sbec_<0..6>

Description:

Provides a count of the number of single bit ECC errors that have occurred when reading from one of the QMan internal memories.
The range <0..6> represent a QMAN internal memory region defined as follows:

0: FQD cache memory

1: FQD cache tag memory

2: SFDR memory

3: WQ context memory

4: Congestion Group Record memory

5: Internal Order Restoration List memory

6: Software Portal ring memory

This file is read-reset.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
214 NXP Semiconductors

4.2.8.1.3.2.6.1.4 /sys/devices/ffe000000.soc/ffe318000.qman/sfdr_in_use

Description:

Reports the number of SFDR currently in use. The minimum value is 1.

This file is read-only.

4.2.8.1.3.2.6.1.5 /sys/devices/ffe000000.soc/ffe318000.qman/pfdr_fpc

Description:

Total Packed Frame Descriptor Record Free Pool Count in external memory.

This file is read-only

4.2.8.1.3.2.6.1.6 /sys/devices/ffe000000.soc/ffe318000.qman/pfdr_cfg

Description:

Used to read the configuration of the dynamic allocation policy for PFDRs. The value is used to account for PFDR that may be
required to complete any currently executing operations in the sequencers.

This file is read-only.

4.2.8.1.3.2.6.1.7 /sys/devices/ffe000000.soc/ffe318000.qman/idle_stat

Description:

This file can be used to determine when QMan is both idle and empty. The possible values are:

0: All work queues in QMan are NOT empty and QMan is NOT idle.

1: All work queues in QMan are NOT empty and QMan is idle.

2: All work queues in QMan are empty

3: All work queues in QMan are empty and QMan is idle.

This file is read-only.

4.2.8.1.3.2.6.1.8 /sys/devices/ffe000000.soc/ffe318000.qman/err_isr

Description:

QMan contains one dedicated interrupt line for signaling error conditions to software. This file identifies the source of the error
interrupt within QMan. The value is displayed in hexadecimal format. Refer to the appropriate QorIQ SOC Reference Manual for
a description of the QMAN_ERR_ISR register.

This file is read-only.

4.2.8.1.3.2.6.1.9 /sys/devices/ffe000000.soc/ffe318000.qman/dcp<0..3>_dlm_avg

Description:

These files contain an EWMA (exponentially weighted moving average) of dequeue latency samples for dequeue commands
received on the sub portal. The range <0..3> refers to each of the direct-connect portals. The display format is as follows:
<avg_interger>.<avg_fraction>

This file can be seeded with a interger value. The input interger is processed in the following manner: <avg_fraction> = lowest 8
bits / 256 , <avg_interger> = next 12 bits

ex: echo 0x201 > dcp0_dlm_avg

cat dcp0_dlm_avg

0.00390625

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 215

This file is read-write

4.2.8.1.3.2.6.1.10 /sys/devices/ffe000000.soc/ffe318000.qman/ci_rlm_avg

Description:

This file contains an EWMA (exponentially weighted moving average) of read latency samples for reads on CoreNet initiated by
QMan. The display format is as follows: <avg_interger>.<avg_fraction>

This file can be seeded with a interger value. The input interger is processed in the following manner: <avg_fraction> = lowest 8
bits / 256 , <avg_interger> = next 12 bits

ex: echo 0x201 > ci_rlm_avg

cat ci_rlm_avg

0.00390625

This file is read-write

4.2.8.1.3.2.6.2 BMan sysfs
4.2.8.1.3.2.6.2.1 /sys/devices/ffe000000.soc/ffe31a000.bman

Description:

This directory contains a snapshot of the internal state of the BMan device.

4.2.8.1.3.2.6.2.2 /sys/devices/ffe000000.soc/ffe31a000.bman/error_capture

Description:

This directory contains a snapshot of error related BMan attributes.

4.2.8.1.3.2.6.2.3 /sys/devices/ffe000000.soc/ffe31a000.bman/error_capture/sbec_<0..1>

Description:

Provides a count of the number of single bit ECC errors that have occurred when reading from one of the BMan internal memories.
The range <0..1> represent a BMAN internal memory region defined as follows:

0: Stockpile memory 0

1: Software Portal ring memory

This file is read-reset.

4.2.8.1.3.2.6.2.4 /sys/devices/ffe000000.soc/ffe31a000.bman/pool_count

Description:

This directory contains a snapshot of the number of free buffers available in any of the buffer pools.

4.2.8.1.3.2.6.2.5 /sys/devices/ffe000000.soc/ffe31a000.bman/fbpr_fpc

Description:

This file returns a snapshot of the Free Buffer Proxy Record free pool size. Total Free Buffer Proxy Record Free Pool Count in
external memory.

This file is read-only

4.2.8.1.3.2.6.2.6 /sys/devices/ffe000000.soc/ffe31a000.bman/err_isr

Description:

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
216 NXP Semiconductors

BMan contains one dedicated interrupt line for signaling error conditions to software. This file identifies the source of the error
interrupt within BMan. The value is displayed in hexadecimal format. Refer to the appropriate QorIQ SOC Reference Manual for
a description of the BMAN_ERR_ISR register.

This file is read-only.

4.2.8.1.3.2.6.3 QMan debugfs
4.2.8.1.3.2.6.3.1 /sys/kernel/debug/qman

Description:

This directory contains various QMan device debugging attributes.

4.2.8.1.3.2.6.3.2 /sys/kernel/debug/qman/query_cgr

Description:

Query the entire contents of a Congestion Group Record. The file takes as input the Congestion Group Record ID. The output of
the file returns the various CGR fields.

For example, if we want to query cgr_id 10 we would do the following:

echo 10 > query_cgr

cat query_cgr

Query CGR id 0xa

wr_parm_g MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_y MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_r MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_en_g: 0, wr_en_y: 0, we_en_r: 0

cscn_en: 0

cscn_targ: 0

cstd_en: 0

cs: 0

cs_thresh_TA: 0, cs_thresh_Tn: 0

i_bcnt: 0

a_bcnt: 0

4.2.8.1.3.2.6.3.3 /sys/kernel/debug/qman/query_congestion

Description:

Query the state of all 256 Congestion Groups in QMan. This is a read-only file. The output of the file returns the state of all
congestion group records. The state of a congestion group is either "in congestion" or "not in congestion". Since CGR are normally
not in congestion, only CGR which are in congestion are returned. If no CGR are in congestion, then this is indicated.

For example, if we want to perform a query we would do the following:

cat query_congestion

Query Congestion Result

All congestion groups not congested.

4.2.8.1.3.2.6.3.4 /sys/kernel/debug/qman/query_fq_fields

Description:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 217

Query the frame queue programmable fields. This file takes as input the frame queue id to be queried on a subsequent read. The
output of this file returns all the frame queue programmable fields. The default frame queue id is 1.

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using frame queue 482 we could use this file in the following manner:

echo 482 > query_fq_fields

cat query_fq_fields

Query FQ Programmable Fields Result fqid 0x1e2

orprws: 0

oa: 0

olws: 0

cgid: 0

fq_ctrl:

Aggressively cache FQ

Don't block active

Context-A stashing

Tail-Drop Enable

dest_channel: 33

dest_wq: 7

ics_cred: 0

td_mant: 128

td_exp: 7

ctx_b: 0x19e

ctx_a: 0x78b59e18

ctx_a_stash_exclusive:

FQ Ctx Stash

Frame Annotation Stash

ctx_a_stash_annotation_cl: 1

ctx_a_stash_data_cl: 2

ctx_a_stash_context_cl: 2

4.2.8.1.3.2.6.3.5 /sys/kernel/debug/qman/query_fq_np_fields

Description:

Query the frame queue non programmable fields. This file takes as input the frame queue id to be queried on a subsequent read.
The output of this file returns all the frame queue non programmable fields. The default frame queue id is 1.

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using frame queue 482 we could use this file in the following manner:

echo 482 > query_fq_np_fields

cat query_fq_np_fields

Query FQ Non Programmable Fields Result fqid 0x1e2

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
218 NXP Semiconductors

force eligible pending: no

retirement pending: no

state: Out of Service

fq_link: 0x0

orp_nesn: 0

orp_ea_hseq: 0

orp_ea_tseq: 0

orp_ea_hptr: 0x0

orp_ea_tptr: 0x0

pfdr_hptr: 0x0

pfdr_tptr: 0x0

is: ics_surp contains a surplus

ics_surp: 0

byte_cnt: 0

frm_cnt: 0

ra1_sfdr: 0x0

ra2_sfdr: 0x0

od1_sfdr: 0x0

od2_sfdr: 0x0

od3_sfdr: 0x0

4.2.8.1.3.2.6.3.6 /sys/kernel/debug/qman/query_cq_fields

Description:

Query all the fileds of in a particular CQD. This file takes input as the DCP id plus the class queue id to be queried on a subsequent
read. The output of this file returns all the class queue fields. The default class queue id is 1 of DCP 0

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using class queue 4 of DCP 1, we could use this file in the following manner:

echo 0x01000004 > query_cq_fields

(The most left 8 bits are used to specify DCP id, and the rest of 24 bits are used to specify the class queue id)

cat query_fq_fields

Query CQ Fields Result cqid 0x4 on DCP 1

ccgid: 4

state: 0

pfdr_hptr: 0

pfdr_tptr: 0

od1_xsfdr: 0

od2_xsfdr: 0

od3_xsfdr: 0

od4_xsfdr: 0

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 219

od5_xsfdr: 0

od6_xsfdr: 0

ra1_xsfdr: 0

ra2_xsfdr: 0

frame_count: 0

4.2.8.1.3.2.6.3.7 /sys/kernel/debug/qman/query_ceetm_ccgr

Description:

Query the configuration and state fields within a CEETM Congestion Group Record that relate to congestion management(CM).
This file takes input as the DCP id(most left 8 bits) and CEETM Congestion Group Record ID(most right 24 bits). The output of
the file returns the various CCGR fields.

For example, if we want to query ccgr_id 7 of DCP 0, we would do the following:

echo 0x00000007 > query_ceetm_ccgr

cat query_ceetm_ccgr

Query CCGID 7

Query CCGR id 7 in DCP 0

wr_parm_g MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_y MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_r MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_en_g: 0,

wr_en_y: 0,

we_en_r: 0

cscn_en: 0

cscn_targ_dcp:

cscn_targ_swp:

td_en: 0

cs_thresh_in_TA: 0,

cs_thresh_in_Tn: 0

cs_thresh_out_TA: 0,

cs_thresh_out_Tn: 0

td_thresh_TA: 0,

td_thresh_Tn: 0

mode: byte count

i_cnt: 0

a_cnt: 0

4.2.8.1.3.2.6.3.8 /sys/kernel/debug/qman/query_wq_lengths

Description:

Query the length of the Work Queues in a particular channel. This file takes as input a specified channel id. The output of this
file returns the lengths of the work queues on the specified channel.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
220 NXP Semiconductors

For example, if we want to query channel 1 we would do the following:

echo 1 > query_wq_lengths

cat query_wq_lengths

Query Result For Channel: 0x1

wq0_len : 0

wq1_len : 0

wq2_len : 0

wq3_len : 0

wq4_len : 0

wq5_len : 0

wq6_len : 0

wq7_len : 0

4.2.8.1.3.2.6.3.9 /sys/kernel/debug/qman/fqd/avoid_blocking_[enable | disable]

Description:

Query Avoid_Blocking bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which have their Avoid_Blocking bit mask enabled or disabled.

For example, if we want to find all frame queues with Avoid_Blocking enabled, we would do the following:

 # cat avoid_blocking_enable
 List of fq ids with: Avoid Blocking :enabled
 0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
 0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
 ...
 Total FQD with: Avoid Blocking : enabled = 528
 Total FQD with: Avoid Blocking : disabled = 32239

4.2.8.1.3.2.6.3.10 /sys/kernel/debug/qman/fqd/prefer_in_cache_[enable | disable]

Description:

Query Prefer_in_Cache bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which have their Prefer_in_Cache bit mask enabled or disabled.

For example, if we want to find all frame queues with Prefer_in_Cache enabled, we would do the following:

 # cat prefer_in_cache_enable
 List of fq ids with: Prefer in cache :enabled
 0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
 0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
 ...
 Total FQD with: Prefer in cache : enabled = 560
 Total FQD with: Prefer in cache : disabled = 32207

4.2.8.1.3.2.6.3.11 /sys/kernel/debug/qman/fqd/cge_[enable | disable]

Description:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 221

Query Congestion_Group_Enable bit in all frame queue descriptors. This is a read only file. The output of this file returns all the
frame queue ids, in a comma seperated list, which have their Congestion_Group_Enable bit mask enabled or disabled.

For example, if we want to find all frame queues with Congestion_Group_Enable disabled, we would do the following:

 # cat cge_disable
 List of fq ids with: Congestion Group Enable :disabled
 0x000001,0x000002,0x000003,0x000004,0x000005,0x000006,0x000007,0x000008,
 0x000009,0x00000a,0x00000b,0x00000c,0x00000d,0x00000e,0x00000f,0x000010,
 ...
 Total FQD with: Congestion Group Enable : enabled = 0
 Total FQD with: Congestion Group Enable : disabled = 32767

4.2.8.1.3.2.6.3.12 /sys/kernel/debug/qman/fqd/cpc_[enable | disable]

Description:

Query CPC_Stash_Enable bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their CPC_Stash_Enable bit mask enabled or disabled.

For example, if we want to find all frame queues with CPC Stash disabled, we would do the following:

cat cpc_disable
List of fq ids with: CPC Stash Enable :disabled
0x000001,0x000002,0x000003,0x000004,0x000005,0x000006,0x000007,0x000008,
0x000009,0x00000a,0x00000b,0x00000c,0x00000d,0x00000e,0x00000f,0x000010,
...
Total FQD with: CPC Stash Enable : enabled = 0
Total FQD with: CPC Stash Enable : disabled = 32767

4.2.8.1.3.2.6.3.13 /sys/kernel/debug/qman/fqd/cred

Description:

Query Intra-Class Scheduling bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their Intra-Class Scheduling Credit value greater than 0.

cat cred
List of fq ids with Intra-Class Scheduling Credit > 0
Total FQD with ics_cred > 0 = 0

4.2.8.1.3.2.6.3.14 /sys/kernel/debug/qman/fqd/ctx_a_stashing_[enable | disable]

Description:

Query Context_A bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue ids,
in a comma seperated list, which have their Context_A bit mask enabled or disabled.

For example, if we want to find all frame queues with Context_A enabled, we would do the following:

cat ctx_a_stashing_enable
List of fq ids with: Context-A stashing :enabled
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
222 NXP Semiconductors

Total FQD with: Context-A stashing : enabled = 528
Total FQD with: Context-A stashing : disabled = 32239

4.2.8.1.3.2.6.3.15 /sys/kernel/debug/qman/fqd/hold_active_[enable | disable]

Description:

Query Hold_Active bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which have their Hold_Active bit mask enabled or disabled.

For example, if we want find all frame queues with Hold_Active enabled, we would do the following:

cat hold_active_enable
List of fq ids with: Hold active in portal :enabled
Total FQD with: Hold active in portal : enabled = 0
Total FQD with: Hold active in portal : disabled = 32767

4.2.8.1.3.2.6.3.16 /sys/kernel/debug/qman/fqd/orp_[enable | disable]

Description:

Query ORP bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue ids, in a
comma seperated list, which have their ORP bit mask enabled or disabled.

For example, if we want find all frame queues with ORP enabled, we would do the following:

cat orp_enable
List of fq ids with: ORP Enable :enabled
Total FQD with: ORP Enable : enabled = 0
Total FQD with: ORP Enable : disabled = 32767

4.2.8.1.3.2.6.3.17 /sys/kernel/debug/qman/fqd/sfdr_[enable | disable]

Description:

Query Force_SFDR_Allocate bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their Force_SFDR_Allocate bit mask enabled or disabled.

For example, if we want to find all frame queues with Force_SFDR_Allocate enabled, we would do the following:

cat sfdr_enable
List of fq ids with: High-priority SFDRs :enabled(1)
Total FQD with: High-priority SFDRs : enabled = 0
Total FQD with: High-priority SFDRs : disabled = 32767

4.2.8.1.3.2.6.3.18 sys/kernel/debug/qman/fqd/state_[active | oos | parked | retired | tentatively_sched | truly_sched]

Description:

Query Frame Queue State in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which are in the specified state: active, oos, parked, retired, tentatively scheduled or truly scheduled.

For example, the following returns all the frame queues in the Tentatively Scheduled state:

cat state_tentatively_sched
List of fq ids in state: Tentatively Scheduled

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 223

0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
...
Out of Service count = 32201
Retired count = 0
Tentatively Scheduled count = 566
Truly Scheduled count = 0
Parked count = 0
Active, Active Held or Held Suspended count = 0

4.2.8.1.3.2.6.3.19 /sys/kernel/debug/qman/fqd/tde_[enable | disable]

Description:

Query Tail_Drop_Enable bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their Tail_Drop_Enable bit mask enabled or disabled.

For example, the following returns all the frame queues with Tail_Drop_Enable bit enabled:

cat tde_enable
List of fq ids with: Tail-Drop Enable :enabled(1)
0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
...
Total FQD with: Tail-Drop Enable : enabled = 560
Total FQD with: Tail-Drop Enable : disabled = 32207

4.2.8.1.3.2.6.3.20 /sys/kernel/debug/qman/fqd/wq

Description:

Query Destination Work Queue in all frame queue descriptors. This file takes as input work queue id combined with channel id
(destination work queue). The output of this file returns all the frame queues with destination work queue number as specified in
the input.

For example, the following returns all the frame queues with their destination work queue number equal to 0x10f:

echo 0x10f > wq
cat wq
List of fq ids with destination work queue id = 0x10f
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
0x0001fa,0x0001fb,0x0001fd,0x0001fe
Summary of all FQD destination work queue values
Channel: 0x0 WQ: 0x0 WQ_ID: 0x0, count = 32199
Channel: 0x0 WQ: 0x0 WQ_ID: 0x4, count = 1
Channel: 0x0 WQ: 0x3 WQ_ID: 0x7, count = 64
Channel: 0x1 WQ: 0x3 WQ_ID: 0xf, count = 64
Channel: 0x2 WQ: 0x3 WQ_ID: 0x17, count = 64
Channel: 0x3 WQ: 0x3 WQ_ID: 0x1f, count = 64
Channel: 0x4 WQ: 0x3 WQ_ID: 0x27, count = 64
Channel: 0x5 WQ: 0x3 WQ_ID: 0x2f, count = 64
Channel: 0x6 WQ: 0x3 WQ_ID: 0x37, count = 64
Channel: 0x7 WQ: 0x3 WQ_ID: 0x3f, count = 64
Channel: 0x21 WQ: 0x3 WQ_ID: 0x10f, count = 20
Channel: 0x42 WQ: 0x3 WQ_ID: 0x217, count = 8
Channel: 0x45 WQ: 0x0 WQ_ID: 0x228, count = 1
Channel: 0x60 WQ: 0x3 WQ_ID: 0x307, count = 8

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
224 NXP Semiconductors

Channel: 0x61 WQ: 0x3 WQ_ID: 0x30f, count = 8
Sysfs and Debugfs QMan/BMan interfaces
QMan, BMan API RM, Rev. 0.13
NXP Semiconductors NXP Confidential Proprietary 8-67
Preliminary—Subject to Change Without Notice
Channel: 0x62 WQ: 0x3 WQ_ID: 0x317, count = 8
Channel: 0x65 WQ: 0x0 WQ_ID: 0x328, count = 1
Channel: 0xa0 WQ: 0x0 WQ_ID: 0x504, count = 1

4.2.8.1.3.2.6.3.21 /sys/kernel/debug/qman/fqd/summary

Description:

Provides a summary of all the fields in all frame queue descriptors. This is a read only file.

cat summary
Out of Service count = 32201
Retired count = 0
Tentatively Scheduled count = 566
Truly Scheduled count = 0
Parked count = 0
Active, Active Held or Held Suspended count = 0

Prefer in cache count = 560
Hold active in portal count = 0
Avoid Blocking count = 528
High-priority SFDRs count = 0
CPC Stash Enable count = 0
Context-A stashing count = 528
ORP Enable count = 0
Tail-Drop Enable count = 560

4.2.8.1.3.2.6.3.22 /sys/kernel/debug/qman/ccsrmempeek

Description:

Provides access to Queue Manager ccsr memory map. This file takes as input an offset from the QMan CCSR base address.
The output of this file returns the 32-bit value of the memory address as specified in the input.

For example, to query the QM IP Block Revision 1 register (which is at offset 0xbf8 from the QMan CCSR base address), we
would do the following:

echo 0xbf8 > ccsrmempeek
cat cccsrmempeek
QMan register offset = 0xbf8
value = 0x0a010101

4.2.8.1.3.2.6.3.23 /sys/kernel/debug/qman/query_ceetm_xsfdr_in_use

Description:

Query the number of XSFDRs currently in use by the CEETM logic of the DCP portal. This file takes input as the DCP id. The
output of the file returns the number of XSFDR in use. Please note this feature is only available in T4/B4 rev2 silicon.

For example, if we want to query XSFDR in use number of DCP 0, we would do the following:

echo 0 > query_ceetm_xsfdr_in_use

cat query_ceetm_xsfdr_in_use

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 225

DCP0: CEETM_XSFDR_IN_USE number is 0

4.2.8.1.3.2.6.4 BMan debugfs
4.2.8.1.3.2.6.4.1 /sys/kernel/debug/bman

Description:

This directory contains various BMan device debugging attributes.

4.2.8.1.3.2.6.4.2 /sys/kernel/debug/bman/query_bp_state

Description:

This file requests a snapshot of the availability and depletion state of each of BMan's buffer pools. This is a read only file.

For example, if we want to perform a query we could use this file in the following manner:

cat query_bp_state

bp_id free_buffers_avail bp_depleted

0 yes no

1 no no

2 no no

3 no no

4 no no

5 no no

6 no no

7 no no

8 no no

9 no no

10 no no

11 no no

12 no no

13 no no

14 no no

15 no no

16 no no

17 no no

18 no no

19 no no

20 no no

21 no no

22 no no

23 no no

24 no no

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
226 NXP Semiconductors

25 no no

26 no no

27 no no

28 no no

29 no no

30 no no

31 no no

32 no no

33 no no

34 no no

35 no no

36 no no

37 no no

38 no no

39 no no

40 no no

41 no no

42 no no

43 no no

44 no no

45 no no

46 no no

47 no no

48 no no

49 no no

50 no no

51 no no

52 no no

53 no no

54 no no

55 no no

56 no no

57 no no

58 no no

59 no no

60 no no

61 no no

62 no no

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 227

63 yes no

4.2.8.1.3.2.7 Error handling and reporting
This chapter describes the QMan and BMan error handling and reporting.
4.2.8.1.3.2.7.1 Handling and Reporting

The QMan and BMan error interrupt sevices routines log the occurrence of every error interrupt. Some error interrupts can be
triggered multiple times. To prevent a flood of error logging when this interrupts are raised, they are only logged on their first
occurance at which time they are disabled. The logs are generated via the pr_warning() kernel api. At the end of the interrupt
service routine the ISR register is cleared. These logs are available on the console, dmesg and related log file.

The following QMan error conditions are logged a single time:

QM_EIRQ_PLWI and QM_EIRQ_PEBI.

The following BMan error conditions are logged a single time:

BM_EIRQ_FLWI (low water mark).

4.2.8.1.3.2.8 Operating system specifics
This chapter captures O/S-specific issues and distinctions, as the rest of the document essentially describes the interfaces in a
generalized manner.
4.2.8.1.3.2.8.1 Portal maintenance

By default, the Linux kernel initializes QMan and BMan portals to perform all processing via interrupt-handling. As such there are
no persistent threads or polling requirements in order to use portals in the Linux kernel.

Whereas for USDPAA (linux user space), the default is for all processing to be driven by polling, and support for the use of interrupts
is disabled. The applications are required to call qman_poll() and bman_poll() within their run-to-completion loops to ensure that
portal processing occurs regularly.

As described in Processing non-interrupt-driven portal duties (BMan) on page 186 (for BMan) and Processing non-interrupt-driven
portal duties (QMan) on page 201 (for QMan), it is also possible to dynamically control at run-time which portal duties are interrupt-
driven versus poll-driven, so the aforementioned defaults for Linux are start-up defaults. However, USDPAA needs to be built with
"CONFIG_FSL_DPA_IRQ_SAFETY" defined in order to allow any duties to be interrupt-driven, whereas it is disabled by default
(in inc/public/conf.h) due to a very slight performance improvement that it yields.

4.2.8.1.3.2.8.2 Callback context

In the Linux kernel, all interrupt-driven portal duties are handled in interrupt context, whereas all other portal duties are invoked
from within the qman_poll() and bman_poll() functions, which are invoked by the application.

In USDPAA, even interrupt-driven portal duties are handled in an application context. Interrupts are handled within the kernel and
locally disabled, and the presence of such interrupt events is available to the application via the USDPAA file-descriptor
representing the portal devices. Interrupt-driven portal duties are thus processed when the application calls the qman_thread_irq()
and bman_thread_irq() functions, and other portal duties are processed when the application calls qman_poll() and bman_poll().

4.2.8.1.3.2.8.3 Blocking semantics

Many high-level QMan and BMan API functions provide "WAIT" flags, to allow the API to block as part of its operation.

In the Linux kernel, "WAIT" behavior is implemented by allowing the calling thread to sleep until a given condition is satisfied. The
limitation then to using "WAIT" flags is that the caller can not be in atomic context - i. e. not executing within an interrupt handler,
tasklet, bottom-half, etc, nor with any spinlocks held. One consequence is that "WAIT" flags can not be used within a callback.

On run-to-completion systems such as USDPAA, "WAIT" behavior is unsupported and unavailable.

4.2.8.1.4 Configuring DPAA1 Frame Queues

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
228 NXP Semiconductors

4.2.8.1.4.1 Introduction
Describes configurations of Queue Manager (QMan) Frame Queues (FQs) associated with Frame Manager (FMan) network
interfaces for the QorIQ Data Path Acceleration Architecture (DPAA1). The relationship of the FMan and the QMan channels
and work queues are illustrated by examples.

The basic configuration examples for QMan FQs provided yield straightforward and reliable DPAA1 performance. These simple
examples may then be fine tuned for special use cases. For additional information and understanding of advanced system level
features please refer to the DPAA Reference Manual.

DPAA1 provides the networking specific I/Os, accelerator/offload functions, and basic infrastructure to enable efficient data
passing, without locks or semaphores, within the multi-core QorIQ SoC between:

1. The network and I/O interfaces through which that data arrives and leaves

2. The accelerator blocks used by the software to assist in processing that data.

Hardware-managed queues which reside in and are managed by the QMan provide the basic infrastructure elements to enable
efficient data path communication. The data resides in delimited work units of frames/packets between cores, hardware
accelerators and network interfaces. These hardware-managed queues, known as Frame Queues (FQs), are FIFOs of related
frames. These frames comprise buffers that hold a data element, generally a packet. Frames can be single buffers or multiple
buffers (using scatter/gather lists).

FQ assignment to consumers i.e., cores, hardware accelerators, network interfaces, are programmable (not hard coded).
Specifically, FQs are assigned to work queues which in turn are grouped into channels. Channels which represent a grouping of
FQs from which a consumer can dequeue from, are of two types:

• Pool channel: a channel that can be shared between consumers which facilitates load balancing/spreading. (Applicable to
cores only. Does not apply to hardware accelerators or netwok interfaces)

• Dedicated channel: a channel that is dedicated to a single consumer.

Each pool or dedicated channel has eight (8) work queues. There are two high priority work queues that have absolute, strict
priority over the other six (6) work queues which are grouped into medium and low priority tiers. Each tier contains three work
queues which are serviced using a weighted round robin based algorithm. More than one FQ can be assigned to the same work
queue as channels implementing a 2-level hierarchical queuing structure. That is, FQs are enqueued/dequeued onto/from work
queues. Within a work queue a modified deficit round algorithm is used to determine the number of bytes of data that can be
consumed from a FQ at the head of a work queue. The FQ, if not empty, is enqueued back onto the tail of the same work queue
once its consumption allowance has been met.

• The configuration information provided in this document applies to the QorIQ family of SoCs built on DPAA1

technology

• The configuration information provided in this document assumes a top bin platform frequency.

 NOTE

4.2.8.1.4.2 FMan Network interface Frame Queue Configuration
Configuring the QMan Frame Queues (FQs) associated with the FMan network interfaces for QorIQ DPAA1.

Each network interface has an ingress and an egress direction. The ingress direction is defined as the direction from the network
interface to the cores. The egress direction is defined as the direction from the cores to the network interfaces.

FQs associated with FMan network interfaces can be either ingress or egress FQs. Ingress FQs are referred to FQs used in the
ingress direction to store packets received from network interfaces to be processed by the cores. Egress FQs are referred to FQs
used in the egress direction to store packets to be transmitted by FMan out of its network interfaces.

4.2.8.1.4.3 FMan network interface ingress FQs configuration
Dependencies for configuration of the ingress Frame Queues (FQs) is dependent on the QMan mechanism used to load
balance/spread received packets across the multiple cores in QorIQ DPAA1.

Two mechanisms are offered:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 229

1. Dynamic load balancing

• Load spread the packets (from ingress FQs) to the cores based on actual core availability/readiness.

• Achieved through the use of QMan pool channel (i.e. a channel which can be shared by multiple cores).

• Maintaining packet ordering (e.g. when packets are being forwarded) is achieved through the following two
mechanisms:

a. Order preservation; ensures that related packets (e.g. a sequence of packets moving between two end
points) are processed in order (and typically one at a time).

b. Order restoration; allows packets to be processed out of order and then restores their order later on before
they are transmitted out to the network interfaces.

• Improves core work load balancing over a static distribution based approach scheme but will not maintain core
affinity because a FQ may get processed by multiple cores.

2. Static distribution

• Static association between FQs and cores; FQs are always processed by the same core.

• Achieved through the use of QMan dedicated channel (i.e. a channel which supplies FQs to a specific core).

• Static not dynamic, doesn't react to core load, assigns work to the cores in a static or fixed manner.

• Does not not require any special order preservation/restoration mechanism as packet ordering is implicitly
preserved.

For all of these mechanisms, QMan requires that related packets, which must be processed and/or transmitted in order, be placed
on the same FQ. This does not mean that only related packets are placed on a given FQ; many sets of related packets (“flows”)
can be placed on a single FQ. FMan is responsible for achieving this placement/FQ selection function through its distribution
capabilities. For instance, FMan can be configured to apply a hash function to a set of packet header fields and use the hash
value to select the FQ. This set of packet header fields can be for example, a 5-tuple consisting of:

• source IP address

• destination IP address

• protocol

• source port

• destination port

Note that the FMan processing may be out of order, but it has internal mechanism to ensure that packets are enqueued in order
of reception.

These mechanisms can be configured and used simultaneously on an SoC device.

4.2.8.1.4.4 Ingress FQs common configuration guidelines
Guidelines and examples for configuring ingress Frame Queues (FQs) in the QorIQ DPAA1 are shown.

Following guidelines apply regardless of the load balancing mechanism(s) configured:

• Maximum number of ingress FQs for all ingress interfaces on the device (including any of the separate FQs that are used
to serve as an order restoration point (ORP)): 1024

• Maximum number of ingress FQs per work queue (FIFO of FQs):

• — 64 if the aggregate bandwidth of the configured network interface(s) on the device is higher than 10 Gbit/s.

— 128 if the aggregate bandwidth of the configured network interface(s) on the device is 10 Gbit/s or lower.

• The aggregate bandwidth of the configured network interface(s) on the device receiving packets into FQs associated to the
same work queue should not exceed 10 Gbit/s. In other words, the recommended maximum incoming rate into a single
work queue is 10 Gbit/s. If the configured network interface(s) on the device is higher than 10 Gbit/s, then multiple work
queues should be used.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
230 NXP Semiconductors

• Since the Single Frame Descriptor Record (SFDRs) reservation scheme is recommended for the egress FQs (FMan
network interface egress FQs configuration) and any other FQs assigned to high priority work queues will also use these
reserved SFDRs, careful consideration should be given to the required number of ingress FQs assigned to the high priority
work queues as SFDRs are a scarce QMan resource (there is a total of 2K SFDRs). One needs to leave sufficient SFDRs
for FQs not using the reserved SFDRs (e.g. ingress FQs assigned to medium or low priority work queues).

As an example, if one allocates 1024 ingress FQs and the aggregate bandwidth of the configured network interface(s) on the
device is higher than 10 Gbit/s, then a minimum of 16 work queues would be required based on the above guidelines. Assuming
that all 1024 FQs are to be scheduled at the same priority using a dynamic load balancing scheme, a minimum of 6 pool channels
would need to be used (based on the fact that up to 3 work queues can be used within a medium or low priority tier).

The guideline “maximum of 1024 ingress FQs for all ingress interfaces” results from the size of the internal memory in QMan that
is used to cache Frame Queue Descriptors (FQDs). This internal memory is sized to 2K entries. To achieve high, deterministic
and reliable performance under worst-case packet workload (back-to-back 64-byte packets enqueued to FQs on a rotating basis),
all ingress FQDs must remain in the QMan internal cache. FQD cache misses increase the time required to enqueue packets as
the FQD may need to be read from external memory. This in return could result in received packets being discarded by the MAC
due MAC FIFO overflow condition as a result of the back-pressure applied by the FMan to the MAC as there is little buffering
between the MAC and the point at which incoming packets are enqueued onto the ingress FQs.

Although a device configured with a number of ingress FQs higher than the size of the QMan FQD internal cache would operate
at high performance with no packet discards if the incoming traffic exhibited some level of temporal locality, it is generally
recommended that the device be engineered such that ingress path operates at line rate under worst case packet workload to
avoid unnecessary packets losses and to make effective use of QMan to prioritize and apply appropriate QoS if there is congestion
in a downstream element (e.g. cores). Since all FQs defined on the device shared the QMan 2K internal FQD cache, the
recommended maximum number of ingress and egress FQs is even more constrained so that there is adequate space left for
caching FQDs assigned to accelerators.

With regards to congestion management, the default mechanism for managing ingress FQ lengths is through buffer management.
Input to FQs is limited to the availability of buffers in the buffer pool used to supply buffers to the FQs. Although very efficient and
simple, when a buffer pool is shared by multiple FQs, there is no protection between the FQs sharing the buffer pool and as a
result a FQ could potentially occupy all the buffers.

Queue management mechanisms can be configured (e.g. tail drop/WRED) to improve congestion control however appropriate
software must be in place to handle enqueue rejections as a result of queue congestion.

4.2.8.1.4.5 Dynamic load balancing with order preservation - ingress FQs
configuration guidelines

Dynamic load balancing with order preservation provides a very effective workload distribution technique to achieve optimal
utilization of all cores as it distributes packets to the cores based on actual core availability/readiness.

Order preservation allows FQs to be dynamically reassigned from one core to another while preserving per-FQ packet ordering.
It never allows packets from the same FQ to be processed at multiple cores at the same time; a specific FQ is only processed by
one core at any given time. Once the FQ is released by the core, it can be processed by any of the cores. To keep multiple cores
active there must be multiple FQs distributing packets to the cores, each with a set of (potentially) related packets.

In packet-forwarding scenarios, Discrete Consumption Acknowledgement (DCA) embedded in the enqueue commands should
be used to forward packets as this ensures that QMan will release the ingress FQ on software’s behalf once it has finished
processing the enqueue command. This provides order preservation semantic from end-to-end (from dequeue to enqueue). To
support the above, software portals that will be issuing DCA notifications to QMan must be configured with DCA mode enabled.

Following are specific configuration guidelines for ingress FQs used for dynamic load balancing with order preservation:.

• FQ must be associated to a pool channel (i.e. a channel which can be shared by multiple cores).

• Within a pool channel, minimum number of FQs per active portal (core): 4.

• Frame Queue Descriptor (FQD) attributes settings:

— Prefer in cache.

— Hold active set.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 231

— Don’t set avoid blocking.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— FQD CPC stashing enabled.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— Order Restoration Point (ORP) disabled.

4.2.8.1.4.6 Dynamic load balancing with order restoration - ingress FQs
configuration guidelines

Dynamic load balancing with order restoration dispatches packets from the same Frame Queue (FQ) to different processor
cores without attempting to maintain order. QMan provides order restoration with specific configurations shown.

The packet order in the original FQ (e.g. ingress FQ) is restored once the cores complete its processing and return the packets
to QMan for sending to the next destination (e.g. egress FQ for transmission).

Dynamic load balancing with order restoration has the advantage that parallel processing of related traffic is possible; allows to
process without packet drops a flow that exceed the processing rate of a core. However order restoration does make use of more
resources than the other distribution schemes. Its usage must also be balanced with applications need to atomically access shared
data.

Order restoration is achieved through the following two QMan components:

• Order Definition Points (ODPs)

— A point through which packets pass, where their order or sequence relative to each other is defined.

— For convenience each FQ has an ODP for packets dequeued from that FQ.

• Order Restoration Points (ORPs)

— A point through which packets pass, where their order or sequence is restored to that defined at the related ODP.

— If a packet is out of sequence it is held until it is in sequence.

— ORP data structure is maintained in a FQ; it is recommended that a dedicated/separate FQ be allocated solely for
this purpose.

Following are specific configuration guidelines for ingress FQs used for dynamic load balancing with order restoration:

• FQ must be associated to a pool channel (i.e. a channel which can be shared by multiple cores).

• For each ingress FQ supporting order restoration, a separate FQ should be allocated to serve as the ORP.

• Ingress FQ descriptor attributes settings.

— Prefer in cache

— Don’t set hold active.

— Set avoid blocking.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— FQD CPC stashing enabled.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— ORP disabled.

Following are specific configuration guidelines for ORP FQs:

• FQs used for ORP don’t need to be associated with a pool or dedicated channel.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
232 NXP Semiconductors

• ORP FQ descriptor attributes settings:

— Prefer in cache .

— Don’t set hold active.

— Don’t set avoid blocking.

— Intra-class scheduling credit set to 0.

— Don’t set force SFDR allocate .

— FQD CPC stashing enabled.

— ORP enabled.

— Recommended ORP restoration window size: 128.

4.2.8.1.4.7 Static distribution - Ingress FQs Configuration Guidelines
With a static distribution approach, a single FQ is always processed by the same processor core. Specific guidelines for
processor core affinity are presented.

Although not as effective as a dynamic based approach from a resource utilization aspect, static distribution maintains core affinity
meaning that the mapping from the flow to the core is preserved.

Distribution of packets (selection of FQ) can based on hash keys, ensuring that packets from the same traffic flow will always go
to the same cores. The FQ selection function is achieved by FMan.

Following are specific configuration guidelines for ingress FQs used for static distribution:

• FQ must be associated to a dedicated channel (i.e. a channel which supplies FQs to a specific core); multiple FQs can be
associated to a single dedicated channel.

• Within a dedicated channel, minimum number of FQs: 1.

• FQ descriptor attributes settings:

— Prefer in cache .

— Don’t set hold active

— Don’t set avoid blocking.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— FQD CPC stashing enabled.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— ORP disabled.

4.2.8.1.4.8 FMan network interface egress FQs configuration
Configuration guidelines for egress Frame Queues (FQs) for QorIQ DPAA1

FQ Configurations:

• Maximum number of egress FQs for all network interfaces: 128.

• Minimum number of egress FQs per network interface: 1.

• Maximum number of egress FQs per work queue: 8.

• Egress FQ descriptor attributes settings:

— Prefer in cache.

— Don’t set hold active .

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 233

— Don’t set avoid blocking.

— Set force SFDR allocate to ensure that egress queues make use of the reserved SFDRs; the SFDR reservation threshold
field of the QMan SFDR configuration register must also be set accordingly (5 SFDRs per egress FQ + 3 extra SFDRs
as required by QMan).

— Intra-class scheduling set to zero (0) unless a more advanced scheduling scheme is required.

— FQD CPC stashing enabled.

— ORP disabled.

.

4.2.8.1.4.9 Accelerator Frame Queue Configuration
Configurations for Frame Queues (FQs) used to communicate with accelerators for QorIQ DPAA1 are shown.

FQ accelerator Guidelines:

• Since the Single Frame Descriptor Record (SFDRs) reservation scheme is recommended for the egress FQs (FMan network
interface egress FQs configuration) and any other FQs assigned to high priority work queues will also use these reserved
SFDRs, careful consideration should be given to the required number of accelerator FQs assigned to the high priority work
queues as SFDRs are a scarce QMan resource (there is a total of 2K SFDRs). One needs to leave sufficient SFDRs for FQs
not using the reserved SFDRs (e.g. accelerator FQs assigned to medium or low priority work queues).

• Accelerator FQ descriptor attributes settings:

— Don’t set prefer in cache.

— Don’t set hold active .

— Don’t set avoid blocking.

— FQD CPC stashing enabled.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— ORP disabled.

Generally accelerators are used in a request/response manner and in cases where a pair of FQs is needed per session/flow to
communicate with accelerators, one may need to allocate a very large number of FQs (in the order of thousands). At times when
many FQs allocated to an accelerator are active, this situation can result in having significant amount of cache consumed for
storing the corresponding FQ descriptors. This in turn may negatively impact overall system performance.

To ensure optimal resource utilization (e.g. QorIQ caches), maximize throughput and avoid overload, it is recommended that the
number of outstanding requests/responses to an accelerator be regulated. Typically, for a given accelerator, regulating the number
of outstanding requests/responses across all its FQs to a few hundredths should be sufficient to maintain high throughput without
overloading the system. Regulating the number of outstanding requests/responses to an accelerator can be achieved through
various methods.

One method is to keep track in software of the total number of outstanding requests/responses to an accelerator and once this
number exceeds a threshold, software would stop sending requests to that accelerator.

Another method is to make use of the congestion management capabilities of QMan. Specifically, all FQs allocated to an
accelerator can be aggregated into a congestion group. Each congestion group can be configured to track the number of Frames
in all FQs in the congestion group. Once this number exceeds a configured threshold, the congestion group enters congestion.
When a congestion group enters congestion, QMan can be configured to rejects enqueues to any FQs in the congestion group
and/or sent notification indicating that the congestion group has entered congestion. If a Frame (or request) is not going to be
enqueued, it will be returned to the configured destination via an enqueue rejection notification. Congestion state change
notifications are generated when the congestion group either enters congestion or exits congestion. On software portals, the
congestion state change notification is sent via an interrupt.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
234 NXP Semiconductors

4.2.8.1.4.10 DPAA1 Frame Queue Configuration Guideline Summary
Summary of Configurations for Frame Queue (FQ) communication with accelerators for QorIQ DPAA1

Four tables comprise this summary:

• Global Configuration settings

• Network interface ingress FQ guidelines

• Network interface egress FQ guidelines

• Accelerator FQ guidelines

Table 34. Global Configuration Settings Summary

Parameter or subject Guideline

FQD stashing Recommend QMan explicitly stash FQDs:

• QMan; both the global CPC stash enable bit in the QMan
FQD_AR register and the CPC stash enable bit in the FQD
must be set.

• PAMU; PAACT tables used by PAMU also configured
appropriately .

PFDR stashing Recommend QMan explicitly stash PFDRs:

• QMan; the global CPC stash enable bit in the QMan
PFDR_AR register must be set .

• PAMU; PAACT tables used by PAMU must also be
configured appropriately .

SFDR reservation threshold Set SFDR reservation threshold in QMan SFDR configuration
register to:

• Total number of FQs using reserved SFDRs times 5 (5 SFDRs
per FQ) plus 3 extra SFDRs as required by QMan.

Recommend that all egress FQs use reserved SFDRs .

Table 35. Network Interface Ingress FQs Guidelines Summary

Parameter or subject Guideline

Maximum number of ingress FQs for all ingress interfaces
on the device (including any of the separate FQs that are
used to serve as an order restoration point (ORP))

1024 FQs

Maximum number of ingress FQs per work queue. • 64 FQs per work queue if the aggregate bandwidth of the
configured network interface(s) on the device is higher than
10 Gbit/s.

• 128 FQs per work queue if the aggregate bandwidth of the
configured network interface(s) on the device is 10 Gbit/s or
lower.

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 235

Table 35. Network Interface Ingress FQs Guidelines Summary (continued)

Parameter or subject Guideline

The maximum aggregate bandwidth of the configured
network interface(s) on the device receiving packets into
FQs associated to the same work queue

10 Gbit/s

Within a pool channel, minimum number of FQs per active
portal (cores).

4 FQs

Within a dedicated channel, minimum number of FQs: 1 FQ

Assignment to high priority work queues. Should be limited enough to leave sufficient SFDRs for FQs not
using the reserved SFDRs (e.g. ingress FQs assigned to medium
or low priority work queues).

Order restoration point (ORP). A separate FQ should be allocated and dedicated to serve as the
ORP for each ingress FQ supporting order restoration.

Ingress FQ descriptor load balancing and performance
related settings.

• Prefer_in_Cache: 1

• CPC Stash Enable: 1

• ORP_Enable: 0

• Avoid_Blocking:

— 0 if static distribution or dynamic load balancing with
order preservation.

— 1 if dynamic load balancing with order restoration.

• Hold_Active

— 0 if static distribution or dynamic load balancing with
order restoration .

— 1 if dynamic load balancing with order preservation.

• Force_SFDR_Allocate: 0 unless FQ needs performance
optimization.

• Intra-Class Scheduling Credit: 0 unless a more advanced
scheduling scheme is required.

ORP FQ descriptor order restoration and performance
related settings.

• Prefer_in_Cache: 1

• CPC Stash Enable: 1

• ORP_Enable: 1

• Avoid_Blocking: 0

• Hold_Active: 0

• Force_SFDR_Allocate: 0

• ORP Restoration Window Size: 2 (corresponds to window size
of 128 frames).

• Class Scheduling Credit: 0

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
236 NXP Semiconductors

Table 36. Network Interface Egress FQs Guidelines Summary

Parameter or subject Guideline

Maximum number of egress FQs for all network
interfaces.

128 FQs

Minimum number of egress FQs per network interface. 1 FQ

Maximum number of egress FQs per work queue. 8 FQs

Egress FQ descriptor performance related settings. • Prefer_in_Cache: 1

• CPC Stash Enable: 1

• ORP_Enable: 0

• Avoid_Blocking: 0

• Hold_Active: 0

• Force_SFDR_Allocate: 1

• Class Scheduling Credit: 0 unless a more advanced
scheduling scheme is required.

Table 37. Accelerator FQs Guidelines Summary

Parameter or subject Guideline

Assignment to high priority work queues. Should be limited enough to leave sufficient SFDRs for FQs not
using the reserved SFDRs (e.g. accelerator FQs assigned to
medium or low priority work queues).

Egress FQ descriptor performance related settings. • Prefer_in_Cache: 0

• CPC Stash Enable: 1

• ORP_Enable: 0

• Avoid_Blocking: 0

• Hold_Active: 0

• Force_SFDR_Allocate: 0 unless FQ needs performance
optimization .

• Class Scheduling Credit: 0 unless a more advanced
scheduling scheme is required .

4.2.8.1.5 Frame Manager

4.2.8.1.5.1 Frame Manager Linux Driver User Guide

4.2.8.1.5.1.1 Introduction
This part is describing the Linux implementation of the driver for the Frame Manager, or FMD.

The Linux FMD implements a set of standard Linux character devices that rely on underlying OS-agnostic FMan drivers to do the
actual communication with the hardware. The figure below describes this best:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 237

FMan 2

10G

FM-LIB

FMC

open () ; ioctl (); close ();

LINUX APPLICATION
(USERSPACE)

/* socket
interface */

LINUX KERNEL

LINUX FMD
(WRAPPER)

/ dev/ fm0 / dev / fm0_pcd
/ dev/ fm1 / dev / fm1_pcd
/ dev/ fm[0,1]_port_rx [0-4]
/ dev/ fm[0,1]_port_tx [0-4]
/ dev/ fm[0,1]_port_oh [0-6]

DPAA ETHERNET

fm0-gb0
fm0-gb1
fm0-gb2
fm0-gb3
fm0-10g

FM PORT PCD MAC RTC

NC SW LLD
QMan/BMan
DRIVERS

FMan 1

1G

BMan

QMan

fm1-gb0
fm1-gb1
fm1-gb2
fm1-gb3
fm1-10g

1G 1G 1G 10G

Figure 51. FMan-centric view of relationships between DPAA software and hardware blocks in the Linux
environment.

The features of the Linux FMan Driver are the following:

• Performs initialization of the Frame Manager based on platform configuration (device tree), and on probing of the actual
hardware;

• Supports Linux user space applications looking to create FMan PCD configurations;

• Attaches/detaches PCDs to/from FMan ports;

• Reports FMan and port status:

— FMan registers

— FMan statistics

— FMan port and MAC counters

The Linux FMan driver does not handle actual network traffic. Network traffic in Linux is being handled exclusively by Linux network
devices. Network traffic going through FMan can only be handled by the Linux DPAA Ethernet driver. Although the DPAA Ethernet
and the Linux FMan Driver share strong links and interdependencies with the underlaying low-level FMD and with each other,
their feature sets do not overlap. The DPAA1 Ethernet driver is described in the Linux Ethernet on page 140 section.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
238 NXP Semiconductors

4.2.8.1.5.1.2 The Linux FMD Devices
The Linux interface to the FMD consists in several Linux character devices:

• /dev/fm[0,1], each corresponding to an actual Frame Manager;

• /dev/fm[0,1]-pcd are PCD devices corresponding each to a Frame Manager;

• /dev/fm[0,1]-port-rx[0-4], and /dev/fm[0,1]-port-tx[0-4] corresponding to the physical ports of each
FMan: each rx/tx device in a pair corresponds to the receive and transmit sides of a physical port;

• /dev/fm[0,1]-port-oh[0-6] correspond to the Offline Parsing ports.

These devicesare created and initialized at boot time, based on probing of the physical hardware, as well as on the parsing of the
device tree. Each of the physical ports can thus be disabled from the device tree, but also from the Reset Configuration Word
(RCW). See the SoC's Reference Manual for more details.

The assumption for the remainder of this section is that the device tree and the RCW are immutable.

 NOTE

Depending on the SoC and RCW/.dts configuration, only certain devices are available . The mapping of the devices to the physical
ports is given by the following table:

Table 38. Mapping of Linux devices to low-level port IDs.

Linux Device Low-Level
ID

Identification

/dev/fm0-port-rx0 /dev/
fm0-port-tx0

0 1st FMan's 1st 1GbE Receive, Transmit

/dev/fm0-port-rx1 /dev/
fm0-port-tx1

1 1st FMan's 2nd GbE Receive, Transmit

/dev/fm0-port-rx2 /dev/
fm0-port-tx2

2 1st FMan's 3rd GbE Receive, Transmit

/dev/fm0-port-rx3 /dev/
fm0-port-tx3

3 1st FMan's 4th GbE Receive, Transmit

/dev/fm0-port-rx4 /dev/
fm0-port-tx4

4 1st FMan's 5th GbE Receive, Transmit

/dev/fm0-port-rx5 /dev/
fm0-port-tx5

5 1st FMan's 6th GbE Receive, Transmit

/dev/fm0-port-rx6 /dev/
fm0-port-tx6

6 1st FMan's 1st 10Gb Receive, Transmit

/dev/fm0-port-rx7 /dev/
fm0-port-tx7

7 1st FMan's 2nd 10Gb Receive, Transmit

N/A 0 1st FMan's Host Command

/dev/fm0-port-oh0 1 1st FMan's 1st Offline Parsing

/dev/fm0-port-oh1 2 1st FMan's 2nd Oflline Parsing

/dev/fm0-port-oh2 3 1st FMan's 3rd Offline Parsing

/dev/fm0-port-oh3 4 1st FMan's 4th Offline Parsing

/dev/fm0-port-oh4 5 1st FMan's 5th Offline Parsing

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 239

Table 38. Mapping of Linux devices to low-level port IDs. (continued)

Linux Device Low-Level
ID

Identification

/dev/fm0-port-oh5 6 1st FMan's 6th Offline Parsing

/dev/fm0-port-oh6 7 1st FMan's 7th Offline Parsing

/dev/fm1-port-rx0 /dev/
fm1-port-tx0

0 2nd FMan's 1st 1GbE Receive, Transmit

/dev/fm1-port-rx1 /dev/
fm1-port-tx1

1 2nd FMan's 2nd 1GbE Receive, Transmit

/dev/fm1-port-rx2 /dev/
fm1-port-tx2

2 2nd FMan's 3rd 1GbE Receive, Transmit

/dev/fm1-port-rx3 /dev/
fm1-port-tx3

3 2nd FMan's 4th 1GbE Receive, Transmit

/dev/fm1-port-rx4 /dev/
fm1-port-tx4

4 2nd FMan's 5th 1GbE Receive, Transmit

/dev/fm1-port-rx5 /dev/
fm1-port-tx5

5 2nd FMan's 10Gb Receive, Transmit

/dev/fm1-port-rx6 /dev/
fm1-port-tx6

6 2nd FMan's 1st 10Gb Receive, Transmit

/dev/fm1-port-rx7 /dev/
fm1-port-tx7

7 2nd FMan's 2nd 10Gb Receive, Transmit

N/A 0 2nd FMan's Host Command

/dev/fm1-port-oh0 1 2nd FMan's 1st Offline Parsing Port

/dev/fm1-port-oh1 2 2nd FMan's 2nd Offline Parsing Port

/dev/fm1-port-oh2 3 2nd FMan's 3rd Offline Parsing Port

/dev/fm1-port-oh3 4 2nd FMan's 4th Offline Parsing Port

/dev/fm1-port-oh4 5 2nd FMan's 5th Offline Parsing Port

/dev/fm1-port-oh5 6 2nd FMan's 6th Offline Parsing Port

/dev/fm1-port-oh6 7 2nd FMan's 7th Offline Parsing Port

The Low Level IDs are the IDs that are used by the Low Level Drivers (upon which the Linux FMan Driver is based) to distinguish
between the physical ports. It is obvious from the above table that the port ID alone does not allow for uniquely identifying a single
port. It has to be combined wiht the following information in order to succeesfully point to the desired port:

• FMan ID: 0 or 1 for FMan1 or FMan2, respectively;

• Port type: 1G, 10G or O/H (Offline Parsing/Host Command).

Although all this may seem confusing at first, the LLD API provides convenient enums/macros to deal with these aspects.
Furthermore, the FMD driver API tries its best to hide these details from the userspace Linux programmer, specifically by using
dedicated /dev entries for each port, etc. However, not all userspace-visible API is free of such port IDs, so this is why we even
mention them here.

The FMD LLD uses no distinct port IDs for Rx and Tx, the distinction between Receive and Transmit being made by calling distinct
Rx/Tx-specific functions, or by specifying the "RX" or "TX" direction as a separate argument.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
240 NXP Semiconductors

The Host Command ports are invisible to the Linux application. One needs to be aware, though, of their mere existence at the
least, since the LLD allocates the first physical O/H port of every FMan to this purpose ("O/H" standing for "Offline Parsing/Host
Command"). There are 8 such O/H ports on each FMan that can be used for these purposes; the first of these having been
dedicated by the LLD to Host Commands, while the remaining 7 being available for Offline Parsing. Host Commands are just one
of the vehicles through which the LLD exercises control of the FMan hardware.

Please note that depending on the platform, RCW, and .dts configuration not all the possible combinations of

devices and ports are possible, and most certainly some will be missing from any existing configuration. For details

regarding possible port & device configurations for a specific platform, please consult the Reference Manuals for

that platform, as well as the relevant chapters from the SDK documentation for that platform.

 NOTE

Alongside these character devices, and out of the scope of this writing, are the Linux network devices, labeled using the fm[1,2]-
mac[1-10] (e.g. fm1-mac1, fm2-mac3) scheme, which provides the means for Linux to handle actual network traffic, i.e. "traffic
termination". These network devices are instances of the Linux DPAA Ethernet Driver, which is architected as a separate entity
from the Linux FMan Driver, but which both make use at some point of the same Low-Level Driver FMD API. The feature sets of
the DPAA Ethernet and of the Linux FMan drivers are disjunct, though, which is the main reason for their coexistence.

There is no requirement that these are the only network devices in the system. You may find the well known eth0,

eth1, etc. devices alongside e.g. fm1-mac1, except that these other network devices will correspond to other

vendors' NICs that may be installed in the system and will be serviced by vendor-specific, non-DPAA, Ethernet

drivers.

 NOTE

There are a few constants #defined in the headers that need to be included when working with the Linux FMD (in both kernel and
user spaces) that may come in handy when having to deal with devices and port IDs:

• FM_MAX_NUM_OF_1G_RX_PORTS

• FM_MAX_NUM_OF_10G_RX_PORTS

• FM_MAX_NUM_OF_1G_TX_PORTS

• FM_MAX_NUM_OF_10G_RX_PORTS

• FM_MAX_NUM_OF_RX_PORTS

• FM_MAX_NUM_OF_TX_PORTS

• FM_MAX_NUM_OF_OH_PORTS

• IOC_FM_MAX_NUM_OF_VALID_PORTS

that together with INTG_MAX_NUM_OF_FM can give the programmer the essential tools to get around in a specific configuration (this
list, though, is not exhaustive: please consult the relevant API Reference/header files before attempting to #define your own).

Also, the

$ ls /dev/fm*

Linux shell command can conveniently show all the FMD devices currently available in the target system.

4.2.8.1.5.1.3 Linux FMD Programming Model
Given the Linux devices presented earlier, a Linux application looking to use the FMan features can use the general Linux character
device syscall interface:

• open()/close() - this is essential API when working with Linux devices.

• read()/write() - although read() and write() operations are mandatory to be implemented by all Linux devices, there are no
read/write semantics associated with the FMD devices.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 241

• ioctl() calls are used extensively as the only means to communicate with the hardware. The ioctl API does little more than
delegating the ioctl() syscall to the underlying LLD API (for the actual mapping of IOCTLs to actual LLD APIs, please
consult the tables available in the following sections).

We'll state here once more that the programming model is essentially that of the FMD LLD. The Linux wrapper merely adapts the
LLD to the Linux interface requirements. This part of the SDK documentation focuses only on the Linux specifics. For details
regarding individual API calls, please refer to the Frame Manager Driver API Reference Manual .

As is the case with any Linux device, the general sequence of actions when using the FMD devices is the following:

1. Linux boots: all /dev/fm* devices are being created, FMan resources initialized according to platform/RCW/.dts;

2. User launches FMD-aware application;

3. User app. performs open() on selected /dev/fm* device/s;

4. User app. performs ioctl() call/s on the fd returned by the previous successful open() call;

5. When the user app. decides it has finished working with selected /dev/fm* device, it must call close() on its fd, just
like on any other Linux device.

Not all the LLD functions have a correspondent in the FMD IOCTLs. Only those functions have been selected which makes sense
from an architectural standpoint. The same/other LLD functions are also being called by the Linux wrapper unrestrictedly, as
needed to perform its required actions, and not only in response to ioctl() calls.

The arguments of the ioctl() calls can be quite complex, and may have complex requirements, as they are described in the LLD
API Reference (Frame Manager Driver API Documentation).

The following required low-level initialization APIs: FM_Config(), FM_PCD_Config(), FM_PORT_Config(), and subsequently
FM_Init(), FM_PCD_Init(), FM_PORT_Init() are being called from within the Linux FMD initialization code at boot time. They are
therefore not accessible to the user space application. Any configuration of FMan hardware resources will be performed using
Linux-specific means: device tree, kernel build configuration, etc. Code in the DPAA Ethernet driver also initializes the configured
MACs using FM_MAC_Config(), then FM_MAC_Init(), as required by the Frame Manager Driver API Reference Manual, and as
described in The DPAA Ethernet Driver's User Manual.

The correspondence between FMD Linux devices and DPAA ETH network devices is intuitive: there is a pair of /dev/fmX-
port-(rxY|txY) devices for each fmX-gbY or fmX-10g device in the system. However, due to configuration, it is possible that
at boot time not all FMan ports be probed by the DPAA Ethernet driver, hence not all /dev/fmX-port-(rxY|txY) may have
a corresponding netdev. This is because the FMan port devices and the DPAA Ethernet devices are being configured in different
sections of the device tree. The binding between these devices is also done in the device tree.

While Offline Parsing ports are being fully supported by the FMan Driver, currently it is not possible to inject traffic from user space
to these ports, as there is no netdev being created for them, as the Linux FMD does not handle traffic. There is indeed a way for
kernel space drivers to use them, but that is out of scope here.

It is not to be expected that a FMan port device for which a corresponding DPAA Ethernet netdev has not been configured, to be
fully functional. That is because port functionality is reliant also upon additional DPAA resources (i.e. frame queues, buffer pools)
that are being initialized exclusively by the DPAA Ethernet driver. Therefore, even though /dev/fmX-port-* devices may exist
for such ports, trying to access them may result in an error.

FM_PORT_Enable() and FM_PORT_Disable() are called for specific ports during ifconfig up/down of the corresponding
network device (DPAA Ethernet-specific). They are also available as IOCTLs for the /dev/fmX-port* devices, but while in the
DPAA Ethernet they are called for both ports of the RX/TX pair, the /dev/fmX-port-(rxY|txY) allow for selectively enabling/
disabling of only one of the RX/TX sides, as desired.

The ioctl() API conforms to Linux rules for all FMD devices. However, errors originating within the LLD will invariably be reported
to the user as -EFAULT. All such errors should be considered non-recoverable and should be immediately followed by a close()
on the device for which they were reported. A more descriptive message should be printed on the bootup console only, identifying
the LLD function, and the line in the source file where the error has occurred. One can look at the documentation for enum
e_ErrorType in the LLD API Reference (Frame Manager Driver API Documentation) for details regarding all the possible LLD
error codes and their general meaning.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
242 NXP Semiconductors

The following sections will present a brief description of each type of Linux device, as well as their IOCTLs' mapping to the FMD
LLD API.

4.2.8.1.5.1.4 Frame Manager Linux Driver API Reference
This document describes the interface (IOCTLs) to the Frame Manager Linux Driver as apparent to user space Linux
applications that need to use any of the Frame Manager's features. It describes the structure, concept, functionality, and high
level API.
4.2.8.1.5.1.4.1 The Linux FMan Device

This device corresponds to an individual Frame Manager, and is required for performing FMan-wide actions. The FMan device
merely acts as a portal for the IOCTLs that are listed in the table below:

Table 39. IOCTLs for the FMan Device

IOCTL LLD Mapping Brief

FM_IOC_SET_PORTS_BANDWIDTH FM_SetPortsBandwidth() Sets ports' bandwidths as percentage of
total bandwidth.

FM_IOC_GET_REVISION FM_GetRevision() API to get the FMan's revision.

FM_IOC_GET_COUNTER FM_GetCounter() API to read FMan hardware counters
(also available through sysfs).

FM_IOC_SET_COUNTER FM_ModifyCounter() API to modify/reset FMan's counters.

FM_IOC_FORCE_INTR FM_ForceIntr() Forces an FMan interrupt (or exception).
Dangerous! Use for debugging only!

FM_IOC_GET_API_VERSION FM_GetApiVersion() Reads the FMD IOCTL API version.

FM_IOC_VSP_CONFIG FM_VSP_Config() Creates descriptor for the FM VSP
module.

FM_IOC_VSP_INIT FM_VSP_Init() Initializes the FM VSP module

FM_IOC_VSP_FREE FM_VSP_Free() Frees all resources that were assigned
to FM VSP module.

FM_IOC_VSP_CONFIG_POOL_DEPLETION FM_VSP_ConfigPoolDepletion() Calling this routine enables pause frame
generation depending on the depletion
status of BM pools. It also defines the
conditions to activate this functionality.
By default, this functionality is disabled.

FM_IOC_VSP_CONFIG_BUFFER_PREFIX_C

ONTENT

FM_VSP_ConfigBufferPrefixContent() Defines the structure, size and content
of the application buffer.

FM_IOC_VSP_CONFIG_NO_SG FM_VSP_ConfigNoScatherGather() Returns the pointer to the parse result in
the data buffer. In Rx ports this is
relevant after reception, if parse result is
configured to be part of the data passed
to the application. For non Rx ports it
may be used to get the pointer of the
area in the buffer where parse result
should be initialized - if so configured.
See
FM_VSP_ConfigBufferPrefixContent for
data buffer prefix configuration.

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 243

Table 39. IOCTLs for the FMan Device (continued)

IOCTL LLD Mapping Brief

FM_IOC_CTRL_MON_START FM_CtrlMonStart() Start monitoring utilization of all
available FM controllers.

FM_IOC_CTRL_MON_STOP FM_CtrlMonStop() Stop monitoring utilization of all
available FM controllers.

FM_IOC_CTRL_MON_GET_COUNTERS FM_CtrlMonGetCounters() Obtain FM controller utilization
parameters.

All the IOCTL-mapped LLD APIs are what the LLD terms as "callable at runtime", i.e. callable after the LLD Init() function for the
corresponding entity has been called. This is so because by the time the user app. gets to invoke ioctl(), all the Init() functions
have already been called by the initialization code of the Linux FMD at boot time.

4.2.8.1.5.1.4.2 The Linux PCD Device

There is exactly one PCD device, or /dev/fmX-pcd, for each Frame Manager. The reason for that is that PCDs are FMan-wide
constructs, and are applied simultaneously to traffic being received on possibly more than one port.

"PCD" is a generic term designating a Parse-Classify-Distribute configuration for a group of ports, as described in detail in the
QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual. In short, what a PCD does is to route incoming traffic
from a set of RX ports onto several frame queues managed by the Queue Manager. Such frame queues may be attached to a
DPAA Ethernet network device, in which case the traffic is received by the CPUs (or "terminated"), or they can be connected to
a TX port, in which case the traffic is being forwarded onto that port. Also, frame queues can be further grouped into work queues
& policed, etc. (please read the QMan documentation). However, one thing is not supported in the Linux environment, and that
is: direct access to frame queues from user space (please note that this is not a limitation of the Linux FMD, but one enforced by
design in the Linux driver for the QMan). Not in the classical meaning of "Linux environment", that is.

There's still a lot that can be achieved with the Linux FMD, and the Linux PCD device is there to help. Its role is to manage the
PCDs for its associated FMan. The ioctls for this device are mapped to the similarly-sounding FM_PCD_*() LLD APIs:

Table 40. IOCTL List for the PCD Device

IOCTL LLD Mapping Brief

FM_PCD_IOC_ENABLE FM_PCD_Enable() Should be called after PCD is initialized
for enabling all PCD engines according to
their existing configuration.

FM_PCD_IOC_DISABLE FM_PCD_Disable() Disables an existing PCD.

FM_PCD_IOC_PRS_LOAD_SW[_COMPAT] FM_PCD_PrsLoadSw() This routine may be called only when all
ports in the system are actively using the
classification plan scheme. In such cases
it is recommended in order to save
resources. The driver automatically
saves 8 classification plans for ports that
do NOT use the classification plan
mechanism; to avoid this (in order to save
those entries) this routine may be called.

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
244 NXP Semiconductors

Table 40. IOCTL List for the PCD Device (continued)

IOCTL LLD Mapping Brief

FM_PCD_IOC_KG_SET_DFLT_VALUE FM_PCD_KgSetDfltValue() Sets a global default value to be used by
the key generator when the parser does
not recognize a required field/header
(default 0).

FM_PCD_IOC_KG_SET_ADDITIONAL_DATA

_AFTER_PARSING

FM_PCD_KgSetAdditionalDataAfterPars
ing()

Calling this routine allows the keygen to
access data past the parser finishing
point.

FM_PCD_IOC_SET_EXCEPTION FM_PCD_SetException() Enables/disables PCD interrupts.

FM_PCD_IOC_GET_COUNTER N/A Unimplemented, do not use!

FM_PCD_IOC_SET_COUNTER N/A Placeholder, do not use!

FM_PCD_IOC_FORCE_INTR FM_PCD_ForceIntr() Forces a PCD interrupt (exception) of
specified type. Dangerous! Use only for
debugging!

FM_PCD_IOC_NET_ENV_CHARACTERISTIC

S_SET[_COMPAT]

FM_PCD_NetEnvCharacteristicsSet() Establishes a minimal set of networking
protocols ("Network Environment
Characteristics") that can be discovered
by this PCD (please refer to the
Reference Manual for details).

FM_PCD_IOC_NET_ENV_CHARACTERISTIC

S_DELETE[_COMPAT]

FM_PCD_NetEnvCharacteristicsDelete(
)

Deletes a set of "Network Environment
Characteristics".

FM_PCD_IOC_KG_SCHEME_SET[_COMPAT] FM_PCD_KgSchemeSet() Initializes or modifies and enables a
scheme for the KeyGen. This routine
should be called for adding or modifying
a scheme. When a scheme needs
modifying, the API requires that it be
rewritten. In such a case modify should
be TRUE. If the routine is called for a valid
scheme and modify is FALSE, it will
return error.

FM_PCD_IOC_KG_SCHEME_DELETE[_COMP

AT]

FM_PCD_KgSchemeDelete() Deletes an initialized scheme.

FM_PCD_IOC_CC_ROOT_BUILD[_COMPAT] FM_PCD_CcRootBuild() This routine must be called to define a
complete coarse classification tree. This
is the way to define coarse classification
to a certain flow - the KeyGen schemes
may point only to trees defined in this way.

FM_PCD_IOC_CC_ROOT_DELETE[_COMPAT

]

FM_PCD_CcRootDelete() Deletes an existing coarse classification
tree.

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 245

Table 40. IOCTL List for the PCD Device (continued)

IOCTL LLD Mapping Brief

FM_PCD_IOC_MATCH_TABLE_SET[_COMPA

T]

FM_PCD_MatchTableSet() This routine should be called for each CC
(coarse classification) node. The whole
CC tree should be built bottom up so that
each node points to already defined
nodes. p_node_id returns the node Id to
be used by other nodes.

FM_PCD_IOC_MATCH_TABLE_DELETE[_CO

MPAT]

FM_PCD_MatchTableDelete() Deletes a built node.

FM_PCD_IOC_CC_ROOT_MODIFY_NEXT_EN

GINE[_COMPAT]

FM_PCD_CcRootModifyNextEngine() Modifies the Next Engine Parameters in
the entry of the tree (allowed only after
FM_PCD_CcBuildTree()).

FM_PCD_IOC_MATCH_TABLE_MODIFY_NEX

T_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyNextEngin
e()

Modifies the Next Engine Parameters in
the relevant key entry of the node
(possible only after a call to
FM_PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_MODIFY_MIS

S_NEXT_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyMissNextE
ngine()

Modifies the Next Engine Parameters of
the Miss key case of the node (allowed
only after a previous call to
FM_PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_REMOVE_KE

Y[_COMPAT]

FM_PCD_MatchTableRemoveKey() Removes the key (including its next
engine parameters) defined by the index
of the relevant node (allowed only after a
previous call to
FM_PCD_MatchTableSet())

FM_PCD_IOC_MATCH_TABLE_ADD_KEY[_C

OMPAT]

FM_PCD_MatchTableAddKey() Adds the key (including next engine
parameters of this key) in the index
defined by key_index (allowed only after
a previous call to
FM_PCD_MatchTableSet())

FM_PCD_IOC_MATCH_TABLE_MODIFY_KEY

_AND_NEXT_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyKeyAndNex
tEngine()

Modifies the key and Next Engine
Parameters of this key in the index
defined by key_index (allowed only after
a previous call to
FM_PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_MODIFY_KE

Y[_COMPAT]

FM_PCD_MatchTableModifyKey() Modifies the key at the index defined by
key_index (allowed only after a previous
call to FM_PCD_MatchTableSet()).

FM_PCD_IOC_HASH_TABLE_SET[_COMPAT

]

FM_PCD_HashTableSet() Initializes a hash table structure.

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
246 NXP Semiconductors

Table 40. IOCTL List for the PCD Device (continued)

IOCTL LLD Mapping Brief

FM_PCD_IOC_HASH_TABLE_DELETE[_COM

PAT]

FM_PCD_HashTableDelete() Deletes the provided hash table and
released all its allocated resources.

FM_PCD_IOC_HASH_TABLE_ADD_KEY[_CO

MPAT]

FM_PCD_HashTableAddKey() Adds the provided key (including next
engine parameters of this key) to the hash
table. The key is added as the last key of
the bucket that it is mapped to.

FM_PCD_IOC_HASH_TABLE_REMOVE_KEY[

_COMPAT]

FM_PCD_HashTableRemoveKey() Removes the requested key (including its
next engine parameters) from the hash
table.

FM_PCD_IOC_PLCR_PROFILE_SET[_COMP

AT]

FM_PCD_PlcrProfileSet() Sets a profile entry in the policer profile
table, overriding any existing value.

FM_PCD_IOC_PLCR_PROFILE_DELETE[_C

OMPAT]

FM_PCD_PlcrProfileDelete() Deletes a profile entry in the policer profile
table. It sets the entry to invalid.

FM_PCD_IOC_MANIP_NODE_SET[_COMPAT

]

FM_PCD_ManipNodeSet() This routine should be called for defining
a manipulation node. A manipulation
node must be defined before the CC node
that precedes it.

FM_PCD_IOC_MANIP_NODE_REPLACE[_CO

MPAT]

FM_PCD_ManipNodeReplace() Change existing manipulation node to be
according to new requirement.

FM_PCD_IOC_MANIP_NODE_DELETE[_COM

PAT]

FM_PCD_ManipNodeDelete() Deletes an existing manipulation node.

FM_PCD_IOC_SET_ADVANCED_OFFLOAD_S

UPPORT

FM_PCD_SetAdvancedOffloadSupport(
)

This routine must be called in order to
support the following features: IP-
fragmentation, IP-reassembly, IPsec,
header manipulation, frame replicator.

FM_PCD_IOC_FRM_REPLIC_GROUP_SET[_

COMPAT]

FM_PCD_FrmReplicSetGroup() Initialize a Frame Replicator group.

FM_PCD_IOC_FRM_REPLIC_GROUP_DELET

E[_COMPAT]

FM_PCD_FrmReplicDeleteGroup() Delete a Frame Replicator group.

FM_PCD_IOC_FRM_REPLIC_MEMBER_ADD[

_COMPAT]

FM_PCD_FrmReplicAddMember() Add the member in the index defined by
the memberIndex.

FM_PCD_IOC_FRM_REPLIC_MEMBER_REMO

VE[_COMPAT]

FM_PCD_FrmReplicRemoveMember() Remove the member defined by the
index from the relevant group.

FM_PCD_IOC_STATISTICS_SET_NODE[_C

OMPAT]

FM_PCD_StatisticsSetNode() Not implemented in this release. Do not
use!

FM_PCD_IOC_KG_SCHEME_GET_CNTR FM_PCD_KgSchemeGetCounter() Reads scheme packet counter.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 247

The _COMPAT variants of certain IOCTLs in the above table are required for supporting 32-bit user space apps.

on 64-bit Linux kernels. The specifics of the COMPAT mappings are documented by Linux.

 NOTE

The programming model for defining and managing PCDs for a group of ports is the same as described in the FMD LLD User's
Guide .

What follows is a step-by-step description of an example of ioctl() call mapping to a LLD API call.

The example chosen for this walk-through is that of FM_PCD_IOC_MATCH_TABLE_SET. Here's a reminder of the ioctl() prototype:

extern int ioctl (int __fd, unsigned long int __request, ...) __THROW;

and below is how it appears to kernel space:

struct file_operations {
 [...]
 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
 [...]
};

The ioctl() function is actually a pointer to a driver-supplied function having the specified signature. The glue between the two is
kernel code.

The semantics associated with the second and third function arguments are entirely the driver's business, but usually the unsigned
int argument is used to discriminate between various ioctl commands (actually, it should obey some Linux good-behavior rules,
which we are not going to detail here). In our case, it should be FM_PCD_IOC_MATCH_TABLE_SET.

Linux attaches no predefined semantics to the third argument, the unsigned long one. In some cases it is unused, or its semantics
are those of an unsigned integer number, but in most cases it is treated as a (32-bit, on most platforms) pointer to a driver-defined
structure in user space. The driver defines the format, but the user space allocates and fills in the data prior to invoking ioctl() on
the open device fd. This is also the case with our example.

The format of the third argument of the FM_PCD_IOC_MATCH_TABLE_SET ioctl is (as it actually appears in the header file where it's
defined):

/**//**
 @Description A structure for defining the CC node params
*//***/
typedef struct ioc_fm_pcd_cc_node_params_t {
 ioc_fm_pcd_extract_entry_t extract_cc_params;
 /**< params which defines extraction
 parameters */

 ioc_keys_params_t keys_params; /**< params which defines Keys
 parameters of the extraction defined
 in extract_cc_params */

 void *id; /**< output parameter;
 Returns the CC node Id to be used */
} ioc_fm_pcd_cc_node_params_t;

We'll detail the ioc_* types of the first two members later. The third member of this structure is apparently a pointer to some data
structure being returned back to user space. It is not the case. This actual pointer should be handled as an opaque handle to
some abstract item, in our case the "CC Node" that's being created for us by this ioctl() call if successful. This handle can be later
passed to e.g. the FM_PCD_IOC_MATCH_TABLE_DELETE IOCTL for deletion. It corresponds to an actual t_Handle, as defined by
the LLD.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
248 NXP Semiconductors

Failing to cleanup FMan resources that the LLD allocates in this manner can cause serious hardware resource

leaks, which neither the Linux FMD, nor the LLD have the means to detect & cleanup automatically!

 NOTE

The LLD function that this IOCTL maps to has the following prototype:

t_Handle FM_PCD_MatchTableSet(t_Handle, t_FmPcdCcNodeParams *);

The first argument corresponds to the LLD resource that the Linux PCD device maps to. Most of the LLD resources are managed
within the Linux FMD driver and not exposed to the user, but there are exceptions and the FM_PCD_MatchTableSet() function
here is the best example, as it returns a t_Handle to such a LLD resource. This returned t_Handle is then passed over to the
user space in the opaque id member of ioctl()'s third argument.

The second argument is a pointer to a structure of type t_FmPcdCcNodeParams. This maps to the ioc_fm_pcd_cc_node_params_t
type that ioctl()'s third argument points to.

Passing to ioctl() a pointer to something of a type other than the required one will cause the user application

to segfault, or an error, at best, but may also cause undefined FMan behavior from that point onward, with errors

being possibly reported only later downstream as the worst case. Linux/the FMD can do very little to prevent this

worst case from occurring, so hopefully one can catch such coding errors early during the development cycle.

 NOTE

A side-by-side comparison of the two structures is given in the following table:

Table 41. Side-by-side comparison of IOCTL and LLD types

IOCTL Types LLD Types

typedef struct ioc_fm_pcd_cc_node_params_t {

 ioc_fm_pcd_extract_entry_t extract_cc_params;

 ioc_keys_params_t keys_params;

 void *id;

} ioc_fm_pcd_cc_node_params_t;

typedef struct t_FmPcdCcNodeParams {

 t_FmPcdExtractEntry extractCcParams;

 t_KeysParams keysParams;

} t_FmPcdCcNodeParams;

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 249

Table 41. Side-by-side comparison of IOCTL and LLD types (continued)

IOCTL Types LLD Types

typedef struct ioc_fm_pcd_extract_entry_t {

 ioc_fm_pcd_extract_type type;

 union {

 struct {

 ioc_net_header_type hdr;

 bool ignore_protocol_validation;

 ioc_fm_pcd_hdr_index hdr_index;

 ioc_fm_pcd_extract_by_hdr_type type;

 union {

 ioc_fm_pcd_from_hdr_t from_hdr;

 ioc_fm_pcd_from_field_t from_field;

 ioc_fm_pcd_fields_u full_field;

 } extract_by_hdr_type;

 } extract_by_hdr;

 struct{

 ioc_fm_pcd_extract_from src;

 ioc_fm_pcd_action action;

 uint16_t ic_indx_mask;

 uint8_t offset;

 uint8_t size;

 } extract_non_hdr;

 } extract_params;

} ioc_fm_pcd_extract_entry_t;

typedef struct t_FmPcdExtractEntry {

 e_FmPcdExtractType type;

 union {

 struct {

 e_NetHeaderType hdr;

 bool ignoreProtocolValidation;

 e_FmPcdHdrIndex hdrIndex;

 e_FmPcdExtractByHdrType type;

 union {

 t_FmPcdFromHdr fromHdr;

 t_FmPcdFromField fromField;

 t_FmPcdFields fullField;

 } extractByHdrType;

 } extractByHdr;

 struct {

 e_FmPcdExtractFrom src;

 e_FmPcdAction action;

 uint16_t icIndxMask;

 uint8_t offset;

 uint8_t size;

 } extractNonHdr;

 };

} t_FmPcdExtractEntry;

typedef struct ioc_keys_params_t {

 uint16_t max_num_of_keys;

 bool mask_support;

 ioc_fm_pcd_cc_stats_mode statistics_mode;

 uint16_t num_of_keys;

 uint8_t key_size;

 ioc_fm_pcd_cc_key_params_t

 key_params[IOC_FM_PCD_MAX_NUM_OF_KEYS];

 ioc_fm_pcd_cc_next_engine_params_t

 cc_next_engine_params_for_miss;

} ioc_keys_params_t;

typedef struct t_KeysParams {

 uint16_t maxNumOfKeys;

 bool maskSupport;

 ioc_fm_pcd_cc_stats_mode statisticsMode;

 uint16_t numOfKeys;

 uint8_t keySize;

 t_FmPcdCcKeyParams

 keyParams[FM_PCD_MAX_NUM_OF_KEYS];

 t_FmPcdCcNextEngineParams

 ccNextEngineParamsForMiss;

} t_KeysParams;

While the structure members have resembling names on both sides, most are not identical. That's because style has prevailed
over the need to port existing LLD applications to the Linux environment, when the Linux FMD was designed. Except for the
occasional *id pointer, there is a 1:1 mapping between the struct members on the two sides, and that is consistent throughout
the FMD.

The constituent structures of the two APIs' argument types given above are for illustration only. Their semantics are documented
in the Frame Manager Driver API Documentation .

The existence of two separate definitions for otherwise two identical data structures may appear as an unfortunate

design decision. However, since a memcpy from user space to kernel space is unavoidable, this design decision

has no impact over performance. Moreover, the user space only sees one variant (i.e. the ioc_* one), hence the

even smaller user impact. The larger impact is on code maintenance and on documentation.

 NOTE

4.2.8.1.5.1.4.3 The Linux Port Devices

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
250 NXP Semiconductors

There is a pair of RX/TX Linux character devices for each physical port of every Frame Manager. These devices are created
irrespectively of the DPAA1 Ethernet network devices and they are strictly reflecting the available Frame Manager hardware on
the given platform. The port Linux devices are labeled as follows:

• /dev/fmX-port-rxY for receive, where X=[0,1] represents the FMan number, and Y=[0-7] represents the physical port
ID (0 corresponding to the first 1 Gb port, and 6 to the first 10 Gb port), and

• /dev/fmX-port-txY correspondingly for the transmit side.

Each FMan also has a number of Offline Parsing ports. These are labeled as /dev/fmX-port-ohY, where Y=[0-6].

The port devices are created based on configuration information taken from the relevant Linux device tree section.

For instance, LS1043A has one FMan with 6 x 1Gb ports and one 10Gb port, while LS1046A has one FMan with 6 x 1Gb and 2
x 10Gb ports. A side-by-side comparison of the corresponding port devices is given in the following table:

Table 42. Side-by-side comparison of port devices for LS1043 and LS1046

LS1043A LS1046A

For the Receive side:

/dev/fm0-port-rx0
/dev/fm0-port-rx1
/dev/fm0-port-rx2
/dev/fm0-port-rx4
/dev/fm0-port-rx5
/dev/fm0-port-rx6

For the Receive side:

/dev/fm0-port-rx0
/dev/fm0-port-rx1
/dev/fm0-port-rx2
/dev/fm0-port-rx3
/dev/fm0-port-rx4
/dev/fm0-port-rx5
/dev/fm0-port-rx6
/dev/fm0-port-rx7

For the Transmit side:

/dev/fm0-port-tx0
/dev/fm0-port-tx1
/dev/fm0-port-tx2
/dev/fm0-port-tx3
/dev/fm0-port-tx4
/dev/fm0-port-tx5
/dev/fm0-port-tx6

For the Transmit side:

/dev/fm0-port-tx0
/dev/fm0-port-tx1
/dev/fm0-port-tx2
/dev/fm0-port-tx3
/dev/fm0-port-tx4
/dev/fm0-port-tx5
/dev/fm0-port-tx6
/dev/fm0-port-tx7

For Offline Parsing:

/dev/fm0-port-oh0
/dev/fm0-port-oh1
/dev/fm0-port-oh2
/dev/fm0-port-oh3
/dev/fm0-port-oh4
/dev/fm0-port-oh5

For Offline Parsing:

/dev/fm0-port-oh0
/dev/fm0-port-oh1
/dev/fm0-port-oh2
/dev/fm0-port-oh3
/dev/fm0-port-oh4
/dev/fm0-port-oh5

The table below summarizes the IOCTLs available for the port device.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 251

Table 43. IOCTLs of the Port Device

IOCTLS LLD Mapping Brief

FM_PORT_IOC_DISABLE FM_PORT_Disable() Disables the port: all port settings are
preserved, but all traffic stops.

FM_PORT_IOC_ENABLE FM_PORT_Enable() Enables the port: causes the port to start
processing traffic.

FM_PORT_IOC_SET_RATE_LIMIT FM_PORT_SetRateLimit() (TX & O/H Only) Activates the Rate
Limiting Algorithm for the port.

FM_PORT_IOC_DELETE_RATE_LIMIT FM_PORT_DeleteRateLimit() (TX & O/H Only) Deactivates any Rate
Limiting.

FM_PORT_IOC_SET_ERRORS_ROUTE FM_PORT_SetErrorsRoute() (RX & O/H Only) Instructs the FMD to
enqueue frames w/specific errors onto
the normal port queues, rather than onto
the error queue (i.e. the default).

FM_PORT_IOC_ALLOC_PCD_FQIDS N/A For testing/debugging. Do not use!

FM_PORT_IOC_FREE_PCD_FQIDS N/A For testing/debugging. Do not use!

FM_PORT_IOC_SET_PCD[_COMPAT] FM_PORT_SetPCD() (RX & O/H Only) Defines a PCD
configuration for the port.

FM_PORT_IOC_DELETE_PCD FM_PORT_DeletePCD() (RX & O/H Only) Deletes the port's PCD
configuration.

FM_PORT_IOC_DETACH_PCD FM_PORT_DetachPCD() (RX & O/H Only) Disables the PCD
configuration for the port (only allowed
after FM_PORT_SetPCD() has been
called for the port).

FM_PORT_IOC_ATTACH_PCD FM_PORT_AttachPCD() (RX & O/H Only) Re-enables the PCD
configuration for the port (only valid after
a call to FM_PORT_DetachPCD()).

FM_PORT_IOC_PCD_PLCR_ALLOC_PROFIL

ES

FM_PORT_PcdPlcrAllocProfiles() (RX & O/H Only) Allocates private policer
profiles for the port (only allowed before a
a call to FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_PLCR_FREE_PROFILE

S

FM_PORT_PcdPlcrFreeProfiles() (RX & O/H Only) Frees any private policer
profiles allocated for the port (callable
only before FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_KG_MODIFY_INITIAL

_SCHEME[_COMPAT]

FM_PORT_PcdKgModifyInitialScheme() (RX & O/H Only) Modifies key generation
scheme following frame parsing (callable
only after FM_PORT_SetPCD()).

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
252 NXP Semiconductors

Table 43. IOCTLs of the Port Device (continued)

IOCTLS LLD Mapping Brief

FM_PORT_IOC_PCD_PLCR_MODIFY_INITI

AL_PROFILE[_COMPAT]

FM_PORT_PcdPlcrModifyInitialProfile() (RX & O/H Only) Changes the initial
policer profile for the port (callable only
after FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_CC_MODIFY_TREE[_C

OMPAT]

FM_PORT_PcdCcModifyTree() (RX & O/H Only) Replaces the coarse
classification tree if one is used for the
port (callable only after
FM_PORT_DetachPCD() and before
FM_PORT_AttachPCD()).

FM_PORT_IOC_PCD_KG_BIND_SCHEMES[_

COMPAT]

FM_PORT_PcdKgBindSchemes() (RX & O/H Only) Adds more KeyGen
schemes for the port to be bound to
(callable only after
FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_KG_UNBIND_SCHEME

S[_COMPAT]

FM_PORT_PcdKgUnbindSchemes() (RX & O/H Only) Prevents the port from
using the specified KG schemes (callable
only after FM_PORT_SetPCD())

FM_PORT_IOC_PCD_PRS_MODIFY_START_

OFFSET

FM_PORT_PcdPrsModifyStartOffset() (RX & O/H Only) Changes the frame
offset at which parsing starts (callable
only after FM_PORT_DetachPCD() and
before FM_PORT_AttachPCD()).

FM_PORT_IOC_ADD_CONGESTION_GRPS FM_PORT_AddCongestionGrps() (RX & O/H Only) Should be called in order
to enable pause frame transmission in
case of congestion in one or more of the
congestion groups relevant to this port.
Each call to this routine may add one or
more congestion groups to be considered
relevant to this port.

FM_PORT_IOC_REMOVE_CONGESTION_GRP

S

FM_PORT_RemoveCongestionGrps() (RX & O/H Only) Should be called when
congestion groups were defined for this
port and are no longer relevant, or pause
frames transmitting is not required on
their behalf. Each call to this routine may
remove one or more congestion groups to
be considered relevant to this port.

FM_PORT_IOC_ADD_RX_HASH_MAC_ADDR FM_MAC_AddHashMacAddr() Add an Address to the hash table. This is
for filter purpose only.

FM_PORT_IOC_REMOVE_RX_HASH_MAC_AD

DR

FM_MAC_RemoveHashMacAddr() Delete an Address to the hash table. This
is for filter purpose only.

FM_PORT_IOC_SET_TX_PAUSE_FRAMES FM_MAC_SetTxPauseFrames() Enable/Disable transmission of Pause-
Frames. The routine changes the default
configuration: pause-time - [0xf000],
threshold-time - [0]

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 253

Table 43. IOCTLs of the Port Device (continued)

IOCTLS LLD Mapping Brief

FM_PORT_IOC_GET_MAC_STATISTICS FM_MAC_GetStatistics() Get all MAC statistics counters.

FM_PORT_IOC_CONFIG_BUFFER_PREFIX_

CONTENT

FM_PORT_ConfigBufferPrefixContent() Defines the structure, size and content of
the application buffer.

FM_PORT_IOC_VSP_ALLOC[_COMPAT] FM_PORT_VSPAlloc() This routine allocated VSPs per port and
forces the port to work in VSP mode. Note
that the port is initialized by default with
the physical-storage-profile only.

The COMPAT variants of certain IOCTLs in the above table are required for supporting 32-bit user space apps. on

64-bit Linux kernels. The specifics of the COMPAT mappings are documented by Linux.

 NOTE

The programming model for managing the FMan's ports is the same as described in the Frame Manager Driver API
Reference. A few notable mentions though:

Although all the above IOCTLs are implemented by the Linux FMD, due to the asymmetry between RX and TX, not all are available
for any port type. E.g. FM_PORT_IOC_SET_PCD will generate an error if called on a TX port device. Similarly,
FM_PORT_IOC_SET_RATE_LIMIT will fail for an RX port. That is because the checking of the port type is being done late, inside
the LLD, and not in the Linux FMD (i.e. the ioctl() calls for all port devices delegate to the same function inside the Linux kernel)!

The Offline Parsing ports have the best of both worlds. That is because conceptually, an O/H port is no different from a "regular"
FMan port that has the TX side looped back internally to its RX side.

4.2.8.1.5.2 Frame Manager Driver User's Guide

4.2.8.1.5.2.1 Introduction
The Frame Manager is a hardware accelerator responsible for preprocessing and moving packets into and out of the datapath. It
supports in-line/off-line packet parsing and initial classification to enable policing and flow/QoS based packet distribution to the
CPUs for further processing of the packets.

The Frame Manager consists of a number of packet processing elements (also referred to as engines) and supports a flexible
pipeline. Usually, the main Rx flow (simplified) follows these steps: packets are received from one of the Ethernet MACs, are
temporarily stored in the FMan internal memory. The packet header (max size 256 bytes) is stored and the modules common
database structure is allocated. Then the packet is parsed by the parser or by the FMan controller. According to parsing results
a key may be extracted by KeyGen, a destination frame-queue-id may be set, the packet may be classified by the FMan controller.
in that stage, some offloads may be done like re-assembly, fragmentation, header-manipulation and frame-replication. At the end
of the classification and manipulations stage, the packet may be colored by policer. At the end of this process, packets are
enqueued to a frame queue or dropped. The processing order is Parse-Classify-Distribute (PCD) flow dependant, based on user
configurations. Each step is dependant on previous state results. This structure enables flexibility, which efficiently supports many
flows.

On Tx the frames are transmitted via the desired MAC with optional checksum generation.

4.2.8.1.5.2.2 Frame Manager Features
The FMan driver aims to support the majority of the hardware features. It also includes exclusive software features designed to
provides facilitation through abstraction.

Following are the features of the FMan driver:

• Simple initialization and configuration API for the following FMan blocks: DMA, FPM, IRAM, QMI, BMI, and RTC.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
254 NXP Semiconductors

• Simple initialization and configuration for the following FMan PCD blocks: Parser, Keygen, Custom-Classifier (CC),
Manipulations (e.g. Header-manipulations, IP-reassembly, IP-fragmentation, etc.) and Policer.

• FMan memory (MURAM) management.

• FMan-controller code loading.

• Software-Parser loading.

• Supported all FMan port types-Rx, Tx, Offline-Parsing, and Host-Command (internal use of the driver only)

• Common MAC API for dTSEC, 10G-MAC and mEMAC.

• Provides API for accessing the MII management interface.

• FMan Rx and Tx ports can run in one of the following modes:

— Independent-Mode

— Simple BMI-to-BMI (regular) mode

— Advance PCD mode (using FMan PCD blocks such as parser, Keygen, CC, and Policer).

• FMan Offline ports can run in one of the following modes:

— Simple BMI-to-BMI (regular) mode

— Advance PCD mode (using FMan PCD blocks such as parser, Keygen, CC, and Policer)

• Internal (optional) Host-Command port initialization, based on user's parameters.

• FMan IRQ handling - events and exceptions.

• Supports both SMP and AMP operation modes.

4.2.8.1.5.2.3 Frame Manager Driver Components
The FMan driver contains following low-level modules, as shown in this figure.

Figure 52. FMan Driver Modules (from a partition point of view)

The modules are as follows:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 255

• Frame Manager (common)-The FMan module is a singleton module within its partition. It is responsible for the common
hardware modules: FPM, DMA, common QMI, common BMI, FMan controller's initialization, and runtime control routines.
This module must always be initialized when working with any FMan module. The module will mainly be used internally by
the other FMan modules except for its initialization by the user.

This module has an instance for each partition. However, only the driver that is on the master-partition has access to the
hardware registers.

• Frame Manager Parser-Classifier-Distributor (FMan-PCD)-The FMan PCD module is a singleton module within its partition.
It is responsible of all common parts of the PCD, such as the hardware parser, software parser, Keygen, policer, and custom-
classifier blocks. It is responsible for building the PCD graphs.

This module has an instance for each partition. However, only the driver on the master-partition has access to the hardware
registers.

• Frame Manager Memory (FMan-MURAM)-This module is responsible for the specific memory partition of the FMan Memory.
Each partition may have its own FMan Memory partition that is managed by the FMan Memory driver. For example, an FMan
Memory instance will be created for each partition that has its own FMan ports.

This module has an instance for each partition.

• Frame Manager Real-Time-Clock (FMan-RTC)-This module is responsible for the FMan RTC module.

This module is a "singleton" and should be created once only for the master-partition.

• Frame Manger Port (FMan-Port)-This module is responsible for all FMan port-related register space, such as all registers
related to a port in QMI or BMI.

This module can be run by each core or partition independently.

• Frame Manager MAC (FMan-MAC)-This module is responsible for the MAC controllers.

This module can be run by each core or partition independently.

4.2.8.1.5.2.4 Driver Modules in the System
The FMan driver is designed to support single or multi partition environment. In addition, the FMan driver is designed to support
environment with multicore that are running in SMP mode.

The following figure shows a typical single-partition (maybe SMP or not) environment and its FMan driver building blocks.

In this environment:

• All FMan driver modules are available and should be initialized by the user (unless if it is unnecessary for the

user operation; for example, if PCD is not needed so it may not be called).

• The FMan driver modules have the full functionality of the hardware.

• Each module has full access to its hardware registers (i.e. each module will access its registers directly).

 NOTE

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
256 NXP Semiconductors

Applications

Application
(Control, FWD, Bridge, etc.)

FMC Tool

Kernel-Drivers Network stack

FM

FM RTC

FM PCD

FM
Common

FM Port

FM NURAM FM MAC

FM FM Port FM MAC

Hardware

FM VSP

Figure 53. Single-Partition FM Building Blocks

4.2.8.1.5.2.4.1 Multicore Approach

The driver supports the Symmetric Multi-Processing (SMP) opperation method.

4.2.8.1.5.2.4.1.1 SMP

As a rule, driver routines are not SMP safe. It is user's responsibility to lock all routines that might be in risk in his environment,
for example, if FM_PORT_Enable/FM_PORT_Disable may be used by several cores, it is user's responsibility to protect the routine
call using a spinlock.

An exception to this rule is the set of PCD routines. Due to the complexity of this module, and in order to support SMP and maintain
coherency, PCD routines are protected using two mechanisms, spinlocks and flags.

Each PCD resource (i.e. software module such as scheme, CC Node, NetEnv, etc.) may have one or more spinlocks which are
used to protect short code sections where specific resources such as hardware registers or software structures are accessed. In
some cases, a spinlock of a higher level is used (i.e. CC locks the whole PCD).

The second mechanism is defined globally. The PCD global module provides a PcdLock mechanism, which is a list of lock objects
containing a flag and a spinlock rotating that flag. On initialization of each PCD resource (i.e. software module such as scheme,
CC Node, NetEnv, etc.), a PcdLock is allocated for this module. Critical sections that may not be protected by spinlocks (due to
reasons of sections length, Host Commands and other lengthy operations) are protected by these flags. Note that this is a try-
lock mechanism and the calling routine returns with E_BUSY error on failure. The try-locks are used by all PCD resources
modification routines, in which case the application is expected to recall the routine until it is not busy.

In Addition, PCD and FM Port inter-module complex sections may be protected by try-locking all the initialized PcdLock modules
in the global PCD, thus providing a safe PCD environment where influence and connections between modules may take effect.

On top of PCD routines, all FM Port PCD related routines are also protected by Port try-lock, meaning no two cores can access
the same port to run a PCD routine. As in the PCD routines, these routines may return E_BUSY on failure and should then be
recalled.

The driver SMP protection mechanism assumes the following:

• Only one core may initialize and delete a specific PCD software module (i.e. scheme x may not be initialized by two cores).

• A core should not attempt to delete a PCD software module when there is a risk of another core operating on that specific
module.

4.2.8.1.5.2.5 FMan Driver Calling Sequence
Initialization of the FMan driver is carried out by the application according to the following sequence:

1. MURAM configuration & Initialization

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 257

2. FMan (common) configuration & Initialization

3. [Optional] FMan RTC configuration & Initialization

4. For each MAC required by the user:

a. MAC Configuration & Initialization

b. PHY Initialization

5. For each FMan Port required by the user:

a. FMan Port Configuration & Initialization

b. in that stage, user should configure and intialize everything that is needed for the operation of a port outside the
fman; e.g. buffer-pools, frame-queues, etc.

c. Port Enablement

d. MAC Enablement

e. Calling 'AdjustLink' MAC API routine with the relevant link parameters

Now, the FMan is operational. The ports operate in independent mode or BMI-to-BMI mode. From that point, all

the following steps are optional.

 NOTE

6. FMan PCD Configuration & Initialization

7. If a physical port is being "vitualized" into several software entities (using some classification to ditribute the traffic), user
should configure and initialize the relevant buffer-pools and frame-queues.

8. FMan PCD Graph initialization:

a. Calling restricted runtime routines (that may be called only when PCD is disabled)

b. Calling the PCD enable routine

c. Initialization of a all PCD Graph objects (i.e. KG-schemes, Match-Tables, etc)

9. FMan port-PCD related initialization; calling the run-time control routines to set the PCD related parameters

In case the PCD is "set" to a FMan OP port, it should be disabled first (i.e. before calling 'FM_PORT_SetPCD'

routine).

 NOTE

10. FMan runtime routines

11. FMan Free sequence - in reverse order from initialization

4.2.8.1.5.2.6 Global FMan Driver
The Global FMan driver refers to the common FMan features - i.e. functionality that is not defined per-port and does not belong
to a spany of the specific modules such as PCD, RTC, MURAM, MAC etc.

4.2.8.1.5.2.6.1 FMan Hardware Overview

The following Frame Manager processing elements are considered general FMan components and are controlled by the FMan
common driver:

• The Frame Processor Manager (FPM) schedules frames for processing by the different elements to create the appropriate
pipeline.

• The BMI is intended to transfer data between network and internal FMan memory, generate frame descriptor (FD),
initialize the internal context (IC), manage the internal buffers, allocate/deallocate external buffers with the help of BMan
and activate the DMA to transfer data between internal and external RAMs

• The DMA is responsible for frames data transfer from and to external memory

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
258 NXP Semiconductors

• The queue manager interface (QMI) is responsible for transferring packet-based work assignments between the queue
manager (QMan) and the frame manager (FMan). It provides an interface to the QMan for enqueuing and dequeuing new
frames to/from the multicore system.

4.2.8.1.5.2.6.1.1 Global FMan Driver Software Abstraction

The FMan global driver covers all the logically common FMan functionality, i.e functionality which is not port related. The different
hardware modules within the FMan (i.e. BMI, DMA, etc.) are encapsulated within the FMan module. The terms "BMI", "DMA" are
used for resources identification such as exceptions, counters and some configuration parameters, but logically, the only module
used for functional operations is the FMan.

4.2.8.1.5.2.6.2 How to use the Global FMan Driver?

The following sections provide practical information for using the software drivers.

4.2.8.1.5.2.6.2.1 Global FMan Driver Scope

This module represents the common parts of the FMan. It includes:

• FMan hardware structures configuration and enablement

• Resource allocation and management

• Interrupt handling

• Statistics support

• ECC support for the FMan RAM's

• Load balancing between ports

4.2.8.1.5.2.6.2.2 Global FMan Driver Sequence

• FMan config routine

• [Optional] FMan advance configuration routines

• FMan Init routine

• FMan runtime routines

• FMan free routine

4.2.8.1.5.2.6.2.3 Global FMan Driver Functional Description

The following sections describe main driver functionalities and their usage.

4.2.8.1.5.2.6.2.3.1 FMan Configuration and Initialization

On FMan driver initialization, the software configures all FMan registers and relevant memory. It supplies default values where
no other values are specified, it allocates MURAM, it loads FMan controller code. It defines IRQ's and sets IRQ handles. It enables
hardware mechanisms and initializes software data structures for software management.

By the time initialization is done, FMan is ready to be used and any of the FMan sub-modules (FMan-Ports, MACs, etc.) may be
initialized.

4.2.8.1.5.2.6.2.3.2 Resource Management & Tuning

The FMan provides resources used by its sub-modules. Generally, the driver selects default resource allocation, but when
initializing the global FMan module, the user may specify a different allocation for some or all of the resources.

The resources relevant for this discussion are resources used by the BMI only. These resources should be further distributed
between the different ports, but the initial allocation is for the BMI in opposed to some internal use of the FMan controller. The
main and most important resources of the FMan are TNUMs (i.e. the FMan "tasks"), DMAs, FIFOs and "pipeline-depth".

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 259

The total available resources may vary based on SoC. The recommended default values are designed to fit most applications but
as the resource allocation depends on system configuration, it therefore may vary between applications. I.e. the default value that
are being set by the driver will be sufficient in use-cases were the user utilizing most of the FMan bandwidth and the user
application is mostly using the FMan. In other cases such as if user uses some advance PCD settings and/or overloads the SoC
(e.g. PCI is being massively used), the resources may need some special treatment and tuning by user as the default may not
be sufficient enough.

Most MURAM is used as a temporary location for data transaction. This part's size is referred to as "FIFO size". The rest of the
MURAM may be used for other utilizations such as Custom Classifier and its size is effected by the use of these features, i.e. if
Custom Classifier is not used, "FIFO size" may be enlarged. The user may call FM_ConfigTotalFifoSize in order to modify the
default value of the MURAM. However, one should bear in mind that when FIFO size is enlarged - Custom Classifier space is
decreased.

4.2.8.1.5.2.6.2.3.3 Load Balancing

The FMan provides a mechanism to optimize the internal arbitration of different ports over the shared resources of the hardware.

The driver supports this feature by providing an API for dividing the bandwidth between the different ports
(FM_SetPortsBandwidth). The API is given in terms of percentage - i.e. for each port, the user should specify its percentage
relative to the other ports. This API is optional and may be modified at runtime. If not used, or if all ports get the same bandwidth
(whether its {50,50} or (25,25,25,25}), then no one port will have priority over other ports. If ports get different values, for example
3 ports used and get {25,50,25}, than the first and third ports will get the same access to shared resources but the second one
will get twice as much. i.e. The numerical values given to each port are not important, but only the relation between the ports.

4.2.8.1.5.2.6.2.3.4 Statistics

The FMan API provides access to all the statistics gathered by the FMan hardware. The API routine FM_GetCounter may be
called at any time after initialization to retrieve any of the FMan counters.

4.2.8.1.5.2.7 FMan Parse-Classify-Distribute Driver
The Parse-Classify-Distribute (PCD) driver module refers to the parts of the drivers handling the different PCD engines and
services such as Parser, Keygen, Custom Classifier, Policer, Header Manipulation, Reassembly, Fragmentation and Frame
Replication. It deals both with the common configuration and runtime features and the specific PCD resources such as Keygen
Schemes, Custom Classifier graphs, etc.

4.2.8.1.5.2.7.1 FMan PCD Hardware Overview

• Parser-The parser performs protocol header parsing and validation for a wide range of frame formats with varying
protocols and encapsulation. A hard-coded parser function is used for the known and stable protocols. The hardware
parser capabilities can be expanded by software parser functions to support protocols not supported by the hardware
parser including proprietary protocols and shim headers. The parser parses the frame according to a per-port
configuration. It reads the frame header from the FMan Memory and writes the frame parse results to the Internal Context
of the frame. The Lineup Confirmation Vector is a part of the parser result. It represents a list of all the protocols
recognized by the hardware parser, and may be extended to contain information added by the software parser.

• Keygen-The Keygen is located on the FMan receive path, and enables high performance implementation of pre-
classification. It holds a SoC dependent number of key generation schemes in internal memory. Each scheme can
generate different frame queue ID (FQID) and policer profile (PP). One main function of the Keygen module is to separate
network data into different flows, each requiring different processing. Another function of the Keygen, is the Classification
Plan. This is a mechanism provided in order to mask LCV bits according to per-port definition. The Classification Plan is
implemented as a table of SoC dependent number of entries, logically divided or shared between the FMan Ports.

• Custom Classifier-The Frame Manager (FMan) Custom Classifier module performs a look-up using a specific key from the
received frame or internal frame context according to Parser results. The FMan Custom Classifier logically occurs after the
Keygen processing has completed and can be operational in both the MAC receive flow and the offline parsing flow. The
look-up produces an action descriptor which contains the necessary information for the continuation of the frame
processing in the next module or the next look-up table.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
260 NXP Semiconductors

• Policer-The Policer supports implementation of differentiated services at line speed on the Frame Manager (FMan) receive
or offline parsing paths. It holds a SoC dependent number of traffic profiles in internal memory, each profile implementing
RFC-2698 or RFC-4115 or Pass-Through mode. Each mode can work in either color-blind or color aware mode, and pass
or drop packets according to their resulting color.

4.2.8.1.5.2.7.1.1 FMan PCD Software Abstraction

The FMan PCD driver aims to provide a high-level, abstract, network oriented, logical interface. It is designed to allow a glue logic
between the different PCD engines and the PCD "user" - the FMan port, and to define an interface to these features to be used
by the application. In this process, new non-hardware modules may be created - such as "Network Environment", while existing
hardware modules - such as "Classification Plan" - may be hidden from the user. The following sections makes an attempt to
describe the driver design decisions in abstracting the engines' hardware and the gap between the hardware programming model
and the drivers API.

4.2.8.1.5.2.7.1.1.1 FMan PCD Flow

The FMan opens the FPM scheduling capabilities to the application, which allows significant flexibility in defining the packet flow.
At various points in the flow, the FMan user must configure the next engine to handle the packet and the next operation it will
perform. The driver minimizes this flexibility by assuming a basic flow for each port. The driver can expand this flow to include all
FMan PCD capabilities, but in a limited manner that will be described below.

The basic flow reflects the expected use of the FMan PCD. When a port is initialized, the default setup that received packets are
passed to the port's default Rx frame queue, as configured by the user. When the PCD is linked to the port, the user chooses
one of the provided PCD support options which selects which PCD engines (parser, Keygen, FMan-Controller, and Policer) are
included in the frames. The selected PCD support option adds the selected engine or engines to the flow according to the following
PCD organization.

• When parser is used, it is always the first PCD engine working on the received frames.

• If parser is not activated, Keygen, and FMan-Controller may not be activated.

• Keygen's first use follows the parser, but it may be used again following the Fman-Controller or the policer.

• If FMan-Controller is used, it will follow the Keygen. It may not be activated if Keygen is not used.

• Policer may be activated by itself or follow any of the engines.

In all cases, the frame returns to the buffer manager interface (BMI) for enqueueing. The application may not change the main
flow at runtime.

The following figure shows the default ports flows (in terms of next invoked action (NIA) registers' initialization):

BMI

BMI QMI

QMI BMI

BMIQMIEND

Frame for
Parsing
(QM)

PCD

Figure 54. Default Rx Flow

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 261

Figure 55. Default Offline Parsing Flow

In independent mode, both Tx and Rx BMI NIA are FMan Controller. Other NIAs are not applicable.

 NOTE

After basic initialization, the default Rx flow, as shown in Figure 54. on page 261, is the configured flow. A PCD flow is initially
defined by FMan Port level, although it is effected both by the port configuration and the PCD resources configuration. Following
figure shows the PCD flows supported by the driver.

BMI release internal buffers

END

NL=0

NIA=BMI Release

QMI

NIA=QMI_ENQ

BMI prepare to enqueue frame

Rx Frame

BMI (Rx)

NIA=BMI prepare to Enqueue NIA=Policer

NIA=Policer

NIA=Parser

NIA=BMI prepare to Enqueue

NIA=BMI prepare to Enqueue

Parser

NIA=KeyGen

KeyGen

NIA=BMI prepare to Enqueue

NIA=DMI DROP Frame

NIA=BMI prepare to Enqueue

NIA=BMI prepare to Enqueue NIA=Policer

Policer

NIA=Policer

KeyGen

NIA=KeyGen

Policer

NIA=KeyGen

NIA=Policer

FMan Controller Custom classifier.

NIA=Custom classifier.

NIA=Policer

FMan Controller continuous mode processing
not supported in P1023,P4080,P3041,
P5020,P5040 and P2041

 NIA=continuous mode
processing

&NI=1

Figure 56. Available flows

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
262 NXP Semiconductors

4.2.8.1.5.2.7.1.1.2 Global FMan PCD Module

The FMan PCD driver deals with the configuration initialization and runtime setting of the PCD resources. The actual use of these
resources is in fact activated only when an FMan-Port is enabled and is bound to the initialized PCD resources. In this chapter
we will only deal with the initialization and organization of those resources.

The PCD driver is constructed by a global FMan-PCD module that must be initialized first, and a set of optional PCD resources
that can be initialized at run-time. The FMan-PCD module is responsible for enabling the different engines, loading SW parser if
required, registering PCD interrupts and other general configuration.

4.2.8.1.5.2.7.1.1.3 Global FMan-PCD Resources

PCD driver's resources are NOT identical to PCD hardware resources and provide an abstraction layer to the hardware resources.
PCD is viewed as a graph of PCD resources where FMan RX & OP Ports may be bound to subsets of the PCD graph. Refer to
Port-PCD Binding on page 287.

The following are the driver's PCD resources:

• Network Environment Characteristics

• Software Parser

• Keygen Schemes

• Custom Classifier Roots

• Custom Classifier Match-Tables

• Custom Classifier Hahs-Tables

• Custom Classifier Manipulations

• Policer Profiles

The Network Environment (NetEnv) Characteristics are a pure SW resource. It is used in creating multiple HW PCD resources.
Logically, it represents the NetEnv of a port or a number of port and supplies the glue between the parser, the Keygen, the Custom
Classifier and the port. It ensures they all "speak the same language". Physically, it defines the LCV for all the participating
protocols for each FMan Port.

Keygen Schemes and Policer Profiles are closely bound to their hardware programming model

Custom Classifier process is represented by a software graph. Each node in the graph represents a logical action. The driver
defines different types of Custom Classifier nodes. One type of node is one of an Exact-Match which is a software representation
of an Action-Descriptor (AD) that performs a lookup according to the key defined. Another type of node is one of Indexed-Lookup
which is again a software representation of an Action-Descriptor of that type. A higher level of abstraction is performed on Hash-
Table nodes, where the driver manages a hash table. Each node, may also contain a handle to a Manipulation action - which is
the software abstraction for one or more AD's used for manipulating the frame by inserting and/or removing data. Generally, any
Custom Classifier software node may be translated to one or more HW action descriptors.

The driver defines a notion of a Custom Classifier graph. The CC graph is the total set of lookups and manipulations performed
by the Custom Classifier. The user builds the graph only after defining the CC Nodes. The finalization of the graph is done by
building the root nodes and defining their grouping. This refers to the 16 entries array that functions as the entry point of the CC.
Generally, the indexing into this array is performed by using 4 bits out of the LCV. This driver supports a division of this array into
2-16 unrelated groups to increase the flexibility of the programming and allow usage of more LCV bits.

4.2.8.1.5.2.7.1.1.4 How to Associate PCD Resources

The NetEnv is the link between the port and all the PCD resources it is using.

• Parser-The driver configures the LCV (lineup confirmation vector) in the parser configuration for every FMan Port
according to the specific NetEnv it is bound to. When using SW parser, a private shim header should be added as a
NetEnv unit, and may be used later as a regular unit.

• Keygen-Classification plan: The driver hides this resource from the user and configures classification plan entries to
support and expand the HW parser capabilities according to the user definition of its NetEnv Characteristics

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 263

• Keygen-Schemes: The user describes the scheme in terms of NetEnv units, and the match vector is configured by the
driver.

• Custom Classifier: The user describes the entry point of a CC root in terms of NetEnv units. The driver internally passes
this information to the Keygen that uses it in selecting the entry point in the CC root when passing a frame from the
Keygen to the Custom Classifier.

After defining PCD resources, the user may bind any FM Port to the initialized resources. A port must be bound to a single NetEnv,
and may be bound to a Custom Classifier root and KeyGen schemes.

The set of figures below demonstrate a single example of the use of the driver's resources and their interaction with the hardware
structures.

The following table demonstrates a NetEnv of 7 units. Unit 0, for example, is a simple unit recognizing ethernet frame, while unit
2 recognizes IP frames of either version.

Unit 0 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Ethernet Ethernet
[Broadcast]

IPv4 IPv4 UDP MPLS [stacked] IPv4 [Multicast]

IPv6 TCP

When a port is bound to a NetEnv, the driver translates its units into the parser's hardware Line-up Confirmation Vector (LCV).
The table below shows the LCV configured for a port that has the NetEnv above.

LCV[0] LCV[1] LCV[2] LCV[3] LCV[4] LCV[5] LCV[6] LCV[7-31]

Ethernet 1 1 0 0 0 0 0 0...0

IPv4 0 0 1 1 0 0 1 0...0

IPv6 0 0 1 0 0 0 0 0...0

UDP 0 0 0 0 1 0 0 0...0

TCP 0 0 0 0 1 0 0 0...0

MPLS 0 0 0 0 0 1 0 0...0

Based on the NetEnv, the driver also defines a set of Classification Plan entries to be used by each port using that NetEnv.

Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bits[7-31] Comment
s

0 1 0 1 1 1 0 0 1...1 No
classificati
on plan

1 1 1 1 1 1 0 0 1...1 Ethernet
Broadcast

2 1 0 1 1 1 1 0 1...1 MPLS
Stacked

3 1 1 1 1 1 1 0 1...1 1+2

4 1 0 1 1 1 0 1 1...1 IPv4 MC

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
264 NXP Semiconductors

Table continued from the previous page...

5 1 1 1 1 1 0 1 1...1 1+4

6 1 0 1 1 1 1 1 1...1 2+4

7 1 1 1 1 1 1 1 1...1 1+2+4

When a frame is received its LCV is masked by one of the vectors in the Classification Plan. The FMan selects the entry based
on the parser output and the port parameters.

To support this operation, the driver initializes the HXS plan offset field for each relevant header in the port parser parameters.
The table below, is the driver's translation of the Network environment above into the port classification plan parameters. When
a frame is being parsed, the classification plan offset for each header found is accumulated to construct the offset of the result
classification plan. For example, a hypothetic frame of Ethernet BC/Stacked MPLS/IPv4 unicast frame, will have an
LCV=0xF6000000 and a classification plan id of 2^(1-1)+ 2^(2-1) = 3, so its classification plan vector is 0xFDFFFFFF, and QLCV
= 0xF4000000.

Ethernet Broadcast 1 2^(1-1)=1

MPLS Stacked 2 2^(2-1)=2

IPv6 0 0

UDP - -

TCP - -

IPv4 Multicast 3 2^(3-1)=4

Given the driver's automatic initialization of the LCV and classification plan based on only the NetEnv, the user may now initialize
Keygen schemes by passing as match criteria only the NetEnv unit id's. As in the other cases, the driver will translate the unit id's
to the schemes' match vectors as can be seen in the figure below.

Scheme Match Criteria

0
1

2
3

Ethernet broadcast

IPV4 MC+MPLS stacked

IPV4 MC

IPV4 (TCP or UDP)

match on IPv4 or
IPv6 frames
Ethernet

Direct scheme

4

5

6

Units Match vector

1

5+6

6
3+4

2

0

0x40000000
0x06000000

0x02000000

0x18000000

0x20000000

0x80000000

0xffffffff

Id

--

+

Figure 57. Keygen schemes example

Finally, the driver will also take care of initializing the Keygen-to-Custom Classifier configuration registers. When initializing a
Custom Classifier root, the user may create groups based on NetEnv units (in opposed to a simple group of a single entry; for
more information refer to Custom Classifier Root on page 271).

When initializing a scheme, the user should only pass the handle to the Custom Classifier root. The driver will translate the group
LCV dependent parameters into the scheme required register.

For example, Group 0 is a simple group that is not dependent on the NetEnv. Group 1 is based on a single unit - so a frame may
be forwarded to 1 of 2 root nodes, and group 2 is based on 3 units - so a frame may be forwarded to 1 of 8 root nodes.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 265

Figure 58. Keygen scheme configuration for CC next engine

The Policer Profiles are the one resource that does not rely on the Parser Results or the NetEnv. It is therefore managed
independent of the other PCD resources.

4.2.8.1.5.2.7.1.1.5 FMan Header Manipulation

The FMan controller defines a set of header manipulation commands, and supports listing of these commands. The FMan driver
allows limited listing by a single Manipulation node, limited to a single use of each command and to a defined order (e.g. remove
+ insert may be defined in a single node, but insert + remove or remove + remove may not). Alternatively, full listing and ordering
is supported by chaining more than one Manipulation nodes. In such a case, the driver will unify HMCT's to optimize performance
and MURAM usage unless parsing is required in between the different commands.

The following list maps each FMan controller command to the driver parameters in the Header Manipulation structure:

1. Generic removal-Set 'rmv' and use the corresponding parameters structure. Select generic enum and parameters.

2. Generic insertion-Set 'insrt' and use the corresponding parameters structure. Select generic enum and parameters.

3. Generic replace-Set 'insrt' and use the corresponding parameters structure. Select generic enum and parameters and
set 'replace'.

4. Protocol specific removal-Set 'rmv' and use the corresponding parameters structure. Select byHdr enum and
parameters.

5. Protocol specific insert-Set 'insrt' and use the corresponding parameters structure. Select byHdr enum and parameters.

6. Vlan priority update-Set 'fieldUpdate' and use the corresponding parameters structure. Select vlan enum and
parameters.

7. IPv4 update-Set 'fieldUpdate' and use the corresponding parameters structure. Select IPv4 enum and parameters.

8. IPv6 update-Set 'fieldUpdate' and use the corresponding parameters structure. Select IPv6 enum and parameters.

9. TCP/UDP update-Set 'fieldUpdate' and use the corresponding parameters structure. Select TCP/UDP enum and
parameters.

10. TCP/UDP checksum calculation-Set 'fieldUpdate' and use the corresponding parameters structure. Select TCP/UDP
enum and parameters.

11. IP replace-Set 'custom' and use the corresponding parameters structure. Select TCP/UDP enum and parameters.

4.2.8.1.5.2.7.1.1.6 Custom Classifier Hash-Table Node

The driver provides a high level Hash-Table mechanism implemented over the FMan controller Custom Classifier structures. The
driver implements the Hash-Table by using a Match-Table node of type Indexed-Hash, where each entry points to a hash bucket
implemented by a Match-Table node of type Exact-Match (For more information on these nodes, refer to Custom Classifier Root

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
266 NXP Semiconductors

on page 271). The driver uses the Keygen key and hash result as a key for the lookup. A selected part of the hash result is used
to select the entry in the Indexed-Hash table (i.e. the bucket), and the full key possible values are used as the Match-Table keys
in the selected bucket.

Internal Context

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

of
 S

et
s

=
 4

Number Of Ways = Max number of keys/Number of Sets = 12

64 bits hash

12 Bits Mask (starting at byte 2 of the hash) = 0x0030 (2 bits 4 entries table)

Hash bits = 00

Hash bits = 01

Hash bits = 10

Hash bits = 11

Keygen Key 0

Keygen Key 3

Keygen Key 7

Keygen Key 2

Keygen Key 5

Keygen Key 6

Keygen Key 1

Keygen Key 4

Keygen Key 10

Keygen Key 8

Keygen Key 9

Keygen Key 11

MISS

MISS

MISS

MISS

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

QM Fquid 0x400

QM Fquid 0x401

QM Fquid 0x402

QM Fquid 0x403

QM Fquid 0x404

FM Keygen Scheme 9

FM Keygen Scheme 6

FM Keygen Scheme 10

FM Keygen Scheme 7

FM Keygen Scheme 10

QM Keep KG Result

QM Keep KG Result

QM Keep KG Result

QM Keep KG Result

FM CC Node 1

FM CC Node 2

Figure 59. Hash_Table node example

4.2.8.1.5.2.7.2 How to use the FMan PCD Driver?

The following sections provide practical information for using the software drivers.

4.2.8.1.5.2.7.2.1 FMan PCD Driver Scope

• FMan Parser, Keygen, Custom Classifier & Policer configuration and initialization

• PCD Enable/Disable

• Resources allocation and management

• Interrupt handling

• Statistics support

• Support for FMan PCD operations

4.2.8.1.5.2.7.2.2 FMan PCD Driver Sequence

• FMan PCD Config routine

• [Optional] FMan PCD advance configuration routines

• FMan PCD Init routine

• Specific one-time pre-enable routines (e.g. load SW parser)

• FMan PCD Enable routine

• FMan PCD runtime routines

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 267

• FMan PCD specific resources runtime routines (for defining, modifying and deleting Keygen schemes, Custom Classifier
nodes, etc.)

• FMan PCD Free routine

4.2.8.1.5.2.7.2.3 FMan PCD Driver Functional Description

The following sections describe main driver functionalities and their usage.

4.2.8.1.5.2.7.2.3.1 Global PCD Initialization

PCD initialization is divided into two parts. During the first part of the initialization, FM_PCD_Config, advance config routines, and
FM_PCD_Init are called to configure and set all basic PCD capabilities, including pre-defining which engines are supported and
may be used later. This stage is done in the kernel, and PCD is not yet enabled. During the second part of the initialization, PCD
is enabled by a runtime routine (FM_PCD_Enable).

This division creates a gap during which some functionality may be added. The most important is the loading of the SW parser
code. Note that this functionality is allowed only when PCD is disabled (i.e. between init and enable) or, with some restriction, in
runtime after disable.

Once PCD basic initialization is complete (FM_PCD_Init and FM_PCD_Enable are called and returned), the PCD capabilities of
the frame manager are reflected by the driver as a set of API runtime routines designed to define the PCD environment for a
specific partition. PCD resources are defined per partition and may be used by all ports within a specific partition. The different
PCD resources are first initialized and only later may be used by the FMan ports.

The order of PCD resources initialization is strict and relies on the PCD graph being initialized bottom up, which means that no
resource may be initialized before its next engine is initialized. However, the use of port relative profiles is an exception to this
rule. A scheme's next engine may be a port relative profile. In such a case, the scheme is initialized but not yet bound to a port,
i.e. the actual policer profile is not yet specified. Therefore, its validity may not be verified. It is the user's responsibility to ensure
that when a port using that scheme is activated (for using the PCD), its relative policer profile must be validated.

The PCD graph is partition based i.e. may be shared by ports on the same partition. Refer to Port-PCD Binding on page 287 for
more details on port-PCD binding.

4.2.8.1.5.2.7.2.3.2 PCD Resources

The following subsections describe each of the driver's PCD resources in detail. In a single-partition environment, most resources
are available and do not need explicit allocation. The port policer profiles are an exception. They must be allocated by the user,
using the FMan Port API. In multipartition, some of the resources, specifically resources limited by hardware, must be first allocated
by a partition and only then used by the partition's ports. The following sections specify the requirements for each of the PCD
resources:

4.2.8.1.5.2.7.2.3.3 Network Environment Characteristics

The Network Environment (NetEnv) is a software entity that lists the network protocols used by the FM-PCD for classification and
distribution. The total number of NetEnvs defined depends on the system configuration. A NetEnv may be defined per port or
shared among some or all ports. The definition of a NetEnv must be done with care while considering the use of the FM-PCD
module. The NetEnv is, in fact, the key for frames parsing, distribution, and classification.

The NetEnv is a list of distinction units. Each distinction unit consists of at least one or more headers. A header may either be
one header from the list of supported headers or one of the supported headers plus an option (For more details on list and options
available, refer to Supported Network Protocols on page 294).

The hardware parser implements header recognition. If the software parser is used, a distinction unit may also be one of the shim
headers. The driver saves a number of units (that may be redefined in fm_pcd_ext.h) for private use. The user may than use
this unit ID to recognize the private header by the Keygen or CC.

The following figure shows an example of a NetEnv. It has four units, two of which consist of a single header. One of the headers
has an option. The final two units consist of two interchangeable headers. This example will be used throughout the following
sections

.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
268 NXP Semiconductors

Figure 60. Network Environment Example

The distinction units list should reflect what the user wants to do with the PCD mechanisms to parse-classify-distribute incoming
frames. Specifying a distinction unit means that the user wants to use that specification to either activate the parser on the specified
headers or distinguish between frames with the Keygen or the Custom Classifier. Using interchangeable headers to define a unit
means that the user is indifferent to which of the interchangeable headers is present in the frame, but instead wants the distinction
to be based on the presence of either one of them. For example, if it is required that a selection of scheme is based on having
L3 header of either IPv4 OR IPv6, but it is of no importance which of the two is present, than a unit should be defined with 2
interchangeable headers: IPv4, IPv6.

The initialization routine retunes a NetEnv handle to be used later to specify that Network Environment.

Depending on context, there are limitations to the use of NetEnvs. A port using the PCD functionality is bound to a NetEnv. Some,
or even all, ports may share a NetEnv, but it is also possible to have one NetEnv per port. When initializing a scheme, a Custom
Classifier root, or when binding a port to the PCD, one of the required parameters is the handle of an initialized NetEnv. The driver
uses the definitions of that NetEnv to initialize that scheme or Custom Classifier root. When a port is bound to a Keygen scheme
or a Custom Classifier root, it must be bound to the same NetEnv.

For the flow's definition, the different PCD modules may only rely on distinction units as defined by their environment. When
initializing a scheme for example, a PCD module may not choose to select IPv4 as a match for recognizing flows unless IPv4 was
defined in the relating environment. In fact, to guide the user through the configuration of the PCD, each module's characterization
in terms of flows is not done using protocol names, but rather environment indices.

In terms of hardware implementation, the list of distinction units sets the Lineup Confirmation Vectors (LCVs) and are later used
for match vector and CC indexing. The shim header LCVs are conventionally assigned from LSB up, so the first shim header is
0x0000_0001. For more details on the implementation, refer to Global FMan-PCD Resources on page 263.

Runtime Modifications: A Network Environment may not be changed at runtime. New NetEnvs may be set, and unused NetEnvs
may be deleted anytime.

Available API:

• FM_PCD_NetEnvCharacteristicsSet

• FM_PCD_NetEnvCharacteristicsDelete

4.2.8.1.5.2.7.2.3.4 Software Parser

The PCD allows the extension of the hardware parser by loading the software parser code for further manipulation. When this is
required, the user passes the image of the software parser code and a table of labels to the driver. This represents the entry-
points in the software parser code. If more than one code piece is required for a specific protocol (for example, to be used by
different ports) an index is added to the labels table. Later, when configuring a port that uses one or more software parsing
attachments, each protocol header may be bound to one of the previously declared labels. This is done by setting the software
parser enable indication for one or more protocols headers, and indicating the software parser index (relative to that protocol
header). The software parser code will run for that port after the hardware parser recognizes that header. In other words, the
specified protocol header is in fact the trigger for the software parser to be activated. It is typical for the software parser to parse
a private header that was previously defined as a NetEnv unit and then mark its existence for classification and distribution.

The software parser loading routine must be called only when the PCD is disabled and no ports in the system are using the parser.
On initialization this means that the routine, if needed, must be called after FM_PCD_Init and before FM_PCD_Enable.

Runtime Modifications: Software parser may not be changed at runtime.

Available API:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 269

• FM_PCD_PrsLoadSw

4.2.8.1.5.2.7.2.3.5 Keygen Schemes

The scheme entity relies on the hardware entity. There are 32 Keygen schemes in a frame manager. When a PCD is defined in
a single partition environment, it is the owner of all 32 schemes. When a PCD is defined in a multipartition environment, the user
must specify how many schemes are required for this partition. Once schemes are allocated for a specific partition, it may be
used only by ports on that partition.

Within a partition, the schemes order is relevant. When initializing a scheme, the user must specify the following:

• Relative index, relative to the partition's schemes.

• Network environment handle.

• Match criteria, or which frames should be processed by the scheme.

• Keygen action (such as hash, FQID mask, and manipulation).

• Distribution FQIDs.

The match criteria (if used), is based on the NetEnv characteristics units. Schemes that are to be used directly should be configured
as such, by specifying a scheme ID rather than using match criteria or specifying distinction units. Upon initialization, the driver
returns a handle to the initialized scheme. This handle can be used later to specify the scheme.

Keygen schemes are dependant on parser results. They may be used immediately after the parser by direct mode or by using
the match criteria. Schemes may also be used after the Custom Classifier or the policer. This flow is typically used for flow control
redistribution. In this case, to avoid infinite loops the scheme is reached only in direct manner and not by match criteria.

The keygen action consists of the construction of the key and the definition of the distribution. The key is constructed by a set of
extract actions arranged in the driver as an array of extractions. Extractions may be done from data, from Parse Result, from
default values, but most commonly - from the header. When extraction is taken from the header it may be described generically
by size and offset, or it may be an extraction of the full field. For a full list of supported headers and fields, see Supported Network
Protocols on page 294.

When a scheme is initialized, the user must specify the next engine to which the frame should pass after it is processed. The next
specified engine must be initialized and valid at this point. Frames may pass to the Custom Classifier or the policer, or they may
be directly enqueued to an FQID.

Once schemes are defined, ports may be bound to them. A port may be bound to as many schemes as needed, as long as they
are from the same partition and the same NetEnv.

Following figure shows an example of scheme setting and connection to the NetEnv, as shown in Network Environment
Characteristics on page 268.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
270 NXP Semiconductors

Schemeld: Scheme
match criteria

Keygen
schemes

Scheme action

0; Ethernet Broadcast frames

1; match on IP
frames

(Netenv unit0)

(NetEnv unit 1)

2; Control frames - (no
match criteria)

Enqueue to
FQIQ 0x20

Distributes on FQID's 0x10 -
0x17 according to hash on
IP SRC.

Go to coarse classification
Tree x group y

Go to policer, Port relative
profile 0

Partition x
schemes

Figure 61. Schemes Example

Runtime Modifications: Valid schemes may be modified at runtime by calling the scheme initialization routine for an existing
scheme with the following differences:

1. Passing the scheme handle as retuned by the original initialization routine (instead of the scheme's relative ID).

2. Setting 'modify' to be 'TRUE'.

New schemes may be set and unused schemes may be deleted anytime.

Available API:

• FM_PCD_KgSchemeSet

• FM_PCD_KgSchemeDelete

4.2.8.1.5.2.7.2.3.6 Custom Classifier Root

A Custom Classifier root (or actually the entire CC graph) may be defined per FMan Port or shared by ports on the same partition.
It is a set of lookups defined to classify, route and perform manipulation on a flow of frames. The CC graph is built bottom up by
connecting CC Nodes. When a node (which is not a leaf in the graph) is set, it points to other nodes. These other nodes must
already be initialized.

A CC root is defined by a set of entries that construct the root of the graph, and Custom Classifier Nodes of different types.

Once all nodes in the graph are ready and connected, the root is built by calling the FM_PCD_CcRootBuild routine. The root of the
graph is in fact an array of up to 16 root entry nodes. The entry point for a frame is one of the CC root entries, depending on the
engine that precedes the CC which is the Keygen.

According to the parser results (which is defined by the NetEnv setting) and Keygen configuration, a frame is directed to one of
the entries in the CC root array.

When building the CC root, the user must specify its NetEnv id. Up to four distinction units may define the selection of one node
(out of the 16), in a simple bit selection method. The following table shows the CC Root nodes selection (0 = unrecognized by
parser, 1 = recognized by parser).

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 271

Table 44. CC Root Nodes Selection

Unit0 Unit1 Unit2 Unit3 Selected Node

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

To allow more than 4 units to be involved in the selection, the 16 entries may be divided into groups. The table above demonstrates
an organization of one group of 16 nodes, but other organizations are possible:

2 groups of 8 -> each group selected by 3 units (to select nodes 0-7 relative to this group's base)

4 groups of 4 -> each group selected by 2 units (to select nodes 0-3 relative to this group's base)

8 groups of 2 -> each group selected by 1 units (to select nodes 0-1 relative to this group's base)

16 groups of 1 -> indifferent to units (single node group always selected)

2-8 groups of varied sizes (8-1)

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
272 NXP Semiconductors

Figure 62. CC Root - 5 groups example

When building the CC Root, the user must specify the number and size of groups. Then, for each group, an array of per-root-node
parameters is passed. The array is ordered according to the table above.

A simplified way of using the CC, is to define up to 16 different groups of one root-node each. In this way, all traffic from a specific
Keygen scheme is going to the same group, which is a single node, and no NetEnv unit are selected. Groups 3 and 4 in figure
above are an example of a single root group.

The following figure shows a combined use of the NetEnv units in Keygen and Custom Classifier, based on the previous NetEnv
and Keygen scheme examples.

Keygen schemes

Schemeld, Scheme
match criteria

0; Ethemet Broadcast frames
(Netenv unit0)

1; match on IP
frames

(NetEnv Unit 1)

2; Control frames (no
match criteria)

Scheme action

Enqueue to
FQIQ 0x20

Distributes on FQID's 0X10-
0x17 according to hash on
IP SRC

Go to coarse classification
Tree x groupy

Go to policer, Port relative
profile 0

Coarse Classification Tree x root

Unit not
present(
IPv6)

Unit of
present(
IPv4

Match an
IPv6 field

Group y based
on Netenv unit
2 (IP v4)

Match an
IPV4 field

Figure 63. Keygen -> Custom Classifier Example

When a CC root or node is initialized, the driver returns a handle to the root or node respectively. This handle may be used later
for specifying the root or node. For example, to build a root, the nodes are specified by passing their handles, and a root handle

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 273

must be passed when defining a port that uses the Custom Classifier. A port may be bound only to one root, from the same
partition and NetEnv as the port.

Runtime Modifications: Custom Classifier nodes may be modified by using one of the routines listed in the "Available API" below.

Custom Classifier Roots may not be changed at runtime. New nodes and roots may be defined and unused ones may be deleted
anytime.

Available API:

• FM_PCD_MatchTableSet

• FM_PCD_MatchTableDelete

• FM_PCD_HashTableSet

• FM_PCD_HashTableDelete

• FM_PCD_CcRootBuild

• FM_PCD_CcRootDelete

Specific runtime API:

• FM_PCD_CcRootModifyNextEngine

• FM_PCD_MatchTableModifyNextEngine

• FM_PCD_MatchTableModifyMissNextEngine

• FM_PCD_MatchTableRemoveKey

• FM_PCD_MatchTableAddKey

• FM_PCD_MatchTableModifyKey

• FM_PCD_MatchTableModifyKeyAndNextEngine

• FM_PCD_MatchTableFindNModifyNextEngine

• FM_PCD_MatchTableFindNRemoveKey

• FM_PCD_MatchTableFindNModifyKeyAndNextEngine

• FM_PCD_MatchTableFindNModifyKey

• FM_PCD_HashTableAddKey

• FM_PCD_HashTableRemoveKey

• FM_PCD_HashTableModifyNextEngine

• FM_PCD_HashTableModifyMissNextEngine

4.2.8.1.5.2.7.2.3.7 Match-Table Nodes

The driver defines two types of Match-Table nodes - Exact-Match nodes and Indexed-Lookup nodes. On both types of nodes a
table of entries is defined where each entry leads to a selected next-engine with a selected action. The next-engines may be
another CC Node, a Keygen scheme, a Policer profile or an enqueue action to a QM queue. In the last case, the queue may be
either an Fqid (frame queue id) that was previously defined - typically by the Keygen, or an explicitly specified new Fqid that
overrides any previous Fqid selection.

The difference between the two types of nodes is in the way an entry is selected in the node's table.

On an exact-match node, the user defines an extraction of data taken from the frame or the Internal-Context. The table of entries
represent different possible values (keys) for this extraction, so that for each key a next-action is selected. An extra 'MISS' entry
is also specified.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
274 NXP Semiconductors

Figure 64. Exact-Match Node Example

On an Indexed-lookup node, up to 2^12 may be defined. The user selects 12 bits out of the Internal Context as an index to an
entry in the table. The 12 bits may be masked to select less bits and a smaller table.

Figure 65. Indexed-Lookup node example

Two methods for CC node allocation are available: dynamic and static. Static mode was created in order to prevent runtime alloc/
free of FMan memory (MURAM), which may cause fragmentation; in this mode, the driver automatically allocates the memory
according to maximal number of keys, as received from the user. The driver calculates the maximal memory size that may be
used for this CC node, taking into consideration whether key masks are required and node's statistics mode.

In dynamic mode, maximal number of keys is not provided (equals zero). At initialization, all required structures are allocated
according to current number of keys. During runtime modification, these structures are re-allocated according to the updated
number of keys.

4.2.8.1.5.2.7.2.3.8 Hash-Table Nodes

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 275

The Hash-Table node is a driver managed Hash table. It is defined as a next engine and may follow other CC nodes. The Hash-
Table module uses driver lower level CC structures and provides an abstraction layer API consisting of AddKey/RemoveKey
routines. By using this module, the user may easily use a hash table based on Keygen key extraction and hash calculation. When
initializing this node, the user should define parameters regarding the basic key used for hashing and the structure and size of
the hash table (sets/ways).

4.2.8.1.5.2.7.2.3.9 Manipulations

On the structural aspect, Manipulation nodes are not graph nodes in the way that they do not effect the flow of a frame, and they
are not in fact a graph junctions. Manipulations nodes are defined as extensions to existing CC nodes of all types. Any key on
any CC node may have a manipulation characterization on top of the next engine definition. This is realized by CC node parameter
h_Manip which is a handle to a previously initialized Manipulation node (according to the bottom-up principle). The Manipulation
node itself does not have a next engine definition and the frame's flow is determined by the last CC node.

Figure 66. CC Node With Manipulation

Available API:

• FM_PCD_ManipNodeSet

• FM_PCD_ManipNodeDelete

Specific runtime API:

• FM_PCD_ManipNodeReplace (only available for Header-manipulation)

• FM_PCD_ManipGetStatistics

• For all manipulation types below, the user must call 'FM_PCD_SetAdvancedOffloadSupport' before calling

'FM_PCD_Enable'.

• For each RX/OP-Ports that will work with the above FM-PCD, the user should have at least 16 tnums (num

of tasks). in order to set the tnums the user should call 'FM_PORT_ConfigNumOfTasks'.

• It is also required to set the DMA transactions to be per port by calling 'FM_ConfigDmaAidOverride' with

'FALSE' and calling 'FM_ConfigDmaAidMode' with 'e_FM_DMA_AID_OUT_PORT_ID'

 NOTE

4.2.8.1.5.2.7.2.3.9.1 Header Manipulation

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
276 NXP Semiconductors

The header manipulation is implemented by the FMan controller block, and is designed to change the incoming frame header for
termination or interworking flow requirements. Header modification can be configured on a per-flow basis or for a user-determined
group of flows.

The firmware defines some header manipulation structures which hold parameters for the definition of header manipulation action.
It defines a basic table descriptor (Header Manipulation Table Descriptor HMTD) and a table of commands (HMCT), allowing a
sequence of manipulations to be performed. The commands table may reside in either internal or external memory. The
manipulation may be performed at any stage of the Custom Classifier process. As the manipulation changes the frame, the
process allows an additional parsing of the processed frame once the manipulation process had ended.

The Header Manipulation (HM) mechanism is viewed by the driver as an extension to other Custom Classifier Nodes. It may take
place at the beginning, the middle or the end of a CC graph, but it may not have an effect on the flow, i.e. the selection of the next
action.

C C Tree CC Node

Manip node

CC Node

CC Node

CC Node

CC Node

CC Node

CC Node

CC Node

Manip node
Manip node

Manip node

Figure 67. Header Manipulation CC Perspective

The HM action is represented by the driver's Manip node which is a driver sub-module (i.e. initialized by the user, its initialization
routine returns an HM handle).

A Header Manipulation node is an independent unit that has no external information regarding other modules in the PCD graph,
its users, its location in the flow, or the next engine it will be followed by.

A CC key or a CC root node may lead to a Header Manipulation node. The CC key/root node will define the next engine that
should follow the manipulation. The next engine may be Keygen, Policer, another CC node, or PCD termination (enqueue).

In order to use the HM, the user should first create a Manip node, and than use its handle when defining the CC Node that points
to this manipulation action.

A Header Manipulation action may be defined as one of the following manipulations:

• Remove

• Insert

• Fields Update

• Custom

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 277

More than one manipulation is allowed only if they are to be performed in the order above and only one manipulation of each
type.

Other orders or a list of manipulations of the same type may be achieved by chaining some manipulation nodes by using the
h_NextManip handle of the Manipulation parameters structure.

HM nodes may be shared, so that the same HM handle can be passed to more than one CC key.

By default, each frame goes back to the parser to be re-parsed after the manipulation. However this behavior may be disabled
and may have an effect on performance as will be explained in the restrictions note below. It is controlled by the Header
Manipulation node parameters.

The parsing option applies to whatever the user initialize as a Manip node - i.e. if the node contains a number of commands, the
parsing can be done after all the commands and not between them. However, if the set of commands is initialized as a number
of nodes that are chained together, the parser may be run after each node.

The driver aims to optimize performance and MURAM utilization. It does so by internally creating a single command table for
chained nodes. Note that this optimization is NOT possible if parsing is required between manipulations and in this case the manip
nodes are cascaded.

Note that when manipulations are chained, some restrictions apply:

1. Sharing of chained nodes is only possible on the head of the manipulation and not on inner nodes, i.e. all the
manipulation is shared and not parts of it.

2. When parsing is required between manip nodes, the optimization described above is NOT possible and in this case the
manip nodes are cascaded.

3. When parsing is required between manip nodes, the next engine of the last CC node may NOT be another CC node; i.e.
chained nodes with parsing between them may only exist at the end (and not in the middle) of the CC graph.

4.2.8.1.5.2.7.2.3.9.2 IP Reassembly

The FM supports IP reassembly for both IPv4 and IPv6. The FMan accumulates IP fragments until enough have arrived to
completely reconstitute the original datagram. IP Reassembly supports a maximum of 16 fragments per frame. Each fragment
must reside in a single buffer (not in a Scatter/Gather frame).

The IP Reassembly driver utilizes the FMan Controller and FMan PCD resources in order to provide a full IP Reassembly solution.

The driver's interface is not identical to the hardware resources and provide an abstraction layer to the hardware resources. All
IP Reassembly hardware data structures used for IP reassembly manipulation are represented by the software Custom Classifier
Manipulation node. On top of the CC Manipulation, the driver internally defines the other resources needed for the full flow.

IP Reassembly flow

Fragments arriving on an Rx (or offline parsing) FMan Port that was configured to support IP Reassembly are recognized and
marked by the software parser extension. These frames are steered to that pass them to the Custom Classifier. The CC Root
object is configured so that the IP fragments will reach a dedicated root entry node that contains a CC manipulation node. At this
point, the IP Reassembly is performed. When a full frame is gathered, it is passed by the FMan controller back to the parser as
a full reassembled frame. It is then passed to the Keygen and may be distributed and classified as any other frame.

What should the user do?

The following sequence describes the steps the user must take in order for the flow above to work.

• Initialize general DPAA (BM, BM Portal, BM Pools, QM, QM Portal, FMan and FMan PCD)

• Initialize the Rx/Offline FMan Port on which reassembly should run

• Define PCD as follows:

— Set a Network Environment with one of the following options:

◦ HEADER_TYPE_IPV4 unit with IPV4_FRAG_1 option for IPv4 reassembly manipulation.

◦ HEADER_TYPE_IPV6 unit with IPV6_FRAG_1 option for IPv6 reassembly manipulation.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
278 NXP Semiconductors

Note that if the user needs IPv4 or IPv6 units for other use, the fragmentation units may not be shared and dedicated
units must be defined.

— Allocate the first one or two schemes - one if only IPv4 is used, 2 if IPv6 is also used. The user should not configure
those schemes, just save these schemes from other usage. The driver will use the first scheme for IPv4, and if
needed, it will use the second for IPv6.

— Create reassembly manipulation using FM_PCD_ManipNodeSet routine. Pass the relative id's of the schemes allocated
above (A single manipulation module should be created for both IPv4 and IPv6 fragmented frames, passing all
relevant parameters).

— If CC is used, it is user's responsibility to leave two unused entries when building the CC root nodes (i.e. the total
number of entries between all groups should not exceed 14).

— Set at least one scheme to catch regular/reassembled frames.

• When binding the Rx/Offline FMan Port to the PCD properties (i.e. calling FM_PCD_SetPCD), pass a handle to the created
Reassembly Manipulation node.

Note that in order to perform distribution or classification on IPv4/IPv6 frames (unrelated to reassembly of IPv4/IPv6 fragments),
independent IPv4/IPv6 units with no option must be explicitly defined.

What does the driver do?

In order to provide the required support for IP Reassembly, the driver performs some internal actions triggered by the user
configuration. The following information describes the actions the driver internally performs and has no functional relevance to
the user:

• When reassembly is required, the driver internally enables parser recognition of IPv4/IPv6 and shim2 - which is the IP
Reassembly extension. This is triggered by the user defining NetEnv units with options: IPV4_FRAG_1/IPV6_FRAG_1.

• The driver loads the software parser that identifies IP fragments and enables its operation for the required FMan Port.

• The driver defines one or two (one for each IP version) Keygen schemes that recognize IP fragments and are programmed
to generate an IP Reassembly key. The user should allocate the first one or two (for IPv4 and/or IPv6) schemes and pass
their relative id's to the driver. The driver will internally initialize the relevant reassembly schemes when required.

• Each of the schemes above is programmed by the driver to point to a group in the Custom Classifier Root. If the user did
not create a CC Root, the driver internally creates a new one. In both cases, the driver creates the needed group/s in the
CC Root. It always uses the last two groups. It is user's responsibility to have at least two empty entries (one for a single
IP version, two for both).

• The driver attaches the Manipulation sequence (created by the user) to the appropriate root entry node in the CC Root,
causing the reassembly of IP fragments.

The software parser code required to support reassembly may not coexist with user software parser code. If the

user supplies IPv4 or IPv6 software parser code, it must include the code for handling IPv4/IPv6 reassembly

according to the FMan controller spec.

 NOTE

Suggestions of how to use IPR in a system

The PCD with the IPR should identify frames up to L3; i.e. if the frame is IP or not.

In case it isn't an IP frame it should pass the desire PCD. IP frames should pass the reassembly process and than be directed to
OP-Port to be classified according to their L3 and above.

4.2.8.1.5.2.7.2.3.9.3 IP Fragmentation

The FMan supports IP fragmentation for both IPv4 and IPv6. The fragmentation mechanism is implemented by the PCD,
specifically by the Custom Classifier. IP fragmentation may be performed using an Offline Parsing FMan Port with a specific PCD
configuration that will be described in this section.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 279

The software driver provides API for initializing the IP fragmentation mechanism. driver's interface is not identical to the hardware
resources and provide an abstraction layer to the hardware resources. Both of the AD (action descriptor) tables that used for IP
fragmentation manipulation represented by the software Custom Classifier nodes using CC Manipulation. IP Fragmentation
manipulation is used for fragmentation of IPv4 and IPv6 frames according to a specific MTU. This manipulation can be used on
Offline Parsing ports only and as a part of the port's PCD definition. CC Nodes should have an IP fragmentation manipulation
characterization in order to trigger this manipulation. This means that in order to create and initialize the IP fragmentation hardware,
the user should create a Custom Classifier Node with Manipulation (refer to Custom Classifier Root on page 271). All relevant
parameters such as MTU are defined during this module creation.

Following is the sequence that should be followed:

• Initialize general DPAA (BM, BM Portal, BM Pools, QM, QM Portal, FMan and FMan PCD)

• Initialize FMan Port of type Offline Parsing

• Define fragmentation PCD as follows:

— Initialize an empty Network Environment (without any units)

— Create fragmentation manipulation using FM_PCD_ManipNodeSet routine.

— Create CC Node by calling FM_PCD_MatchTableSet/FM_PCD_HashTableSet and attached the fragmentation
manipulation previously created to the desired key.

— Build a CC Root with 1 group that points to the previously defined CC Node .

• Bind the Offline Parsing FMan Port to the PCD properties by calling FM_PORT_SetPCD

Manipulation parameters

• MTU of the fragmentation manipulation.

• Don't Fragment Action - by setting this parameter the user can determine the action to be taken in case the IP packet is
larger than the defined MTU and the 'Don't Fragment' (DF) bit of the frame is set.

The software parser code required to support fragmentation may not coexist with user software parser code. If the

user supplies IPv6 software parser code, it must include the code for handling IPv6 fragmentation according to the

FMan controller spec.

 NOTE

Restrictions:

1. Tx confirmation is not supported.

2. Only Bman buffers shall be used for frames to be fragmented.

3. fragmentation of IP-fragments is not supported

4. IPv4 packets containing header option field are fragments by copying all option fields to each fragment, regardless of the
copy bit value.

5. Maximum number of fragments per frame is 16.

Suggestions of how to use IPF in a system:

In case one of the #1-# restrictions above is critical than it is suggested not to use IPF on OP-Ports that receive frames from the
GPP and to do it on the GPP itself. We also suggest to put the IPF on a OP-Port just before the TX-Port.

4.2.8.1.5.2.7.2.3.9.4 IPSec Manipulation

The IPSec Manipulation is a specific instantiation of the special offload manipulation. It is designed to handle IPSec traffic in order
to support the following actions:

• Support of variable outer header size

The user should initialize a Manipulation node of this type passing the relevant parameters

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
280 NXP Semiconductors

• Support for both ipv4/ipv6 IP version within SA

The user should initialize a Manipulation node of this type passing the relevant parameters.

• ECN/DSCP copying from inner/outer IP header to outer/inner.

In order to use this functionality the user must follow the following steps:

— Define a Manipulation node of this type passing the relevant parameters

— For the relevant Rx/OP port, define a buffer prefix that includes at least the Keygen hash result.

— Use SEC parameters to support this operation

4.2.8.1.5.2.7.2.3.10 Policer Profiles

The policer profile entity relies on the hardware entity. It defines rules for policing for a certain flow. There are 256 different profiles
in a frame manager that may be organized in per port windows. Some profiles may be shared between ports on the same PCD.
By default, the number of shared profiles is set by the driver, but the user can also configure it to a different value. Shared profiles
are typically used for aggregation.

When a PCD is defined in a single partition environment, it is the owner of all 256 profiles. When a PCD is defined in a multipartition
environment, it is the owner of its shared profiles along with all the profiles that will be allocated per port for ports on this partition.
The user must explicitly allocate per-port profiles for each port (if required), after PCD is initialized and prior to the profile
initialization. Note that per-port profiles are the only PCD resource that is explicitly allocated and initialized for a specific port.

After profiles are mapped, the user may initialize each of the profiles by stating the following:

• Type

— Shared

— Per-port

• Offset relative to the port or to the shared group of profiles

• Characteristics

Once initialized, a handle is assigned to the profile for later use.

The Policer may be used after the Parser, Keygen or Custom Classifier, or solely - without activating any of the other PCD engines.
It is not dependant on any previous output such as parser result. The policer may be used more than once in a frame flow. The
next action after a police profile is either to pass the frame to a direct Keygen scheme for a new distribution (typically for control
frames coming from the Custom Classifier), to pass the frame to another profile (always a shared profile, typically an aggregators),
or to enqueue the frame to an FQID.

When other engines select a policer profile as the next engine, its handle must be passed. An exception is when a per-port profile
is specified as the next engine of a scheme or of a "overrideParams" CC key. In these cases a port-relative index is required
instead. The reason for this is that the required Policer Profile may not be initialized at this stage and hence have no handle. This
irregular behavior is because CC Roots and KG schemes may be shared by ports, and at the time of scheme/root initialization,
they are not yet bound to specific ports. In this context, the profile selected may in fact be uninitialized and therefore can't be
verified by the driver. It is therefor user's responsibility to make sure it is set prior to port- PCD binding.

Runtime Modifications: Valid profiles may be modified at runtime by calling the profile initialization routine for an existing profile,
passing the profile handle as retuned by the original initialization routine, and specifying modify (instead of the profile's relative
id). New profiles may be set and unused profiles may be deleted anytime.

Available API:

• FM_PCD_PlcrProfileSet

• FM_PCD_DeleteProfilePlcr

4.2.8.1.5.2.7.2.3.11 PCD Organization

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 281

By initializing PCD resources, the user creates a directed graph in which the parser is the source of the graph and the FQIDs are
its endpoints. Following figure shows a generalized example of a basic PCD graph.

Figure 68. PCD Organization

4.2.8.1.5.2.7.2.3.12 PCD Definition Sequence

When a PCD graph is defined, its resources must be initialized bottom up when there's a dependency between them. Following
figure shows the order of initialization (starting at the top of the figure) in a specific sequence.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
282 NXP Semiconductors

Order

Next engine

Maybe done up
to this time
point

Set port
profile 0

Set port
profile 1

Alloc port
profiles

Set
Direct
Scheme
3

Set Network
environment

Build
Tree

Port-PCD Bind

Set
Direct
Scheme
4

Set
Direct
Scheme
5

Set port
profile 2

Set port
profile 3

Set port
profile 4

Set
node
0

Set
node
1

Set
node
2

Set
Scheme
0

Set
Scheme
1

Set
Scheme
2

Set shared
profile 0

Figure 69. Definition Sequence

4.2.8.1.5.2.7.2.3.13 Host Command

Some PCD functionalities may be managed by either memory-mapped registers or by the host command mechanism to allow
independent programming in a multipartition environment. In a single partition environment in the FMan driver, the host command
mechanism is optionally used, but in a multipartition environment, wherever available, only the host command is used to prevent
a risk of racing. The host command driver is a part of the PCD driver and is initialized internally by the driver, using user parameters.

When PCD is first initialized in a single-partition environment, the user must specify whether the host command should be used,
and if so, host command parameters are required. In a multipartition environment, the use of the host command is forced and all
host command parameters are required. When PCD initialization routine is called by the master/single partition driver, the user
parameters include host command port parameters (such as port id, virtual address, and default queues) and the FMan Port for
the host command is internally initialized.

4.2.8.1.5.2.7.2.3.14 PCD Statistics

The FMan PCD API provides access to all the statistics gathered by the FMan PCD engines hardware. Statistics is enabled by
default but may be disabled/enabled at runtime using the dedicated API.

The following API routines may be called at any time after initialization to retrieve any of the following FMan PCD counters:

• FM_PCD_GetCounter

• FM_PCD_KgSchemeGetCounter

• FM_PCD_PlcrProfileGetCounter

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 283

4.2.8.1.5.2.7.2.3.14.1 Custom Classifier Statistics

A CC node supports statistics gathering on per-key basis. In order to enable statistics gathering by a CC node (Match table or
Hash table), statistics mode must be provided upon initialization of that node and this will determine the statistics mode for all
keys of the CC node.

Next, statistics should be enabled per-key, meaning statistics should be enabled for every key that the user wishes to monitor.

After these steps, the following API routines may be called to retrieve the statistics:

• FM_PCD_MatchTableGetKeyCounter

• FM_PCD_MatchTableGetKeyStatistics

• FM_PCD_MatchTableFindNGetKeyStatistics

• FM_PCD_HashTableFindNGetKeyStatistics

4.2.8.1.5.2.8 FMan Port Driver
The FMan Port driver module refers to the per-port features of the FMan, including port configuration and initialization, runtime
functionalities and PCD binding.

4.2.8.1.5.2.8.1 FMan Port Hardware Overview

The FMan hardware supports a SoC dependent number of inline and offline FMan Ports of the following types:

• 1G Rx Ports

• 1G Tx Ports

• 10G Rx Ports (may be eliminated on some SoCs)

• 10G Tx Ports

• Offline/Host-command ports

Port configuration is controlled through a set of per-port, type-dependent memory mapped registers. I.e. Each port has its own
memory map area. In addition, some FMan common registers also effect port behavior - for example, global resources such as
tasks number are declared in the common registers are.

4.2.8.1.5.2.8.1.1 FMan Port Driver Software Abstraction

The FMan Port module is an independent module. On port configuration, the user selects the type and the mode of each port
(Tx/Rx, 1G/10G, online/offline/Host command, regular/independent), and specifies the port index relative to its type. This index
is not related to the hardware port id as described in the hardware spec.

The driver provides abstraction to the common/private division of registers location in the memory map. i.e. all registers that are
logically relevant to the port are handled by the FMan Port driver, even if they physically belong to the common FMan memory
map.

4.2.8.1.5.2.8.2 How to use the FMan Port Driver?

The following sections provide practical information for using the software drivers.

4.2.8.1.5.2.8.2.1 FMan Port Driver Scope

• FMan Port hardware structures configuration and enablement

• Resource allocation and management

• FMan port types support

• Offline-Parsing ports

• Independent-Mode

• Simple BMI-to-BMI (regular) mode

• PCD Binding

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
284 NXP Semiconductors

• Rate limiting

• Interrupt handling

• Statistics support

4.2.8.1.5.2.8.2.2 FMan Port Driver Sequence

• FMan Port Config routine

• [Optional] FMan Port advance configuration routines

• FMan Port Init routine

• FMan Port runtime routines

• FMan Port Free routine

4.2.8.1.5.2.8.2.3 FMan Port Driver Functional Description

The following sections describe main driver functionalities and their usage.

4.2.8.1.5.2.8.2.3.1 FMan Port Configuration and Initialization

On FMan Port driver initialization, the software configures all FMan Port registers. It supplies default values where no other values
are specified, it enables hardware mechanisms and initializes software data structures for software management.

By the time initialization is done, FMan is ready to be used and any of the FMan sub-modules (FMan-Ports, MAC's etc.) may be
initialized.

4.2.8.1.5.2.8.2.3.2 FMan Port Types

The driver provides API for the initialization of the following port types/modes:

• Tx 1G port

• Tx 1G port - independent mode

• Rx 1G port

• Rx 1G port - independent mode

• Tx 10G port

• Tx 10G port - independent mode

• Rx 10G port

• Rx 10G port - independent mode

• Offline Parsing Port

The driver also holds a single host-command port internally when mandatory (multi-partition environments) or when user explicitly
requires it.

4.2.8.1.5.2.8.2.3.3 Independent-Mode

Dpaa-im is an Ethernet driver using Dpaa to implement in independent mode.

Dependence:

1. All the DPAA drivers in kernel have conflict with dpaa-im, should be disabled in kernel configuration file, the list as below:

CONFIG_FSL_SDK_DPA

CONFIG_FSL_SDK_FMAN

CONFIG_FSL_SDK_DPAA_ETH

CONFIG_FSL_DPAA

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 285

CONFIG_FSL_FMAN

CONFIG_FSL_DPAA_ETH

2. linux should be built before building dpaa-im

3. dpaa-im is based on dash-lts 1812 release for linux-4.9 and linux-4.14

Building

To build dpaa-im as a module

cd dpaa-im

make build KERNEL_DIR=<path-to-linux> ARCH=arm64 CROSS_COMPILE=<arm64-toolchain>

e.g. make build KERNEL_DIR=~/linux ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

after building, you will see module file "dpaa_eth_im.ko"

In addition, use "make clean KERNEL_DIR=<path-to-linux> ARCH=arm64 CROSS_COMPILE=<arm64-toolchain>" to clean

Using

1. Fman firmware should be loaded in uboot.

2. boot up linux

3. In linux, run command "insmod dpaa_eth_im.ko", kernel will print:

[0.535089] fman_im: QorIQ FMAN Independent Mode Ethernet Driver load ed

[0.541782] DEV: FM1@DTSEC3, DTS Node: fsl,dpaa:ethernet@6

4. run command "ifconfig -a", dpaa-im ethernet(FM1@DTSEC3) could be saw, then use it as normal ethernet.

FM1@DTSEC3 Link encap:Ethernet HWaddr 00:e0:0c:00:77:00

BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

4.2.8.1.5.2.8.2.3.4 Resource Management

FMan Port related resources (TNUMs, DMAs, FIFOs, etc.)- These resources are used by the BMI. The driver selects default
values for these resources but they may be need some tuning depending on the specific application, based on the total number
of ports used and the performance requirements of the system. The driver provides an API routine
FM_PORT_AnalyzePerformanceParams that uses performance monitoring mechanism in order to see the resources utilization at
runtime.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
286 NXP Semiconductors

The FMan Port driver allocates its resources by calling the FMan "front-end" driver. The FMan "front-end" allocates the resources
by calling the "back-end" through IPC if its in guest-mode or through direct call if its not in master-mode. The port driver does not
access those resources at run-time; the resources are being used only by the hardware of a port.

PCD related resources (Keygen-schemes, policer-profiles, etc.)-During the initialization of the FMan-PCD driver on each partition,
the driver allocates all the required resources (configurable by the user) through IPC call to the "back-end" driver. From that point,
all the resources are being handled locally on the partition. Note, that all access to these resources are still done through host-
command and that assures proper synchronization between different partitions (i.e. one can access these resources by mistake
from a different partition in the system).

PCD Custom-Classifier tables-The CC tables are being allocated on the MURAM memory. This means that upon initialization of
this partition, piece of MURAM should be allocated to the partition (according to how much the partition requires). From that point,
the local PCD driver will manage the MURAM allocation by itself.

4.2.8.1.5.2.8.2.3.5 Rate Limiting

The driver supports the hardware mechanism of rate limiting for Tx ports. The runtime API consists of a number of parameters
including a definition of the required rate (in KB/sec for Tx ports, in frame/sec for offline parsing ports) and refers to data rate
rather than line-rate.

4.2.8.1.5.2.8.2.3.6 Simple BMI-to-BMI (regular) mode

This is the default FMan Rx/Offline Parsing Port mode. After Port initialization and prior to Port-PCD binding, all traffic will be
received on the default Rx queue. This mode is called "BMI-To-BMI" as no PCD is involved in the data reception.

This mode is useful for the early state of a port as well as when major runtime PCD modification takes place. In such a case,
sometimes the whole PCD functionality needs to be manipulated and the user should temporarily detach the Port from the PCD,
receive all frames on the default Rx queue and only re-attach it to the PCD after the modifications have completed.

4.2.8.1.5.2.8.2.3.7 Port LIODN

An FMan Port LIODN is constructed out of a base and offset.

Upon FMan Port configuration, the user must specify the port's base LIODN.

For Rx ports, the user must also specify the LIODN offset for each port. No such configuration is required for Tx and Offline Parsing
ports since on transmission, the offset LIODN is taken from the frames' FD. The FD is set according to the source of the frame -
if transmitted by CPU, it is dynamically set by the QM SW portal. Another scenario is frames forwarded by other engines, in such
a case their FD must contain the correct LIODN offset.

4.2.8.1.5.2.8.2.3.8 Port-PCD Binding

Ports may be linked to the PCD graph according to their PCD binding specifications and considering partition and Network
Environment restrictions.

Following figure shows a schematic demonstration of possible port > PCD binding.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 287

Figure 70. Port-To-PCD binding example

Once a set of PCD resources is set and organized as described above, a port may be bound to all or some of the resources by
calling the FM_PORT_SetPCD routine. This routine, is referred to as the Port-PCD bind routine. It accepts a set of parameters that
specify the PCD resources used by the port, configures PCD related parameters in the port, and bounds PCD resources to the
port. The FM_PORT_DeletePCD should be called when the port no longer needs the configured PCD functionality. This action is
referred to as Port-PCD unbinding.

Another possible action that affects the Port-PCD relationship is calling FM_PORT_DettachPCD for a port that is bound to PCD.
This causes the port to stop using the PCD functionalities, which results in all frames being passed to the default FQID. Note that
calling FM_PORT_DeletePCD unbinds the port from the PCD functionalities by removing the connections, while

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
288 NXP Semiconductors

FM_PORT_DetachPCD does not remove them but only causes the port to stop using them. To return to using the PCD,
FM_PORT_AttachPCD should be called.

Certain runtime modifications may not be done directly, but require either the unbinding of PCD functionalities or PCD detaching.
This should be done by calling the required delete/detach routines, making the desired changes, and calling set or attach to return
to using the PCD. These actions will be referred to as resetting/detaching the Port-PCD. In the time between the calls of the two
routines, the port continues to work, but its PCD functionalities are disabled. In both cases, all frames arriving at this time are
enqueued to the default receive queue.

In the sections below, the relationship between the port and each of the PCD resources will be explained in terms of initialization
and runtime modifications.

General

The port-PCD binding affects the flow of received frames on that port in terms of PCD functionality. The user must first define the
general PCD for the port, using the following enumeration types, which define the superset of engines that may be used.

• e_FM_PORT_PCD_SUPPORT_PRS_ONLY (Use only Parser)

• e_FM_PORT_PCD_SUPPORT_PLCR_ONLY (Use only Policer)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_PLCR (Use Parser and Policer)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG (Use Parser and Keygen)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_CC (Use Parser, Keygen and Custom Classifier)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_CC_AND_PLCR (Use all PCD engines)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_PLCR (Use Parser, Keygen and Policer)

Runtime Modifications: The engines set may be changed at runtime only by resetting the Port-PCD.

Available General Port API:

• FM_PORT_SetPCD

• FM_PORT_DeletePCD

Network Environment

When calling the Port-PCD binding routine, the user must specify a single NetEnv by passing its handle. This setting is used for
the port parser and affects the PCD behavior.

Runtime Modifications: The NetEnv may not be modified at runtime. If the port requires a change of its NetEnv, it must first
reset its Port-PCD connection, than use the PCD routines to do the required changes, and than re-connect to the PCD.

Parser

The hardware parser port configuration is taken directly from the NetEnv specified for the port. Other parsing configurations are
explicitly defined by the user at the parameter's structure.

The software parser may be used on a per-port-per-header basis. When PCD is set per port, there is an option in the parser
parameters to choose additional parameters per header. One of the optional per-header additional parameters is to enable the
software parser for that header. When set, an index should be declared to select the software parser code. The header and index
must be specified in the labels' table of the software parser code that was loaded on PCD initialization. Software parser enablement
may be done for as many headers as required.

Runtime Modifications: Only the starting point of the parser may be changed on the fly. Any other changes require PCD resetting.

Available Port API:

• FM_PORT_PcdPrsModifyStartOffset

Keygen Schemes

In order for a port to use Keygen schemes, the port must be bound to those resources. The port may be bound to any number of
schemes. At the port bind routine, the user passes a list of scheme handles, as returned by the server at scheme setting, for
binding to the port. At least one scheme must be specified. All specified schemes must be valid at that time. If the initial scheme

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 289

after the parser is used directly without using the match criteria, its id should be passed as one of the parameters to the Port-PCD
binding routine.

Runtime Modifications: During runtime, new schemes may be set and then bound to an existing enabled port or existing
schemes may be modified. Schemes that are not required by the port may be unbound. Note that when modifying existing
schemes, all ports bound to those schemes are affected. If specific schemes are not required anymore, they must first be unbound
from the port. If no other port is using them, they may be deleted. The selection of the initial scheme after parser (from direct to
indirect and vice versa) may be also changed at runtime.

Available Port API:

• FM_PORT_PcdKgBindScheme

• FM_PORT_PcdKgUnbindScheme

• FM_PORT_PcdKgModifyInitialScheme

Custom Classifier graphs

If a port is using the Custom Classifier graph, an initialized Custom Classifier Root handle (as returned by the RootBuild routine)
must be passed when calling the port bind routine.

Runtime Modifications: The CC graph (as well as the CC Root) itself may be modified at runtime, but ports binding to a CC
Root may be changed only by detaching and than re-attaching the Port-PCD.

• FM_PORT_PcdCcModifyTree

Policer Profiles

Before any port profile is set, the profile allocation routine must be called to bind the port to the policer profile. This is required as
the port's binding to the policer profile is not done using the port bind routine. It is only then that per-port profiles may be set, and
the port bind routine is subsequently called. If Keygen or parser are not used (i.e. policer is reached directly after parser or from
BMI), the port bind routine parameters must specify which policer profile is used (otherwise, no policer parameters are required).

Runtime Modifications: The initial profile selection may be changed during runtime. All profiles allocated to a port are in fact
bound to this port, so no runtime binding/unbinding is possible. Uninitialized port profiles (profiles that were allocated for this port
but not used) may also be set during runtime, or existing profiles may be modified. If specific profiles are not required anymore,
they may be deleted. If a change in port profile allocation is required, follow the steps given below to reset the Port-PCD:

1. Port-PCD deleted

2. Profiles deleted and freed

3. New profiles allocated and set

4. Port-PCD set

Available Port API:

• FM_PORT_PcdPlcrModifyInitialProfile

• FM_PORT_PcdPlcrFreeProfiles

• FM_PORT_PcdPlcrAllocProfiles

4.2.8.1.5.2.8.2.3.9 Port-PCD Binding Changes

There are three levels of Port-PCD binding changes:

• Basic Runtime Modifications-May be invoked while PCD is active and on enabled ports using PCD.

— Port routines responsible for binding/unbinding to/from the modified resources.

◦ FM_PORT_PcdKgBindScheme

◦ FM_PORT_PcdKgUnbindScheme

— Port routines responsible for PCD change of behavior.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
290 NXP Semiconductors

◦ FM_PORT_PcdKgModifyInitialScheme

◦ FM_PORT_PcdPlcrModifyInitialProfile

◦ FM_PORT_PcdPrsModifyStartOfset

• Port-PCD Detach Runtime Modifications-For changes that require detaching the Port-PCD connection:

— FM_PORT_PcdCcModifyTree

For these modifications, take the following steps:

◦ Detach the port from its PCD resources by calling the Detach PCD routine (FM_PORT_DettachPCD). After this
action, the port continues to work enqueueing all frames to the default receive FQID.

◦ Call one of the two routines above.

◦ Re-attach port to PCD resources by recalling the set PCD routine (FM_PORT_AttachPCD).

• Port-PCD Reset Runtime Modifications-For changes that require resetting of the port-PCD binding.

The following steps should be taken for any modification that is not listed under the last two items:

— Unbind port from its PCD resources by calling the delete PCD routine (FM_PORT_DeletePCD). After this action the port
will continue to work, enqueueing all frames to the default receive FQID.

— Modify PCD resources-optional. The change may be only in the binding of the port and not on the resources. Note
that the freeing and deleting of resources, and then allocating and setting resources, must be orderly, in the same
manner as for initial PCD setting and final PCD deleting.

— Bind port to PCD resources by recalling the set PCD routine (FM_PORT_DeletePCD)

All PCD routines listed above may be used for deleting and setting PCD resources. The following two routines below are used if
a change of port profiles window is required (Other PORT routines are not needed as binding is done using SetPCD routine.):

• FM_PORT_PcdPlcrFreeProfiles

• FM_PORT_PcdPlcrAllocProfiles

4.2.8.1.5.2.9 FMan MAC Driver
The FMan MAC driver module refers to the FMan MAC controller functionalities including configuration and initialization as well
as runtime and control.

4.2.8.1.5.2.9.1 FMan MAC Hardware Overview

The FMan hardware supports one or two kinds of MAC controllers - depending on SoC. All SoCs support three-speed Ethernet
controller (dTSEC) interfaces to 10 Mbps, 100 Mbps, and 1 Gbps Ethernet/IEEE 802.3 networks which interfaces the media
through external phy or SerDes device. Some SoCs also support 10 Gigabit Ethernet media access controller (10GEC) which
interfaces to 10 Gbps Ethernet/IEEE 802.3ae networks via XAUI using the high-speed SerDes interface.

4.2.8.1.5.2.9.1.1 FMan MAC Software Abstraction

The driver provides a unique API serving both interfaces. If user tries to configure features that are supported only by one of the
interfaces, an "unsupported" message will be displayed.

4.2.8.1.5.2.9.2 How To Use The FMan MAC Driver?

The following sections provide practical information for using the software drivers.

4.2.8.1.5.2.9.2.1 FMan MAC Driver Scope

This module represents the FMan MAC. It includes:

• FMan MAC hardware structures configuration and enablement

• FMan MAC controller runtime support

• PTP IEEE 1588 support

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 291

• MAC hash addressing

• Interrupt handling

• Statistics support

4.2.8.1.5.2.9.2.2 FMan MAC Driver Sequence

• FMan MAC Config routine

• [Optional] FMan MAC advance configuration routines

• FMan MAC Init routine

• FMan MAC runtime routines

• FMan MAC Free routine

4.2.8.1.5.2.9.2.3 FMan MAC Driver Functional Description

The following sections describe main driver functionalities and their usage.

4.2.8.1.5.2.9.2.3.1 FMan MAC Configuration and Initialization

On FMan MAC driver initialization, the software configures all FMan MAC registers. If required, MAC may be reset at that time.
The driver supplies default values where no other values are specified, it defines IRQ's and sets IRQ handles. It enables hardware
mechanisms and initializes software data structures for software management.

By the time initialization is done, FMan MAC is ready to be used and the relative FMan Ports may be initialized.

4.2.8.1.5.2.9.2.3.2 FMan MAC Addressing

On MAC initialization, the user must define a single MAC address. During runtime, the driver provides API for modifying this
address and adding other addresses (depending on the specific MAC hardware support).

In addition, the driver supports the addition and removal of addresses to the MAC hash mechanism.

4.2.8.1.5.2.9.2.3.3 IEEE1588 Support

The driver provides the API to support the hardware IEEE1588 time-stamping. In order to use this feature, the user must first
initialize the FM-RTC module

4.2.8.1.5.2.9.2.3.4 MAC Statistics

The driver provides statistics gathering support for all the standard (MIB) counters. For some controllers, it is necessary to use
an interrupt driven mechanism for accounting for counters overflow and in order to keep track on the accurate counters. This
mechanism may have some influence on performance, and therefor the driver supports statistics gathering in 3 levels:

• Full statistics-provides all standard counters but may reduce performance.

• Partial statistics-provides only special event counters (errors etc.). If selected, regular counters (such as byte/packet) will
be invalid and will return -1.

• No statistics gathering.

4.2.8.1.5.2.10 FMan RTC (IEEE 1588) Driver
The FMan RTC driver module refers to the software support provided for the IEEE 1588 hardware of the FMan.

4.2.8.1.5.2.10.1 FMan RTC Hardware Overview

The 1588 timer module interfaces to up to four 10/100/1000 or one 10G Ethernet MACs, providing current time, 2 alarms, and 2
fiper periodic pulse generators.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
292 NXP Semiconductors

4.2.8.1.5.2.10.2 How To Use The RTC Driver?

The following sections provide practical information for using the software drivers.

4.2.8.1.5.2.10.2.1 RTC Driver Scope

This module represents the FMan 1588 driver. It includes:

• IEEE 1588 hardware configuration and enablement

• Support for alarm mechanism

• Support for periodic pulse

• Support for external trigger

• Runtime compensation tuning

• Interrupt handling

4.2.8.1.5.2.10.2.2 RTC Driver Sequence

• FMan RTC Config routine

• [Optional] FMan RTC advance configuration routines

• FMan RTC Init routine

• FMan RTC Enable routine

• FMan RTC runtime routines

• FMan RTC Free routine

4.2.8.1.5.2.10.2.3 RTC Driver Functional Description

The following sections describe main driver functionalities and their usage.

4.2.8.1.5.2.10.2.3.1 FMan RTC 1588 module utilization

The driver API provides interface to the 1588 hardware module. It initializes its registers to define the clock period and it supports
the definition of the alarms and periodic pulses. Note that When setting periodic pulse, the RTC module must be disabled.

4.2.8.1.5.2.10.2.3.2 Utilizing IEEE1588 for MAC frames time stamping

Several FMan driver modules are involved in having the 1588 time stamping functionality activated: FMan-RTC, FMan-MAC,
FMan-Port and FMan-PCD.

The initialization sequence is as described below:

After the Frame Manager is initialized, the FMan-RTC needs to be initialized by calling (with the appropriate parameters):

• FM_RTC_Config

• FM_RTC_Init

From this point and on all the Ethernet frames are time-stamped. In order to obtain the timestamp, during the FMan Port
configuration, the user must call the advance config routine:

• FM_PORT_ConfigBufferPrefixContent (with 'passTimeStamp' parameter set).

At run-time, for each received/confirmed frame, the user should call the following routine, passing it the frame's data pointer:

• FM_PORT_GetBufferTimeStamp

The routine will return the pointer to the time stamp.

4.2.8.1.5.2.10.2.3.3 Utilizing IEEE1588 for PTP

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 293

The sequence described in the previous section causes all the frames that are being received or transmitted by FMan to be time-
stamped. However, if the user wants to distinguish PTP frames from other frames on a specific port, PCD rules need to be applied
on the PCD graph for this port; i.e using the parser to recognize the PTP frame and then using an appropriate scheme to distinguish
PTP frames and route them to the desired destination queues.

4.2.8.1.5.2.11 FMan MURAM Driver
The FMan MURAM driver module refers to the memory management of the FMan Multi User RAM.

4.2.8.1.5.2.11.1 FMan MURAM Hardware Overview

The MURAM is the internal memory of the FMan.

4.2.8.1.5.2.11.1.1 FMan MURAM Driver Software Abstraction

The FMan MURAM driver is a memory manager that allows partitioning of the MURAM. Upon initialization the user receives a
handle that may be used by other modules in order to allocate and de-allocate memory blocks out of that MURAM partition.

4.2.8.1.5.2.11.2 How To Use The FMan MURAM Driver?

The following sections provide practical information for using the software drivers.

4.2.8.1.5.2.11.2.1 FMan MURAM Driver Scope

This module manages the FMan MURAM. It includes MURAM allocation and de-allocation of different sizes of required memory
blocks.

4.2.8.1.5.2.11.2.2 FMan MURAM Driver Sequence

• FMan MURAM config and init routine

• FMan MURAM allot and free runtime routines

• FMan MURAM free routine

4.2.8.1.5.2.11.2.3 FMan MURAM Driver Functional Description

The FMan MURAM drivers supports MURAM memory blocks allocation and de-allocation. After initializing an MURAM partition,
the user is normally required to pass its handle to other FMan driver modules. In this way, these modules may allocate and de-
allocate memory blocks from this partition.

4.2.8.1.5.2.12 Supported Network Protocols
The following sections show the protocols that may be selected when defining NetEnv characteristics.

4.2.8.1.5.2.12.1 L2 Protocols

The following list shows the L2 protocols:

• HEADER_TYPE_ETH, with the following two options

— ETH_BROADCAST

— ETH_MULTICAST

• HEADER_TYPE_VLAN, with the following option

— VLAN_STACKED

• HEADER_TYPE_MPLS, with the following option

— MPLS_STACKED

• HEADER_TYPE_PPPoE

• HEADER_TYPE_LLC_SNAP

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
294 NXP Semiconductors

4.2.8.1.5.2.12.2 L3 Protocols

The following list shows the L3 protocols:

• HEADER_TYPE_IPV4, with the following options

— IPV4_BROADCAST_1

— IPV4_MULTICAST_1

— IPV4_UNICAST_2

— IPV4_MULTICAST_BROADCAST_2

— IPV4_FRAG_1

• HEADER_TYPE_IPV6, with the following options

— IPV6_MULTICAST_1

— IPV6_UNICAST_2

— IPV6_MULTICAST_2

— IPV6_FRAG_1

• HEADER_TYPE_GRE

• HEADER_TYPE_MINENCAP

• HEADER_TYPE_USER_DEFINED_L3

4.2.8.1.5.2.12.3 L4 Protocols

The following list shows the L4 protocols:

• HEADER_TYPE_TCP

• HEADER_TYPE_UDP

• HEADER_TYPE_SCTP

• HEADER_TYPE_DCCP

• HEADER_TYPE_IPSEC_AH

• HEADER_TYPE_IPSEC_ESP

• HEADER_TYPE_USER_DEFINED_L4

4.2.8.1.5.2.12.4 Private Headers

• HEADER_TYPE_USER_DEFINED_SHIM1

• HEADER_TYPE_USER_DEFINED_SHIM2

4.2.8.1.5.2.12.5 Fields Supported By Driver for Keygen Extraction

Fields supported as "full fields":

• HEADER_TYPE_ETH

— NET_HEADER_FIELD_ETH_DA

— NET_HEADER_FIELD_ETH_SA

— NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_LLC_SNAP

— NET_HEADER_FIELD_LLC_SNAP_TYPE

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 295

• HEADER_TYPE_VLAN

— NET_HEADER_FIELD_VLAN_TCI

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_MPLS

— NET_HEADER_FIELD_MPLS_LABEL_STACK

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2,

◦ e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv4

— NET_HEADER_FIELD_IPv4_SRC_IP

— NET_HEADER_FIELD_IPv4_DST_IP

— NET_HEADER_FIELD_IPv4_PROTO

— NET_HEADER_FIELD_IPv4_TOS

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv6

— NET_HEADER_FIELD_IPv6_SRC_IP

— NET_HEADER_FIELD_IPv6_DST_IP

— NET_HEADER_FIELD_IPv6_NEXT_HDR

— NET_HEADER_FIELD_IPv6_VER | NET_HEADER_FIELD_IPv6_FL | NET_HEADER_FIELD_IPv6_TC (must come
together!)

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IP

— NET_HEADER_FIELD_IP_PROTO

(index may apply:

◦ e_FM_PCD_HDR_INDEX_LAST)

— NET_HEADER_FIELD_IP_DCSP

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1)

• HEADER_TYPE_GRE

— NET_HEADER_FIELD_GRE_TYPE

• HEADER_TYPE_ETH

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
296 NXP Semiconductors

— NET_HEADER_FIELD_ETH_DA

— NET_HEADER_FIELD_ETH_SA

— NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_MINENCAP

— NET_HEADER_FIELD_MINENCAP_SRC_IP

— NET_HEADER_FIELD_MINENCAP_DST_IP

— NET_HEADER_FIELD_MINENCAP_TYPE

• HEADER_TYPE_TCP

— NET_HEADER_FIELD_TCP_PORT_SRC

— NET_HEADER_FIELD_TCP_PORT_DST

— NET_HEADER_FIELD_TCP_FLAGS

• HEADER_TYPE_UDP

— NET_HEADER_FIELD_UDP_PORT_SRC

— NET_HEADER_FIELD_UDP_PORT_DST

• HEADER_TYPE_UDP_LITE (relevant only if FM_CAPWAP_SUPPORT define)

— NET_HEADER_FIELD_UDP_LITE_PORT_SRC

— NET_HEADER_FIELD_UDP_LITE_PORT_DST

• HEADER_TYPE_IPSEC_AH

— NET_HEADER_FIELD_IPSEC_AH_SPI

— NET_HEADER_FIELD_IPSEC_AH_NH

• HEADER_TYPE_IPSEC_ESP

— NET_HEADER_FIELD_IPSEC_ESP_SPI

• HEADER_TYPE_SCTP

— NET_HEADER_FIELD_SCTP_PORT_SRC

— NET_HEADER_FIELD_SCTP_PORT_DST

• HEADER_TYPE_DCCP

— NET_HEADER_FIELD_DCCP_PORT_SRC

— NET_HEADER_FIELD_DCCP_PORT_DST

• HEADER_TYPE_PPPoE

— NET_HEADER_FIELD_PPPoE_PID

— NET_HEADER_FIELD_PPPoE_SID

Fields supported as "from fields":

• HEADER_TYPE_ETH (with or without validation):

— NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_VLAN (with or without validation):

— NET_HEADER_FIELD_VLAN_TCI

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 297

◦ e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv4 (without validation):

— NET_HEADER_FIELD_IPv4_PROTO

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv6 (without validation):

— NET_HEADER_FIELD_IPv6_NEXT_HDR

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

4.2.8.1.6 Frame Manager Configuration Tool User's Guide

4.2.8.1.6.1 Introduction
The Frame Manager (FMan) is part of NXP's Data Path Acceleration Architecture (DPAA), a set of logical blocks that lets multiple
processors (cores) interact with multiple network interfaces and accelerators with low software overhead.

The Frame Manager Configuration Tool (FMC Tool) is a command-line program that converts Parse-Classify-Police-Distribute
(PCD) descriptions of network packet flows into hardware configuration code for the FMan's KeyGen, Controller, and Policer
functions.

The tool provides an abstraction layer: You define your application's PCD requirements in a high-level, XML markup language
(NetPDL with NXP extensions). The tool translates these definitions into code that initializes the FMan's registers and data
structures. This abstraction makes learning low-level hardware details unnecessary, allows new users to be productive more
quickly, and simplifies the programming task for everyone.

4.2.8.1.6.2 FMC Tool Features
The FMC Tool can analyze input NetPDL and NetPCD XML files that define the parse, classify, police, and distribute behavior
your application requires. The tool can then:

• Passes this information directly to the FMan by calling the appropriate FMan driver API functions. (See FMC Tool -
Runtime Environment Mode on page 299.)

• Generate C source files containing this information that you can include in your application. (See FMC Tool - Host Mode
on page 300.)

In more detail, the FMC Tool can perform the tasks listed below. The particular actions taken depend upon your application's
requirements.

• Define the protocol stack

• Define a soft header examination sequence

• Configure the Policer sub block

• Configure frame distribution by defining how frames are assigned to particular frame queues

• Call hardware drivers to execute the current configuration

• Directly configure the FMan by executing on a target running embedded Linux (See FMC Tool - Runtime Environment
Mode on page 299.)

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
298 NXP Semiconductors

• Indirectly configure the FMan by executing on a Linux or Windows host by generating C source code that configures the
FMan. You include this code in your application. (See FMC Tool - Host Mode on page 300.)

4.2.8.1.6.3 FMC Tool Components and Packaging
The FMC Tool package contains these files:

• Host version of FMC Tool for desktop versions of Linux and Windows

• FMC Tool application for embedded Linux

• NetPDL file containing a description of each standard network protocol that the FMan's Hard Parser supports. This file is
named hxs_pdl_v3.xml and is in the directory /etc/fmc/config/.

For detailed information on NetPDL, go to http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/

NetPDLCore.htm.

For documentation of NXP's customized version of NetPDL, see NXP NetPDL Reference on page 317.

 NOTE

4.2.8.1.6.4 FMC Tool - Runtime Environment Mode
In runtime environment mode, you run the FMC Tool on a target board from the Linux command line, passing several configuration
files as arguments. The tool then calls the FMan Driver API functions required to configure the FMan block as specified in the
supplied files.

When used in this way, the FMC Tool directly configures the FMan. In more detail, the FMC Tool passes the configuration it finds
in its input files (along with compiled Soft Parser firmware) to the FMan driver which, in turn, modifies the FMan's configuration.

Note: The FMC Tool does not support dynamic FMan configuration; you can use the tool to configure the FMan just once, typically
at application initialization.

As Figure 71. on page 300shows, you pass these files to the FMC Tool as command-line arguments:

• Standard Protocol file - Optional; included in LSDK; see Standard Protocol File on page 303 for more information.

• Custom Protocol file - Optional; user written; see Custom Protocol File on page 304 for more information.

• Policy file - Required; user written; see Policy file on page 305 for more information.

• Configuration file - Required; user written; see Configuration File on page 317 for more information.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 299

http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm
http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm

FMC policy (PCD)
definition
source file
(required)

FMC
configuration

source file
(required)

FMC custom
protocol definition

source file
(optional)

FMC standard
protocol definition

source file
(included in SDK)

(optional)

FMC Tool

User space API

FM high level driver (Linux)

FM Low level driver FM PCD FM Common

FM MURAM FM MAC FM Port

Kernel

User
IOCTL Calls

Figure 71. FMC Tool, Runtime Environment - Input XML Files / FMan Driver API Calls

See FMC Tool Command-Line Arguments on page 302 for documentation of each of the tool's command-line arguments.

Note: You should configure the FMan before you enable your Rx/Tx ports to send/receive traffic. If you do not, the FMan uses
the default Rx and default Tx frame queues.

4.2.8.1.6.5 FMC Tool - Host Mode
In addition to running on a target board, the FMC Tool can execute on a host computer running Linux or Windows. When run on
a host, the FMC Tool accepts the same input files as in runtime environment mode.

However, in host mode, the FMC Tool generates C source code files. This code calls the FMan driver functions required to
implement the rules defined in the supplied input files. You can compile and link these files to produce a standalone executable
that you can run by itself, or you can add them to your application.

Note: The FMC Tool does not support dynamic FMan configuration; you can use the tool to configure the FMan just once, typically
at application initialization.

As Figure 72. on page 301 shows, in host mode, the FMC Tool generates C source code files from the input files listed below.
(See Host Mode Output - C Source Code Files on page 301 for more information.)

• Standard Protocol File - Optional; included in LSDK; see Standard Protocol File on page 303 for more information.

• Custom Protocol File - Optional; user written; see Custom Protocol File on page 304 for more information.

• Policy File - Required; user written; see Policy file on page 305 for more information.

• Configuration File - Required; user written; see Configuration File on page 317 for more information.

You pass these files to the FMC Tool as command-line arguments.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
300 NXP Semiconductors

FMC policy (PCD)
definition
source file
(required)

FMC
configuration

source file
(required)

FMC custom
protocol definition

source file
(optional)

FMC standard
protocol definition

source file
(included in SDK)

(optional)

FMC Tool

fmc_config_data.c softparse.h

Figure 72. FMC Tool, Host Mode - Input XML Files / Generated C Source Code Files

See FMC Tool Command-Line Arguments on page 302 for documentation of each of the tool's command-line arguments.

4.2.8.1.6.5.1 Host Mode Output - C Source Code Files
When run in host mode, the FMC Tool generates C language source code files that make calls to FMan Driver API functions.
These calls implement the behavior defined in the Configuration file, Policy file, and (optionally) Custom Protocol file passed to
the tool from the command line. Typically, you include these source files in your project, so they are compiled and linked into your
application binary. As a result, when you run your application, it automatically sets up the FMan to behave as required.

In more detail:

• When you supply a Policy file and a Configuration file, the tool generates a single source code file named "fmc_config_data.c".

• When you supply a Policy file, a Configuration file, and a Custom Protocol file, the tool generates two source code files:
"fmc_config_data.c" and "softparse.h".

Contents of fmc_config_data.c

• #include software parser configuration "softparse.h" at the top of the file

• Initialization of FMC model structure 'fmc_model_t' with configuration data - This structure represents the data model for
FMan hardware configuration according to input files

Using fmc_config_data.c

• FMC model structure must be used together with FMC model definition and FMC executer: 'fmc.h' and 'fmc_exec.c' files -
These file are available in FMC source files location

• FMC model definition contains 'fmc_model' structure definition - This structure represents the FMC configuration model

• FMC executer contains 'fmc_execute' routine - This function configures the FMan hardware to behave as specified in the
input files

Usage options:

• Compile and link these files together ('fmc_config_data.c', 'fmc.h', 'fmc_exec.c') and generate a standalone binary and run
this binary to configure the FMan - In this case you must add a main() function that calls fmc_execute()

• Have your application call fmc_execute() - In this case you don't need to add a main() function

Contents of softparse.h

• Contains compiled firmware that controls the FMan sub blocks involved in parsing a custom protocol header

• Defines parameters such as code size, protocol to attach, and download base address

Using softparse.h - Automatically included in fmc_config.c if you pass the FMC Tool a Custom Protocol file

Note: You should configure the FMan before you enable your Rx/Tx ports to send/receive traffic. If you do not, the FMan uses
the default Rx and default Tx frame queues.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 301

4.2.8.1.6.6 FMC Tool Command-Line Arguments
The table below lists and describes the FMC Tool's command-line arguments.

Table 45. FMC Tool Command-Line Arguments

Command-Line Argument Syntax

(Both the verbose and abbreviated
command forms are shown)

Description

-d <pdl_file>, --pdl <pdl_file> Path to and name of the Standard Protocol file.

(Optional)

You can use a full path or a relative path.

See Standard Protocol File on page 303 for more information.

-p <pcd_file>, --pcd <pcd_file> Path to and name of a Policy file.

(Required unless '--sp_only' is used)

You can use a full path or a relative path.

See Policy file on page 305 for more information.

-c <data_file>, --config <data_file> Path to and name of the Configuration file.

(Required unless '--sp_only' is used)

You can use a full path or a relative path.

See Configuration File on page 317 for more information.

-s <custom_protocol_file>, --custom_protocol
<custom_protocol_file>

Path to and name of the Custom Protocol file.

(Optional unless the '--sp_only' flag is used, in which case, this Custom Protocol
file name is required.)

You can use a full path or a relative path.

See Custom Protocol File on page 304 for more information.

-a, --apply Apply the supplied configuration to the FMan rather than generating C source
code.

(Optional; valid only when FMC Tool is executed in runtime environment)

--sp_only Perform Soft Parser processing only.

When this argument is supplied, the FMC Tool compiles just the Custom Protocol
file, generates the file softparse.h, and exits. The file softparse.h contains C
source code and custom protocol offsets.

The tool creates softparse.h in the path from which the FMC Tool was executed.

(Optional)

-w Do not report warnings.

(Optional)

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
302 NXP Semiconductors

Table 45. FMC Tool Command-Line Arguments (continued)

Command-Line Argument Syntax

(Both the verbose and abbreviated
command forms are shown)

Description

--version Display version information, then exit.

(Optional)

-h, --help Display usage information, then exit.

(Optional)

4.2.8.1.6.7 The NetPDL and NetPCD XML Markup Languages
The Network Protocol Description Language (NetPDL) is an XML dialect that defines elements for describing protocols from OSI
layer 2 to OSI layer 7. (For more information on NetPDL, see http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/
dissectors/NetPDLCore.htm).

NXP uses NetPDL to define the standard protocols that are parsed by the FMan's Hard Parser. You cannot change these protocol
descriptions. However, the SDK includes a Standard Protocol file that you can use as a reference.

In addition, you can use NetPDL (with slight semantic and syntactic differences) to define custom protocols that are parsed by
the FMan's Soft Parser. This feature allows the FMan to handle any protocol that exists or that you define yourself.

Finally, NXP has extended NetPDL to create a language called NetPCD. You use the elements and attributes of NetPCD to define
FMan parse, classify, police, and distribute behavior. The processing thus defined determines how frames move from block to
block of the FMan.

The FMC Tool accepts files in NetPCD and NetPDL format as input.

4.2.8.1.6.8 Protocol files
For a protocol to be recognized by the FMC Tool, the protocol must be defined in one of two ways:

1. As a standard protocol within the Standard Protocol file (included in the SDK)

2. As a custom protocol within the Custom Protocol file.

Each file type is described in the sections that follow.

4.2.8.1.6.8.1 Standard Protocol File
The LSDK includes a file called the Standard Protocol file. This file contains NetPDL (Network Protocol Description Language)
markup that defines the fields in each standard protocol header that the FMan's Hard Parser can handle. In addition, for each
standard protocol, the file includes NetPDL statements that define actions for the Hard Parser to take upon encountering an
inbound instance of this protocol.

The Standard Protocol file is for the FMan's internal use only; you must therefore not change it. However, to write a Custom Protocol
file and/or a Policy file, you sometimes need information the Standard Protocol file contains, such as the names of fields in a
protocol's header.

For this reason, the SDK includes a copy of the Standard Protocol file in this directory: /etc/fmc/config/hxs_pdl_v3.xml.

The general structure of an FMC Standard Protocol XML file is shown below.

<netpdl>
 <protocol> <!-- one or more -->

 <format> <!-- only one -->
 <fields> <!-- only one -->

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 303

http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm
http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm

 <field/> <!-- one or more -->
 </fields>
 </format>

 <execute-code>
 </execute-code>

 <encapsulation>
 </encapsulation>

 <visualization>
 </visualization>

 </protocol>
</netpdl>

See the Standard Protocol File - Excerpt on page 369 topic to see a larger portion of the Standard Protocol file.

4.2.8.1.6.8.2 Custom Protocol File
The FMan's Hard Parser has built-in capability to handle a set of widely used, standard protocols, such as IPv4. The FMan also
has a Soft Parser, which has the ability to process custom protocols.

Of course, for the Soft Parser to recognize a custom protocol, you must first provide a definition of this protocol. To do this, you
create a Custom Protocol file, which consists of NetPDL markup that defines the fields in a custom protocol's header along with
the actions you want the Soft Parser to take upon these fields. You then pass this file to the FMC Tool, which compiles it and
passes the result to the FMan.

Note: Some elements in the NetPDL language are relevant only if used with a protocol analysis tool. The FMC Tool does not
support these elements; instead, the tool supports only those elements that are applicable to the FMan block. Further, although
it is based on NetPDL, the markup for a custom protocol does not strictly follow NetPDL rules. As a result, it is highly recommended
that the you become familiar with the NXP NetPDL Reference on page 317 topic, which fully documents the custom version of
NetPDL used in custom protocol definitions.

See Custom Protocol File - GTP Protocol Example on page 376, for an example of a custom protocol definition file containing
XML that defines the GPRS Tunneling Protocol (GTP).

Note: If your application does not use a custom protocol, you do not have to create a Custom Protocol file. Further, if your
application uses multiple custom protocols, you can (and must) define them in a single Custom Protocol file; you can pass just
one Custom Protocol file to the FMC Tool.

The general structure of a Custom Protocol file is shown below.

<netpdl> <!-- only one instance -->
 <protocol> <!-- one or more instances -->

 <format> <!-- only one instance -->
 <fields> <!-- only one instance -->
 <field/> <!-- one or more instances -->
 </fields>
 </format>

 <execute-code> <!-- zero or one instance -->
 <before> <!-- zero or one instance -->
 </before>

 <after> <!-- zero or one instance -->
 </after>
 </execute-code>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
304 NXP Semiconductors

 </protocol>
</netpdl>

4.2.8.1.6.9 Policy file
The policy file defines how each inbound frame is parsed, classified, policed, and distributed by the various FMan sub blocks.

A policy file consists of NetPCD markup, where NetPCD is NXP's extension to NetPDL, an XML markup language for describing
networking protocols. The elements and attributes of NetPCD let you define the parse, classification, policing, and distribution
behavior your application requires. See NetPCD Reference on page 340 for documentation of each NetPCD element and its
attributes.

A Policy file can have these sections:

• Distribution (required) - Contains one or more distribution definitions, each of which:

— Specifies the protocol(s) a frame must contain to match the distribution

— Defines how to handle matching frames

• Policy - (required) - Contains one or more policy definitions, each of which:

— Is associated with an FMan port

— Contains a prioritized list of distributions

• Classification (optional) - Contains one or more classification blocks, each of which:

— Defines key/value/action tuples, which the FMan's Controller sub block stores in a lookup table

— Compares the specified fields in the current frame header to each value in this table and, upon a match, takes the
specified action

• Policer (optional) - Contains up to 256 policer profiles, each of which can be used to:

— Take action upon frames without regard to traffic flow rate

— Take action upon frames based on the RFC-2698 two-rate, three-color policing scheme

— Take action upon frames based on the RFC-4115 two-rate, three-color, differentiated services scheme

Note: When you run the FMC Tool, you must pass it a Policy file or the '--sp_only' flag. Otherwise, the program will exit and print
an error message.

Figure 73. High-level Structure of a Policy File

<netpcd> <!-- only one instance -->
 <distribution> <!-- one or more instances -->
 </distribution>

 <policy> <!-- one or more instances -->
 <dist_order> <!-- one instance -->
 <distributionref/> <!-- one or more instances -->
 </dist_order>
 </policy>

 <classification> <!-- optional, may have more than one instance -->
 </classification>

 <policer> <!-- optional, may have more than one instance -->
 </policer>
</netpcd>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 305

4.2.8.1.6.9.1 Distribution Section
The Distribution section of the Policy file contains one or more 'distribution' elements. While 'distribution' elements can appear
anywhere in the Policy file, they often appear at the top of the file.

Typically a 'distribution' contains child elements that define:

• Frame match rules

— These rules define the conditions an inbound frame must meet to match (and therefore be handled by) this distribution

— Use the 'protocols' element and/or the 'key' element to define match rules

• Frame handling rules

— These rules determine what a distribution does with matching frames

— Use the 'queue' and 'key' elements to hash frames, so they are evenly spread over a range of frame queues

— Use the 'action' element to pass the frame to another element in the Policy file for further processing

Figure 74. Example Distribution Elements

<!-- distribution that matches all frames containing an IPv4 header -->
<!-- hashes these frames, so they are spread evenly over 32 frame queues -->
<distribution name="hash_ipv4_src_dst_dist0">
 <!-- frame match rule -->
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 </key>

 <!-- frame handling rule -->
 <queue count="32" base="0x400"/>
</distribution>

<!-- distribution that matches frames containing Eth/VLAN/IPv4/UDP/GTP headers -->
<!-- passes all matching frames to the "dl_vlan_clasifif" classification element -->
<distribution name="dl_eth_vlan_ipv4_udp_gtp_dist">
 <!-- frame match rule -->
 <protocols>
 <protocolref name="ethernet"/>
 <protocolref name="vlan"/>
 <protocolref name="ipv4"/>
 <protocolref name="udp"/>
 <!--shim1 is custom protocol defined for GTP -->
 <protocolref name="shim1"/>
 </protocols>

 <!-- frame handling rule
 <action type="classification" name="dl_vlan_classif"/>
</distribution>

See The distribution element on page 342 for complete documentation of this element.

Evenly Distributing Frames over a Range of Frame Queues

One frequent use of the 'distribution' element is to distribute frames evenly over a range of frame queues. If each available core
is configured to pull from the same number of queues in the range, this even spreading balances the work each core must perform.

In this scenario, the FMan's KeyGen sub block uses values in the frame's header and in the child elements of the distribution as
inputs to a hash algorithm that generates a 24-bit FQID within a range of FQIDs. The KeyGen sub block then places the frame
on the frame queue identified by this FQID.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
306 NXP Semiconductors

Here is the KeyGen's algorithm for generating a FQID:

1. Extract and concatenate the protocol header fields specified by the 'key' child element

2. Hash the resulting string to a 64-bit CRC

3. Shift the CRC right by the number of bits specified in the 'shift' attribute of the 'key' element to move the desired bits to the
24 least significant bit positions

4. Zero-extend the bit mask specified by the 'queue' child element ('count' attribute – 1) to 24 bits

5. Bitwise AND the result with the shifted CRC

6. Bitwise OR the result with the value specified by the 'combine' child element - repeat for each 'combine' element

7. Bitwise OR the result to the base FQID specified by the 'base' attribute of the 'queue' child element

Figure 75. on page 307 shows the algorithm the KeyGen sub block uses to calculate a FQID.

Build
key

<= 56 Bytes

Hash
key

64-bit CRC

Shift right*
hash result

64-bit value

Bitwise AND
hash result

with bit mask

24-bit
FQID

Bitwise OR
with

combine

Add
base FQID

24-bit
FQID

24-bit
FQID

Figure 75. KeyGen Algorithm for FQID Calculation

* The 'key' element has an optional 'shift' attribute whose value defines the number of bits by which the hash result is right shifted.
The default value for the shift attribute is zero.

Example KeyGen FQID Calculation

The series of figures that follow shows which child elements and attributes of a distribution block the KeyGen sub block uses in
its FQID calculation.

Figure 76. on page 307 shows where in the KeyGen sub block gets the inputs for the hash, shift right, bitwise AND, and "add
base" parts of its FQID calculation.

Figure 76. FQID Calculation - Elements/Attributes Used for Key, Bit Mask, and Base FQID

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 307

Figure 77. on page 308shows a 'combine' element that includes a 'portid' attribute that is set to "true". In addition, the element's
'offset' attribute is "10", and its 'mask' is "0xFF". This markup instructs the KeyGen sub block to perform the "bitwise OR" part of
the FQID calculation. In more detail, for this markup, the KeyGen does these things:

• Bitwise ANDs the 8-bit logical port ID (defined in the Configuration file) of the port on which the current frame arrived with
the 8-bit mask in the 'combine' element.

• Bitwise ORs (inserts) the 8-bit result at the specified offset (10 bits) within the 24-bit FQID (where offset 0 signifies the FQID's
most significant bit).

Note: Each FMan port can be assigned an 8-bit logical port ID by adding markup to the Configuration file. To do this, assign an
8-bit value to the 'portid' attribute of each 'port' element to which you want to assign a logical port ID. The Hard Parser puts this
value (if defined) in the parse results array, where the a KeyGen sub block can get it.

Figure 77. FQID Calculation - A 'combine' Element that Uses the 'portid' Attribute

Figure 78. on page 309 shows a 'combine' element that includes a 'frame' attribute. This markup instructs the KeyGen sub block
to:

• Get the 8 bits at offset 112 in the current frame header.

• Bitwise AND this value with the 8-bit mask (0xFF) specified in the 'combine' element

• Bitwise OR (insert) the 8-bit result at the specified offset within the 24-bit FQID (where offset 0 signifies the FQID's most
significant bit).

Note: The value of the 'frame' attribute is an offset (in bits) from beginning of the current frame. The KeyGen sub block gets the
byte at this offset for its FQID calculation. The value of 'frame' must be divisible by 8, so the bit it references is on a byte boundary.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
308 NXP Semiconductors

Figure 78. FQID Calculation - A 'combine' Element that Uses the 'frame' Attribute

Finally, Figure 79. on page 309 shows where the KeyGen sub block plugs the values from each of the combine elements into the
bitwise OR part of the FQID calculation.

Figure 79. FQID Calculation - combine Elements Used in Bitwise OR

FQID Formula

FQID[0:23] = (Shifted Hash Key[0:23] & Hash Mask) |
 Data0[0:23] | Data1[0:23] | … | Data7[0:23] |
 FQID Base Address

In sum, use the child elements/attributes of the 'distribution' element to provide the values on the right side of the FQID equation.

4.2.8.1.6.9.2 Policy Section
The Policy section of the Policy file consists of one or more 'policy' elements. While 'policy' elements can appear anywhere in the
Policy file, they typically follow the last 'distribution' element in the file.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 309

Each 'policy' element defines a set of candidate distributions that the FMan can apply to inbound frames. The particular distribution
the FMan applies to a given frame depends on these factors:

• The position of each distribution in the 'policy' element's distribution order list

• The definition of each of these distributions

Candidate distributions are listed in priority order. As a result, if two or more distributions in the list match the current inbound
frame, the FMan applies the first matching distribution because this distribution has higher priority.

How does the FMan know which policy (that is, which prioritized list of distributions) to apply to the traffic received on a particular
Ethernet port? The Configuration file provides the connection.

In a Configuration file, you must enter one 'port' element for each FMan port your application uses. Further, the port element has
a required attribute - the 'policy' attribute - whose value must match the name of one of the policy elements in the Policy file,
thereby defining the policy (that is, the ordered list of distributions) that the FMan will apply to all traffic received on a port. In sum,
the value of a port element's policy attribute in the Configuration file ties the port identified by this element to a policy element in
the Policy file.

In a Configuration file:

• A port can be assigned a single policy

• Multiple ports can be assigned the same policy

• A port can have just one active policy at a time

Typically, you assign one policy to each port your application uses.

Example 1 - Simple Use of the Policy Element

Configuration File

<!-- The port element assigns the dl_policy policy to the 10 Gbps port of FMan 0 -->
<!-- Policy dl_policy is defined in the Policy file - see next code snippet -->
<cfgdata>
 <config>
 <engine name="fm0">
 <port type="MAC" number="9" policy="dl_policy"/>
 </engine>
 </config>
</cfgdata>

Policy File

<!-- A policy element that defines how to apply two distributions -->
<!-- These distributions are defined elsewhere in the Policy file -->
<!-- This policy is assigned to an Ethernet port by the Configuration file above -->
<policy name="dl_policy">
 <dist_order>
 <distributionref name="dl_eth_vlan_ipv4_udp_gtp_dist"/>
 <distributionref name="garbage_dist"/>
 </dist_order>
</policy>

In the example above, the Configuration file assigns the policy named 'dl_policy' to the 10 Gbps port of a LS1043A chip's first
FMan (fm0). As a result, the FMan first tries to match each frame that arrives on this port to the 'dl_eth_vlan_ipv4_udp_gtp_dist'
distribution since it appears first in the 'policy' element's distribution order list. Whether the frame matches depends on the
definition of the 'dl_eth_vlan_ipv4_udp_gtp_dist' distribution, which is not shown. If the frame matches, it is handled according to

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
310 NXP Semiconductors

the rules this distribution defines. If the frame does not match, the FMan next compares it to the 'garbage_dist' distribution since
it appears second in the distribution order list. Because of this distribution's definition (also not shown), it matches all frames,
thereby guaranteeing that every frame is handled in one way or the other.

See The policy element on page 340 for complete documentation of this element.

Example 2 - More Complex Use of the Policy Element

Figure 80. on page 311 shows the Policy file from the pktwire application. This application requires a more complex use of policies
and distributions than shown in the previous example.

This Policy file defines ten 'policy' elements - pktwr_policy_0, pktwr_policy_1, … pktwr_policy_9 - some of which are shown in
the figure.

A Configuration file (not shown) assigns each of these policies to one of an SoC's ten FMan ports - five on the first FMan (fm0)
and five on the second FMan (fm1).

Note: Not all QorIQ devices have two FMans. Nor does every FMan have five Ethernet ports. See the reference manual for your
QorIQ device to determine the number of FMans and FMan ports this device supports.

Figure 80. More Complex Policy File - 1

The Policy file also defines ten distributions - pktwr_dist_0, pktwr_dist_1, … pktwr_dist_9 - some of which are shown in Figure
81. on page 312.

As mentioned above, each of these distributions is assigned to a policy which, in turn, is assigned to a port. A frame "matches"
the distribution assigned to the port on which the frame arrived if its header contains both the ipv4.src and ipv4.dst fields.

For each frame that matches, the KeyGen sub block computes a hash result using the concatenation of the ipv4.src and ipv4.dist
fields as the hash key. The KeyGen sub block then uses the hash result to compute a FQID. (See the Distribution Section on page
306 topic for detailed coverage of the KeyGen's FQID calculation algorithm.)

The resulting FQID is in the range specified by the 'queue' element. For example, for distribution “pktwr_dist_0”, the resulting FQID
will be in range 0x2800 – 0x281F.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 311

Figure 81. More Complex Policy File - 2

The Policy file also defines ten distributions - garbage_dist_0, garbage_dist_1, … garbage_dist_9 - some of which are shown in
Figure 82. on page 313.

Note that these distributions do not have a 'key' element. As a result, all frames “match” these distributions. For 'garbage_dist_0',
the resulting FQID is always 0xb1 since the queue element specifies just one frame queue and the base FQID value is 0xb1.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
312 NXP Semiconductors

Figure 82. More Complex Policy File - 3

Let’s say that an FMan port is tied to policy 'pktwr_policy_1' - highlighted in Figure 83. on page 314.

This policy instructs the FMan to first attempt to distribute frames arriving on this port using the 'pktwr_dist_1' distribution. If the
current frame does not include the ipv4.src and ipv4.dst fields, the policy instructs the FMan to try the next distribution in the
policy's distribution order list.

In this example, the next distribution is “garbage_dist_1” which, due to the absence of a 'key' element, matches all frames and
enqueues them to the single frame queue defined by the 'count' and 'base' attributes of its queue element.

Note: It is common for the last distribution in a distribution order list to be a "catch all", like the default case in a C switch statement;
however, this is not a requirement.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 313

Figure 83. More Complex Policy File - 4

4.2.8.1.6.9.3 Classification Section
The Classification section of the Policy file is optional. Use it to specify exact match frame classification.

A classification specifies the action to perform on a frame when the values of the specified fields in a frame's protocol header
match a predefined value. You can specify as many predefined value/action pairs as desired, as well as a default action.

A classification starts with a 'classification' element, which is a container for these child elements:

• A 'key' element that defines the header fields (in protocol.field form) to use in the exact match operation

• One or more 'entry' elements, each of which defines a value to which the specified fields are compared and a 'queue'
and/or 'action' element that defines what to do with the frame upon a match

• An optional 'action' element that defines the default action to take if none of the exact match conditions is met

The FMC Tool uses the information in these child elements to populate the FMan Controller's rules table. At runtime, the Controller
uses this information to extract the specified fields from the specified protocol header, compare these fields to the specified values
and, upon a match, take the specified action.

See The classification element on page 350 for complete documentation of this element.

Example

The example below shows a Policy file containing a 'classification' element.

The 'policy' element named 'policy_0' lists two distributions to try, 'udp_dist' and 'non_udp_dist'.

Note: For a classification block to be applied to a frame, the frame must first match a distribution that transfers control to this
classification via an 'action' element. In other words, the "source engine" of the Classifier is always a 'distribution' element.

The 'udp_classif' classification element specifies an exact-match lookup on the ipv4.dst field. If this field's value is:

• 0xC0A81402, the frame is placed on the queue whose FQID is 0x200

• 0xC0A81404, the frame is placed on the queue whose FQID is 0x400

• 0xC0A81406, the frame is placed on the queue whose FQID is 0x600

• 0xC0A81408, the frame is placed on the queue whose FQID is 0x800

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
314 NXP Semiconductors

Otherwise, the 'action' element passes the frame to the 'unknown_dist' distribution for handling.

description="Course Classification configuration">
<policy name="policy_0">
 <dist_order>
 <distributionref name="udp_dist"/>
 <distributionref name="non_udp_dist"/>
 </dist_order>
</policy>

<distribution name="udp_dist">
 <protocols>
 <protocolref name="udp"/>
 </protocols>
 <action type="classified" name="udp_classif"/>
</distribution>

<classification name="udp_classif">
 <key>
 <fieldref name="ipv4.dst">
 </key>
 <entry>
 <data>0xC0A81402</data>
 <queue base="0x200"/>
 </entry>
 <entry>
 <data>0xC0A81404</data>
 <queue base="0x400"/>
 </entry>
 <entry>
 <data>0xC0A81406</data>
 <queue base="0x600"/>
 </entry>
 <entry>
 <data>0xC0A81408</data>
 <queue base="0x800"/>
 </entry>
 <action type="distribution" condition="on-miss" name="unknown_dist"/>
<classification>
"cc_policy.xml" 108 lines --61%--

4.2.8.1.6.9.4 Policer Section
The Policer section of the Policy file is optional.

If used, the section consists of up to 256 policer profiles. Each profile starts with a 'policer' element, which is a container for various
child elements with which you implement a particular policing behavior.

Each profile works in one of these modes:

• Pass-through – Policer performs no traffic metering

• RFC-2698 - Policer employs a two-rate, three-color marker scheme

• RFC-4115 - Policer employs a differentiated service, two-rate, three-color marker scheme that efficiently handles in-profile
traffic

Each of these modes can be configured to be color-aware or color-blind.

For RFC-2698 and RFC-4115 modes, you must specify these values:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 315

• unit, the unit to be used for the following numeric parameters. Valid values for unit are "packet" and "byte."

• CIR, Committed Information Rate[5]

• CBS, Committed Burst Size[6]

• PIR, Peak Information Rate[7]

• PBS, Peak Burst Size[8]

In all three modes, you can specify the next invoked action (NIA) for each color result (drop the frame, proceed to the specified
distribution, etc.)

Example 1 - Policer Markup for RFC2698 Mode

<policer name="policer2">
 <algorithm>rfc2698</algorithm>

 <color_mode>color_aware</color_mode>

 <CIR>12000</CIR>
 <EIR>34000</EIR>
 <CBS>56000</CBS>
 <EBS>78000</EBS>

 <unit>byte</unit>

 <action condition="on-green" type="distribution" name="green_dist"/>
 <action condition="on-yellow" type="distribution" name="yellow_dist"/>
 <action condition="on-red" type="drop"/>
</policer>

Example 2 - Policer Markup for Pass-through Mode

<policer name=“vlan_congestion_control_green">
 <algorithm>pass_through</algorithm>

 <color_mode>color_blind</color_mode>

 <default_color>green</default_color>

 <action condition="on-green" type="distribution name="default_dist"/>
</policer>

<policer name=“vlan_congestion_control_yellow">
 <algorithm>pass_through</algorithm>

 <color_mode>color_blind</color_mode>

 <default_color>yellow</default_color>

 <action condition="on-yellow" type=“drop"/>
</policer>

[5] If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/
second

[6] If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.
[7] If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/

second
[8] If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
316 NXP Semiconductors

<policer name=“vlan_congestion_control_red">
 <algorithm>pass_through</algorithm>

 <color_mode>color_blind</color_mode>

 <default_color>red</default_color>

 <action condition="on-red" type=“drop"/>
</policer>

4.2.8.1.6.10 Configuration File
The Configuration file contains markup that defines the FMan instances (for devices with more than one FMan) and ports that
are being used.

In addition, the Configuration file "connects" each port to the parse, classification, policing, and distribution rules defined in the
Policy file. How? Each 'port' element in the Configuration file has a 'policy' attribute whose value must be the name of one of the
'policy' elements in the Policy file. This information tells the FMan which distributions to compare to each frame received on a
given port.

Figure 84. on page 317 shows the Configuration file's elements, attributes, and element hierarchy.

Note these element and attribute requirements:

• Valid engine names are "fm0" or "fm1"

• Valid values for the port type attribute are:

— "MAC" (1/10 Gbps Ethernet port)

• Port numbering corresponds to hardware port number (as in dts) for each port.

• The value of the 'policy' attribute of a 'port' element must match the name of a 'policy' element in the Policy file.

• portid attribute (optional) - One byte numeric value that is attached to the port and that can be used in the 'distribution' and
'combine' elements of the Policy file.

The Configuration file's general structure is shown below.

Figure 84. on page 317 shows an example configuration file. It uses the optional 'portid' attribute for the 1 Gbps ports.

Figure 84. Example Configuration File

<cfgdata>
 <config>
 <engine name="fm0">
 <port type="MAC" number="1" policy="ipv4_policy"/>
 <port type="MAC" number="2" policy="ipv4_policy" portid="0x96"/>
 <port type="MAC" number="3" policy="ipv4_policy" portid="0x97"/>
 <port type="MAC" number="4" policy="ipv4_policy" portid="0x97"/>
 </engine>
 </config>
</cfgdata>

4.2.8.1.6.11 NXP NetPDL Reference
The FMan's Soft Parser can process non-standard, custom protocols that you define. To define a custom protocol, you enter
NetPDL (Network Protocol Description Language) markup into a file called the Custom Protocol file. This markup defines each
field in the custom protocol's header, as well as actions for the Soft Parser to take both before and after the custom header is
loaded into the frame window.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 317

Note: Although the markup used to define a custom protocol is based on NetPDL, this markup does not follow NetPDL rules
strictly. As a result, you cannot rely on non-NXP documentation of NetPDL as you write your Custom Protocol file. Only the
information in this appendix accurately explains how to write the NetPDL that goes in a Custom Protocol file.

You pass the name of the Custom Protocol file to the FMC Tool from the command line. The tool, in turn, passes the information
in this file (directly or indirectly) to the FMan's Soft Parser.

4.2.8.1.6.11.1 Basic XML Rules
The Custom Protocol XML file follows standard XML rules.

The file is composed of several elements. Each element begins with a start tag and can contain attributes and/or child elements.
If the element contains child elements, it must have a matching end tag. An element without child elements or text must end with
a forward slash (/).

Note that element and attribute names are case sensitive. In the Custom Protocol file, all element and attribute names use only
lower case alphabetics.

Comments always begin with "<!--" and end with "-->"

Example

<one-element attribute1="value"> <!-- this is a comment -->
 <child-element myattribute="4"/>
</one-element>
<another-element attribute2="value2"/>

4.2.8.1.6.11.2 The netpdl Element
The Custom Protocol file always begins with the <netpdl> root element. As a result, the end netpdl tag must appear at the end of
the file.

Attributes: No required attributes

Child Elements: protocol

Example

<netpdl>
...
</netpdl>

4.2.8.1.6.11.3 The protocol element
Use the 'protocol' element to bracket the definition of each custom protocol in the Custom Protocol file. The 'protocol' element is
a container for all the other elements required to define a custom protocol.

Attributes

name - (required) alphanumeric string; defines the unique name of the custom protocol.

longname - (optional) alphanumeric string; provides a user-friendly name for the protocol.

prevproto - (required) alphanumeric string. This attribute defines the previous protocol, that is, the protocol whose header precedes
the custom protocol's header.

Table 46. Valid values for the prevproto attribute on page 319 lists the values that you can assign to the 'prevproto' attribute.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
318 NXP Semiconductors

Table 46. Valid values for the prevproto attribute

Protocol Layer

ethernet 2

llc_snap 2

vlan 2

pppoe 2

mpls 2

ipv4 3

ipv6 3

gre 3

minencap 3

otherl3

The Custom Protocol file's NetPDL XML has a

somewhat different structure and behavior if either

'otherl3' or 'otherl4' is the previous protocol. See Effect

of Setting prevproto Attribute to otherl3 or otherl4 on

page 320.

 NOTE

3

tcp 4

udp 4

ipsec_ah 4

ipsec_esp 4

sctp 4

dccp 4

otherl4 1 4

Each time the frame window contains a header for a protocol specified in the 'prevproto' attribute of one of the 'protocol' elements
in the Custom Protocol file, the Hard Parser transfers control to the Soft Parser.

The Soft Parser then executes the 'before' element code of the 'protocol' element whose prevproto attribute matches the current
protocol. As long as the 'before' element code is executing, the previous protocol's header remains in the frame window. As a
result, the 'before' element code can reference the fields in the previous protocol header.

Typically, the 'before' element includes code that determines whether the next protocol header is an instance of the custom protocol
defined by this protocol element. If it is not, the 'before' code instructs the Soft Parser to return to the Hard Parser; if it is, the Soft
Parser continues to execute the 'before' code.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 319

When the Soft Parser finishes executing the 'before' code (and if it does not return control to the Hard Parser), the Soft Parser
advances the frame window to the custom protocol header and starts executing the 'after' element code (if any has been defined).
Therefore, the code in the 'after' element can reference the fields in the custom protocol header.

Child Elements: format, execute-code

Example

<protocol name="gtpu" longname="GTP-U" prevproto="udp">
 ...
</protocol>

<protocol name="tcpExt" longname="tcp extension" prevproto="cp">
 ...
</protocol>

4.2.8.1.6.11.3.1 Effect of Setting prevproto Attribute to otherl3 or otherl4

When the 'prevproto' attribute of the 'protocol' element is set to otherl3 (for other layer 3 protocol) or otherl4 (for other layer 4
protocol), the first byte of the previous protocol header and the first byte of the custom protocol header are at the position in the
frame window. Because they are not real protocols, neither otherl3 nor otherl4 has a real protocol header with a defined size and
defined fields; these "protocols" are used just to provide the Soft Parser with an entry point (or a termination point) within the frame
window. In effect, the size of the otherl3 and otherl4 "headers" is zero. Consequently, these "headers" have the same start offset
in the frame window as does the custom protocol's header.

Note: Because the otherl3 and otherl4 protocols do not have real headers, they provide nothing for the Soft Parser to parse. As
a result, you cannot use the 'before' element when either of these protocols is assigned to the 'prevproto' attribute. You can only
use the 'after' element in these cases.

4.2.8.1.6.11.4 The format element
Use the 'format' element to bracket the definition of the structure of a custom protocol header. The 'format' element is a
container for the 'fields' element which, in turn, is a container for the 'field' element. The 'field' element lets you define each field
in a custom protocol's header.

Attributes: none

Child Elements: fields

4.2.8.1.6.11.4.1 The fields Element

Use the 'fields' element to define the structure of a custom protocol's header. This element is a container for the 'field' element,
which lets you define each field in a custom protocol header.

Attributes: none

Child Elements: field

4.2.8.1.6.11.4.2 The field Element

Use the 'field' element to define one of the fields in a custom protocol header.

Attributes

type - (required) string; Defines the field size as either "fixed" for a byte-length field or "bit" for a bit-length field.

size - (required) integer; Defines the size of the field in bytes.

name - (required) string; Defines the unique name for the field.

longname - (optional) string; Defines the name of the field for display purposes.

mask - (required only for bit field) integer; Defines the specific bits in the current bytes which belong to this field.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
320 NXP Semiconductors

The field elements appear one after the other to define a custom protocol's header frame. The first field begins in the first byte of
the custom protocol's frame header and its size is determined by the size attribute. The following fields conform to the following
rules:

• A fixed field or a field following a fixed field begins in the next byte, which is the previous field's offset + the previous field's
size.

• A bit field following a bit field begins in the next byte only if the last bit in the previous field's mask is 1.

• If two fields share the same offset (which is possible only when both fields are bit fields and the mask of the first field does
not end with 1), they should have the same value for their size attributes.

Example

<format>
 <fields>
 <field type="bit" name="flags" mask="0xE0" size="1"/>
 <field type="bit" name="pt" mask="0x80" size="1"/>
 <field type="bit" name="version" mask="0x07" size="1"/>
 <field type="fixed" name="mtype" size="1"/>
 <field type="fixed" name="length" size="2"/>
 </fields>
</format>

<format>
 <fields>
 <field type="bit" name="version" mask="0xE0" size="1"/>
 <field type="bit" name="pt" mask="0x10" size="1"/>
 <field type="bit" name="flags" mask="0x07" size="1"/>
 <field type="bit" name="flags1" mask="0x01" size="1"/>
 <field type="bit" name="flags2" mask="0x10" size="1"/>
 <field type="bit" name="flags3" mask="0x02" size="1"/>
 <field type="fixed" name="mtype" size="1" longname="message type"/>
 <field type="fixed" name="length" size="2"/>
 </fields>
</format>

The fields will, thus, be stored in the following bit offsets in the custom protocol header:

version: 0-2 pt: 3-3 flags: 5-7 flags1: 15-15 flags2: 19-19 flags3: 22-22 mtype: 24-31 length: 32-47

4.2.8.1.6.11.5 The execute-code element
Use the 'execute-code' element to define all code that should be executed for a custom protocol once the parser reaches the
specified previous protocol header.

This element contains two child elements, 'before' and 'after'. At least one of these child elements must be defined. If both are
defined, the 'before' element must appear before the 'after' element.

Attributes: none

Child Elements: before, after

Example

<execute-code>
 <before>
 ...
 </before>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 321

 <after headersize="8">
 </after>
</execute-code>

4.2.8.1.6.11.5.1 The before Element

The Soft Parser executes the code in the 'before' element before it moves the frame window from the previous protocol header to
the custom protocol header. Therefore, use the 'before' element to specify logic that requires access to fields in the previous
protocol header. This code is often used to determine whether the next protocol header is an instance of the custom protocol this
protocol block defines. If it is not, the 'before' block instructs the Soft Parser to return control to the Hard Parser; if it is, the Soft
Parser continues processing.

While the code in the 'before' element is analyzed, the frame window points to the previous protocol header. Therefore, the frame
window variable ($FW) references the fields in the previous protocol header and the header size variable ($headerSize) variable
returns the size of the previous protocol's header.

Once the it reaches the end of the 'before' element, the Soft Parser moves the frame window to the custom protocol header. If no
'after' element has been defined, the Soft Parser then returns to the Hard Parser.

The 'before' element can only appear once in the 'execute-code' element and, if an 'after' element has been defined, the 'before'
element must appear before the 'after' element.

Attributes

confirm - (optional) string; Valid values are "yes" and "no". The default value is "no" if an 'after' element has been defined.
Otherwise, the default value is "yes". If confirm="yes", the Soft Parser confirms the presence of the 'prevproto' header by bitwise
OR'ing the previous protocol's line-up enable confirmation mask with the current line-up confirmation vector (LCV) value.

confirmcustom - (optional) string; Valid values are "shim1", "shim2", and "no". The default value is "no". If 'confirmcustom' is set
(!="no"), the Soft Parser confirms the presence of the custom protocol header by bitwise OR'ing the custom protocol's mask with
the current line-up confirmation vector (LCV) value. The custom protocol can set one of the last two bits in the LCV. If "shim1" is
selected, the least significant bit is set; if "shim2" is selected, the second least significant bit is set.

Child Elements: if, switch, assign, action

Note: When the previous protocol is 'otherl3' or 'otherl4', the previous protocol and the custom protocol are treated as if they are
the same and each begins at the same offset within the frame window. Therefore, the 'before' element cannot be used when the
'prevproto' attribute is 'otherl3' or 'otherl4'; only an 'after' element be used when the the 'prevproto' attribute is 'otherl3' or 'otherl4'.
See Effect of Setting prevproto Attribute to otherl3 or otherl4 on page 320 for more information.

4.2.8.1.6.11.5.2 The after Element

The 'after' element contains code which should be executed when a frame from the current custom protocol has been encountered.
In contrast to the 'before' element, in the 'after' section, it is possible to access fields from the current protocol but not from the
previous protocol. In the 'after' element the frame window variable ($FW) manipulates the current custom protocol header and
the header size variable ($headerSize) returns the size of the current custom protocol header.

At the end of the 'after' element, the frame window jumps to the end of the custom protocol's header and control returns to the
Hard Parser.

The 'after' element can appear only once in an 'execute-code' element and if a 'before' element has been defined, it must appear
before the 'after' element.

Attributes

confirm - (optional) string; Valid values are "yes" and "no". The default value is "yes". If confirm ="yes", the Soft Parser confirms
the existence of the previous protocol header by bitwise OR'ing the previous protocol's line-up enable confirmation mask with the
current line-up confirmation vector (LCV) value.

confirmcustom - (optional) string; Valid values are "shim1", "shim2", and "no". The default value is "no". If 'confirmcustom' is set
(!="no"), the Soft Parser confirms the presence of the custom protocol header by bitwise OR'ing the custom protocol's mask with

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
322 NXP Semiconductors

the current line-up confirmation vector (LCV) value. The custom protocol can set one of the two last bits in the LCV. If "shim1" is
selected, the least significant bit is set; if "shim2" is selected, the second least significant bit is set.

headerSize - (optional) integer; Possible values: arithmetic expression. (See Arithmetic Expressions on page 338) The default
value is calculated using the fields contained by the 'format' element. You can specify the custom protocol's header size with this
attribute. This information is needed so the parser returns to the right position following the custom protocol header. If header size
is not specified, the FMC Tool assumes that the fields defined inside the 'format' element are the only fields in the custom protocol
header and calculates the header size using these fields. The $headerSize variable in the 'after' element returns the value defined
in this attribute (or the value calculated by default if the header attribute is not defined).

Child Elements: if, switch, assign, action

Example

<protocol name="gtp" prevproto="udp">
 <format>
 <fields>
 <field type="bit" name="version" mask="0xE0" size="1"/>
 </fields>
 </format>

 <execute-code>
 <before confirm="no">
 <assign-variable name="$GPR1" value="udp.dport"/>
 <!-- Note that this is ILLEGAL: <assign-variable name="GPR1" value="version" -->
 <assign-variable name="$shimr" value="$headerSize"/>
 <!-- shimresult now holds udp's header size -->
 </before>

 <after headersize="4" confirmcustom="shim1">
 <!-- Note that this is ILLEGAL: <assign-variable name="$GPR1" value="udp.dport"> -->
 <assign-variable name="$GPR1" value="version"/>
 <assign-variable name="$shimr" value="$headerSize"/>
 <!-- shimresult now equals 4 -->
 </after>
 </execute-code>
</protocol>

4.2.8.1.6.11.5.3 Child Elements of the before and after Elements
4.2.8.1.6.11.5.3.1 The assign-variable Element

The 'assign-variable' element assigns an expression to a variable.

Attributes

name - (required) string; The name of the variable to which a value will be assigned. Valid values: Variables contained in the result
array.

value - (required) integer; The expression assigned to the variable. Valid values: arithmetic expressions.

Child Elements: none

Example

<assign-variable name="$shimoffset_2" value="$shimoffset_1+12"/>

4.2.8.1.6.11.5.3.2 The if Element

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 323

This element tests the specified condition. If the condition is true, control transfers to the 'if-true' element; if the condition is false,
control transfers to the 'if-false' element (if one is defined).

Attributes

expr - (required) string; Defines the condition to be checked before selecting the code block to execute. Valid values: logical
expressions. (See Logical Expressions on page 337 for more information.)

Child Elements: if-true (required), if-false

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

4.2.8.1.6.11.5.3.2.1 The if-true Element

This element defines code to execute if the expression defined in the parent 'if' element is true.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

4.2.8.1.6.11.5.3.2.2 The if-false Element

This element defines the code to execute if the expression defined in the parent 'if' element is false.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
324 NXP Semiconductors

4.2.8.1.6.11.5.3.3 The switch Element

This element defines an expression and a set of cases. Each case consists of a value (or set of values) and code to be executed
if the value equals the switch expression. Each 'switch' element must have at least one 'case' child element.

Note: Only the code of the first case that matches the swith expression is executed. Any following cases are skipped. In C language
terms, a break is automatically added after the code of each case.

Attributes

expr - (required) string; Defines the value being checked. Valid values: arithmetic expressions.

Child Elements: case, default

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>

 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>

 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

4.2.8.1.6.11.5.3.3.1 The case Element

This element matches a value or range of values against the switch expression.

Attributes

value - (required) integer; If the value equals the switch expression and no earlier case has been matched, the code in the 'case'
element is executed.

maxvalue - (optional) integer; If the switch expression is greater than or equal to the 'value' attribute and the expression is less
than or equal to the 'maxvalue' attribute (and no earlier case has been matched), the code in the 'case' element is executed.

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>

 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>

 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

4.2.8.1.6.11.5.3.3.2 The default Element

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 325

The 'default' element contains code that is executed if the expression in the 'switch' element is not matched by any of the candidate
cases.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>

 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>

 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

4.2.8.1.6.11.5.3.4 The action Element (for use in a Custom Protocol file)

Use the 'action' element in a 'before' or 'after' block to terminate soft parsing, jump to the specified next protocol header, and
continue hard parsing.

Note: This topic defines the 'action' element used in a Custom Protocol file. See The action element (for use in a policy file) on
page 349 for the definition of the 'action' element used in a Policy file.

Attributes

• type - (required) string; "exit" is the only valid value for the type attribute.

• advance - (optional) string; The 'advance' attribute controls whether the Soft Parser moves the frame window to the next frame
header. This attribute has different meanings in the 'before' and 'after' elements. In the 'before' element, the Soft Parser moves
the frame window from the previous protocol header to the custom protocol header. In the 'after' element, the Soft Parser
moves the frame window from the custom protocol header to the specified next protocol header. The frame window is
advanced according to the header size. The value of 'advance' must be 'yes' or 'no'. The default is 'yes' unless 'nextproto' is
set to 'end_parse', 'return', or not set at all. In these cases, the default value is 'no'.

• confirm - (optional) string; If confirm="yes", the Soft Parser bitwise OR's the previous protocol's line-up enable confirmation
mask with the current line-up confirmation vector (LCV) value. Valid values are "yes" and "no"; the default value is "yes".

• confirmcustom - (optional) string; Valid values are "shim1", "shim2", or "no". The default value is "no". If confirmcustom is set
to a value other than "no", the Soft Parser bitwise ORs the custom protocol's mask with the current line-up confirmation vector
(LCV) value. The custom protocol can set one of the two last bits in the LCV. If shim1 is specified, the least significant bit is
set; if shim2 is specified, the second least significant bit is set.

• nextproto - (optional); If used, this attribute must be one of the values from the table below:. The default value is 'return'.

Table 47. Parse Action for each Value of the nextproto Attribute

If nextproto is ... The parse action is ...

ethernet Jump to the Ethernet header and continue hard parsing

llc_snap Jump to the LLC_SNAP header and continue hard parsing

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
326 NXP Semiconductors

Table 47. Parse Action for each Value of the nextproto Attribute (continued)

If nextproto is ... The parse action is ...

vlan Jump to the VLAN header and continue hard parsing

pppoe Jump to the PPPoE header and continue hard parsing

mpls Jump to the MPLS header and continue hard parsing

ipv4 Jump to the IPv4 header and continue hard parsing

ipv6 Jump to the IPV6 header and continue hard parsing

gre Jump to the GRE header and continue hard parsing

minencap Jump to the MinEncap header and continue hard parsing

otherl3 Jump to the otherl3 header and continue hard parsing

tcp Jump to the TCP header and continue hard parsing

udp Jump to the UDP header and continue hard parsing

ipsec_ah Jump to the IPsec_ah header and continue hard parsing

ipsec_esp Jump to the IPsec_esp header and continue hard parsing

sctp Jump to the SCTP header and continue hard parsing

dccp Jump to the DCCP header and continue hard parsing

otherl4 Jump to the otherl4 header and continue hard parsing

after_ethernet Jump to the protocol that should follow the Ethernet header. The next protocol is determined
from the value of the $nxtHdr variable. See Table 48. Next Protocol for each $nxtHdr Value
if nextproto is 'after_ethernet' on page 328to find the next protocol for each possible value
of $nxtHdr.

Note:The 'advance' attribute must be set to 'yes' if 'nextproto' is set to 'after_ethernet'.

after_ip Jump to the protocol that should follow the IP header. The next protocol is determined from
the value of the $nxtHdr variable. See table: Next Protocol for each $nxtHdr Value if
nextproto is 'after_ethernet' to find the next protocol for each possible value of $nxtHdr.

Note:The 'advance' attribute must be set to 'yes' if 'nextproto' is set to 'after_ip'.

return (default value) Return to the Hard Parser without advancing the frame window. In this case, the Hard Parser
starts parsing the frame header at the same position at which the Soft Parser began. The
'advance' attribute cannot be 'yes' when 'nextproto is set to return.

none/end_parse Finish parsing the frame header; do not return to the Hard Parser.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 327

Table 48. Next Protocol for each $nxtHdr Value if nextproto is 'after_ethernet'

If $nxtHdr is ... The next protocol is ...

0x05DC or less llc_snap

0x0800 ipv4

0x86DD ipv6

0x8847, 0x8848 mpls

0x8100, 0x88A8, ConfigTPID1, ConfigTPID2 vlan

0x8864 pppoe

other value otherl3

Table 49. Next Protocol for each $nxtHdr Value if nextproto is 'after_ip'

If $nxtHdr is ... The next protocol is ...

4 ipv4

6 tcp

17 udp

33 dccp

41 ipv6

50, 51 ipsec

47 gre

55 minencap

132 sctp

other value otherl4

Notes

• The frame window must be advanced when parsing jumps to the 'after_ethernet' or 'after_ip' protocols. Therefore, the
'advance' attribute cannot be set to 'no' in these cases.

• The frame window must not be advanced before a 'return' to the Hard Parser. Therefore, the 'advance' attribute cannot be
set to 'yes' if nextproto is set to 'return' or not set at all (since 'return' is the default 'nextproto' value).

Child Elements: none

Example

<action type="exit"
 advance="yes"
 confirmcustom="shim2"

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
328 NXP Semiconductors

 confirm="no"
 nextproto="udp"/>

4.2.8.1.6.11.6 Expressions
Expressions are constructed of operands and operators. The simplest expression can contain just one operand. Most
operators are dyadic and separate two operands (such as +, -) and some operators are monadic and operate on just the
operand that follows them (such as 'not').
4.2.8.1.6.11.6.1 Operands

These are the supported types of operands: numbers, variables, fields, and expressions.

Note: The maximum size of an operand is 64 bits (8 bytes).

4.2.8.1.6.11.6.1.1 Numbers

Numbers can appear in decimal (no prefix), binary (prefixed by '0b'), or hexadecimal (prefixed by '0x') format.

All numbers are 64-bit unsigned integers. However, some operators only use the 32 LSB of a number.

Note: Immediate, primitive negative numbers are not supported. For example, the number -2 cannot appear in an expression.
However, artificial negative values can be created using arithmetic expressions such as 1-3 (which returns 0xfffffffe).

4.2.8.1.6.11.6.1.2 Fields

Fields are defined with the 'format' element in a custom protocol header definition. There are two ways to access a field, by typing
their name directly or by typing the name of the protocol header containing the field, followed by a period, followed by the name
of the field.

In the 'before' element, it is only possible to access fields in the previous protocol header; in the 'after' element, it is only possible
to access fields in the current custom protocol header.

Note: Fields longer than 8 bytes cannot be accessed individually. You can work around this limit by accessing the frame directly
using the frame window ($FW) variable or by splitting the field into several shorter fields.

Example

<protocol name="gptu" prevproto="#ethernet">
 <format>
 <fields>
 <field type="fixed" name="example" size="2"/>
 </fields>
 </format>

 <execute-code>
 <before>
 <assign-variable name="$l2r" value="ethernet.type"/>
 </before>

 <after>
 <assign-variable name="$shimoffset_2" value="example"/>
 </after>
 </execute-code>
</protocol>

4.2.8.1.6.11.6.1.3 Variables

All variable names begin with the $ prefix and are case-sensitive. These variables are supported: frame window, header size,
prevprotoOffset, parameter array, and result array variables.

4.2.8.1.6.11.6.1.3.1 Result Array Variables

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 329

Result array variables return values contained in the parse results array.

Syntax for accessing result array variables:

• $variableName - returns the entire variable

• $variableName[byteOffset:byteNumber] - Returns the byteNumber number of bytes in the variable starting from byteOffset.
This access method is useful for accessing a subset of the bytes in the variable. In bytesNumber equals zero, the entire
variable is returned, starting from byteOffset.

Example: The variable $actiondescriptor returns result array bytes 64-71. The expression $actiondescriptor[2:4] returns result
array bytes 66-69 since 66 is at offset 2 of the actiondescriptor variable and the requested size is 4. The expression
$actiondescriptor[3:0] returns result array bytes 67-71 since 67 is at offset 3 of the actiondescriptor variable and the requested
size is 0, which means return the entire variable starting at the specified offset (3).

Other usage: In addition to expressions, result array variables can be used in the left side of 'assign-variable' elements to modify
result array values.

Table 50. Result Array Variables on page 330shows the available result array variables .

Table 50. Result Array Variables

Variable Name Result Array Bytes Referenced

gpr1 0-7

gpr2 8-15

logicalportid 16-16

shimr 17-17

l2r 18-19

l3r 20-21

l4r 22-22

classificationplanid 23-23

nxthdr 24-25

runningsum 26-27

flags 28-28

fragoffset 28-29

routtype 30-30

rhp 31-31

ipvalid 31-31

shimoffset_1 32-32

shimoffset_2 33-33

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
330 NXP Semiconductors

Table 50. Result Array Variables (continued)

Variable Name Result Array Bytes Referenced

ip_pidoffset 34-34

ethoffset 35-35

llcs_napoffset 36-36

vlantcioffset_1 37-37

vlantcioffset_n 38-38

lastetypeoffset 39-39

pppoeoffset 40-40

mplsoffset_1 41-41

mplsoffset_n 42-42

ipoffset_1 43-43

ipoffset_n 44-44

minencapo 44-44

minencapoffset 44-44

greoffset 45-45

l4offset 46-46

nxthdroffset 47-47

framedescriptor1 48-55

framedescriptor2 56-63

actiondescriptor 64-71

ccbase 72-75

ks 76-76

hpnia 77-79

sperc 80-80

ipver 85-85

iplength 86-87

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 331

Table 50. Result Array Variables (continued)

Variable Name Result Array Bytes Referenced

icp 90-91

attr 92-92

nia 93-95

ipv4sa 96-99

ipv4da 100-103

ipv6sa1 96-103

ipv6sa2 104-111

ipv6da1 112-119

ipv6da2 120-127

Note: The $GPR2 variable is used internally by the FMC Tool to calculate complex expressions, including checksum calculations.
Using $GPR2 for other purposes is possible, but is not supported or recommended.

4.2.8.1.6.11.6.1.3.2 Parameter Array Variable

This variable returns data from the parameter array. Because the parameter array is more than 8 bytes long, you must specify
the particular bytes needed.

Accessing parameter array variables: $PA[byteOffset:byteNumber] - returns the byteNumber number of bytes in the parameter
array starting at byteOffset.

Example: The expression "$PA[4:2]" accesses the fifth and sixth bytes (indexed at PA[4] and PA[5]) of the parameter array.

4.2.8.1.6.11.6.1.3.3 Header Size Variables

Header size variables return the header size or default header size of a protocol header.

Accessing header size variables: $headerSize or $defaultHeaderSize

• In the 'before' element, the $headerSize of the previous protocol header is returned. Accessing $defaultHeaderSize is not
allowed.

• In the 'after' element, the $defaultHeaderSize variable returns the number of bytes in the custom protocol's format fields.
The $headerSize variable returns the headerSize as defined by the 'headersize' attribute of the 'after' element. If the user
has not specified a value for the 'headersize' attribute, $headerSize returns the same value as $defaultHeaderSize.

4.2.8.1.6.11.6.1.3.4 Frame Window Variable

The frame window variable ($FW) returns data from the frame array. In the 'before' element, the frame window variable returns
data from the previous protocol's header. In the 'after' element, the frame window variable returns data from the custom protocol
header.

Using the frame window variable: $variableName[bitOffset:bitNumber] - Returns the bitNumber number of bits in the frame header
starting from bitOffset.

Note: The frame window uses similar syntax to the parameter array and result array variables; however, the frame window variable
accesses bits instead of bytes.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
332 NXP Semiconductors

Examples

To access the tenth and eleventh bits in the frame array (indexed at FW[9], FW[10]), use "$FW[9:2]".

To access the entire third byte of the frame array, use "$FW[16:8]".

The conditions in the example below are always true because the same bits can be accessed using either the $FW variable or
header field names.

<format>
 <fields>
 <field type="bit" name="first" size="1" mask="0xE0"/>
 <field type="bit" name="second" size="1" mask="0x1"/>
 <field type="bit" name="third" size="1" mask="0xF"/>
 <field type="fixed" name="fourth" size="2"/>
 </fields>
</format>
...
<after>
 <if expr="first==$FW[0:3]"> ... </if>
 <if expr="second==$FW[7:1]"> ... </if>
 <if expr="third==$FW[8:4]"> ... </if>
 <if expr="fourth==$FW[16:16]"> ... </if>
</after>

4.2.8.1.6.11.6.1.3.5 The prevprotoOffset Variable

This variable returns the offset of the previous protocol's frame header. This variable has the same value in the 'before' and 'after'
sections and always refers to the protocol defined in the 'prevproto' attribute of the protocol element.

In the 'before' element, the frame window's current location is equal to prevprotoOffset. In the 'after' element. the frame window's
current location is equal to prevprotoOffset+headerSize.

Note: This variable is actually a "shortcut" to the result array and returns or modifies values taken directly from this array.

Table 51. Previous Protocol RA Return Values

If the previous protocol is ... The value returned from result array is ...

ethernet $ethoffset

gre $greoffset

ipv4, ipv6 $Ipoffset_n

llc_snap $llcsnapoffset

minencap $minencapoffset

mpls $mplsoffset_n

pppoe $pppoeoffset

tcp, udp, sctp, dccp, ipsec_ah, ipsec_esp $l4offset

vlan $vlanoffset_n

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 333

Table 51. Previous Protocol RA Return Values (continued)

If the previous protocol is ... The value returned from result array is ...

otherl3, otherl4 $NxtHdrOffset - When the previous protocol is otherl3 or other l4, the
custom protocol and the previous protocol have the same offset. See
Effect of Setting prevproto Attribute to otherl3 or otherl4 on page
320.

4.2.8.1.6.11.6.2 Operators

The parser supports many operators. These operators can receive arithmetic or logical operands and return an arithmetic or
logical value. An arithmetic value is a number, while a logical value is true or false. (See Arithmetic Expressions on page 338
and Logical Expressions on page 337 for more information.)

Table 52. Supported Operators and their Properties on page 334describes all operators and their associated properties. All dyadic
operators (operators which receive two parameters) appear between two operands. All monadic operators appear before an
operand.

Table 52. Supported Operators and their Properties

Name Parameters Description Symbol

Greater than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is greater
than the second

gt

Greater equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is equal to
or greater than the second

ge

Less than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is less than
the second

lt

Less equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is equal to
or less than the second

le

Equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are equal ==

Not equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are not equal !=

Logical AND Logical (Logical, Logical) Checks if both expressions are true and

Logical OR Logical (Logical, Logical) Checks if either one of the expressions is true or

Logical NOT Logical (Logical) Returns true if the expression is false; returns false
otherwise

not

Add 32-bit Arithmetic (32-bit Arithmetic,
32-bit arithmetic)

Return the sum of the expressions +

Subtract 32-bit arithmetic (32-bit Arithmetic,
32-bit arithmetic)

Return the difference between the two expressions
(result of subtraction)

-

Add carry 16-bit arithmetic (16-bit arithmetic,
16-bit arithmetic)

Return the sum of the two expressions summed with
the carry after 32bit

addc

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
334 NXP Semiconductors

Table 52. Supported Operators and their Properties (continued)

Name Parameters Description Symbol

Bitwise OR Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise OR operation on the
two expressions

bitwor

Bitwise XOR Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise XOR operation on the
two expressions

bitwxor

Bitwise AND Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise AND operation on the
two expressions

bitwand

Bitwise NOT Arithmetic (Arithmetic) Returns the result of a bitwise NOT operation on the
expression

bitwnot

Shift left Arithmetic (Arithmetic, Integer -
value up to 64 bits)

Return the left expression shifted left by the right
expression

shl

Shift right Arithmetic (Arithmetic, Integer -
value up to 64 bits)

Return the left expression shifted right by the right
expression

shr

Concat Arithmetic (Arithmetic, Variable or
Integer)

Special operator

See The concat Operator on page 335 for full
documentation

concat

Checksum Arithmetic (Arithmetic - value up to
0xffff, Arithmetic - value up to 256,
Arithmetic - value up to 256)

Special operator

See The checksum Operator on page 335 for full
documentation

checksum

4.2.8.1.6.11.6.2.1 The concat Operator

The concat operator shifts its first argument left and inserts its second argument to its right. The concat operation can be executed
on variables or integers. If the second argument is a variable, the first argument is shifted left according to the known size of the
variable. Result array variables have constant sizes and the size of the frame header's fields are set in the Custom Protocol file
or the Standard Protocol file.

If the user accesses only specific bits in the second argument, the first argument is shifted left only by the number of bits specified.

If the second argument is an integer, the first argument is shifted left by the smallest word size into which the integer fits: 16, 32,
48, or 64.

Note: The second argument of a concat operation cannot be an expression because the FMC Tool does not know the size of an
expression and therefore cannot shift the first argument properly. However, for expressions, you can replace the concat operation
with a shift operation (as long as you know the number of bits to shift) and a bitwise OR operation.

Note: You should use concat instead of shift/bitwise OR when working with variables and integers in order to reduce code size.

For example, the following IF expression is true:

<assign-variable name="$shimr" value="2"/>
<assign-variable name="$GPR1[6:2]" value="3"/>
<if expr="1 concat $shimr concat $GPR1[6:2] concat 0x40000 == 0x102000300040000">

4.2.8.1.6.11.6.2.2 The checksum Operator

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 335

The checksum operator is a special operator with unique behavior and syntax. It appears before three operands that have
parentheses around them. As a result, the concat operator looks like a function call - checksum(expression, integer, integer).

The first operand defines the initial checksum value. The second operand defines the frame window offset at which to start the
checksum (relative to the current frame window location). The third operand defines the length of the data in bytes on which the
checksum operation should be calculated.

Using these values, the checksum executes the add carry (addc) operation on 2-byte sized words in the frame window range
specified. If the range specified contains an odd number of bytes to be checksummed, the last byte is padded on the right with
zeros to form a 16-bit word for checksum purposes. The total sum is added to the initial checksum value using another addc
operation. Therefore, the first argument that defined the initial sum value must be smaller than 0xffff. The result of the final addc
operation is returned.

Note: Since it is only possible to access 256 bytes in the frame window, the last two arguments to the checksum operator must
be less than or equal to 256.

Example

Suppose we have the following frame and the custom protocol header begins at offset 0xE (where 4500 appears):

FFFF FFFF FFFF 0CCB CC0D DDDD 0800 4500 002E 0000 4000 402F
2AA2 1000 0000 FFFE 0001 0308 0900 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 DA95 36D6 6F15 778C

The following IF conditions will always be true:

<after>
 <if expr="checksum(0x30A2,2,7+2)==0xDAFF">
 ...
 </if>

 <if expr="checksum(0,0,20)==0xFFFF">
 ...
 </if>
</after>

The first checksum operation above performs the following calculation:

0x30A2 + (0x002E add 0x0000 addc 0x4000 addc 0x402F addc 0x2A00)

The second checksum operation performs the following calculation:

0x0000 + (0x4500 addc 0x002E addc 0x0000 addc 0x4000 addc 0x402F addc 0x2AA2
 addc 0x1000 addc 0x0000 addc 0xFFFE addc 0x0001)

4.2.8.1.6.11.6.2.3 Expression Priorities

Expressions containing multiple operators perform the operation according to the following rules, in the order shown:

1. Operations in parentheses are performed

2. Operations that have a higher priority are performed

3. Multiple operations with the same priority are then executed from left to right

Note: Parentheses are recommended when several operators appear in the same expression to ensure correct calculation.

4.2.8.1.6.11.6.2.4 Operator Precendence

If several operators appear in the same expression (without separating parentheses), they are performed in the following order:

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
336 NXP Semiconductors

1. NOT, bitwise NOT, checksum

2. add, subtract, add carry

3. bitwise AND, bitwise OR, bitwise XOR

4. shift right, shift left, concat

5. greater than, greater equal, less than, less equal, equal, not equal

6. AND, OR

4.2.8.1.6.11.6.2.5 Variable Size

In most operations, expression size is limited to 64 bits. However, there are a few exceptions:

• When shifting variables, the shift value must be less than or equal to 64 bits since there are only 64 bits in an expression.

• The add carry operation can only be performed on 16-bit variables and always returns a 16-bit variable. The Soft Parser
reports an error if an add carry operation is performed on a constant larger than 16 bits, but does not recognize a complex
expression larger than 16 bits. Therefore, it is the responsibility of the user to perform the operation on 16-bit variables
only.

• The subtract and add operators can only be performed on 32-bit variables and they always return a 32-bit result. If two 32-
bit expressions are added and their result is larger than 32 bits, only the carry is returned, such that the returned value is a
32-bit variable. The Soft Parser reports a warning if an add carry operation is performed on a constant larger than 32 bits,
but does not recognize a complex expression larger than 32 bits. Therefore, it is the responsibility of the user to perform
the operation on 32-bit variables only.

For example, the following IF expressions are always true:

•
<if expr="0xFFFFFFFF+2==0x1">

•
<if expr="0x123456781+3==0x123456784">

The following IF expression is false (and should not be used):

•
<if expr="3+0x123456781==0x123456784">

4.2.8.1.6.11.6.3 Expression Types

There are two main types of expressions: Logical expressions, which return "true" or "false", and arithmetic expressions, which
return a numeric result.

4.2.8.1.6.11.6.3.1 Logical Expressions

Logical expressions appear in the 'expr' attribute of the 'if' element.

These expressions always return "true" or "false" and, therefore, must use at least one logical operator that separates arithmetic
and logical operators.

Examples

The following expressions are logical expressions:

•
(4+1==$shimoffset_1 or 5!=$shimoffset_2)

•
not($shimoffset_2 ge $shimoffset_1 or $shimoffset_1 lt $shimoffset_2)

The following expressions are NOT logical expressions:

•
(7 gt 3 and 2+7)

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 337

•
(5 lt 8 or 7)

4.2.8.1.6.11.6.3.2 Arithmetic Expressions

Arithmetic expressions always have a numeric result. They can hold a single operand (a number, variable, or arithmetic
expression) or more than one operand separated by arithmetic operators. Logical operators are not allowed in arithmetic
expressions.

Arithmetic expressions can appear in the following places:

• The value attribute of the assign element

• The headersize attribute of the after element

• The expr attribute of the switch element

Examples

The following are arithmetic expressions:

•
($FW[0:16]+4)

•
($shimoffset_1 concat 3)

•
(3+7+8+$shimoffset_2)

•
4

The following is NOT an arithmetic expression:

•
4==$shimoffset_2

4.2.8.1.6.11.7 Tips and Recommendations
4.2.8.1.6.11.7.1 Result Array Fields that Must be Manually Updated

The FMC Tool lets you define custom protocol headers, and the Soft Parser parses these headers. However, the Soft Parser does
not update header fields for you (other than advancing the frame window and updating the line-up confirm vector (LCV) with the
previous protocol). (See The before Element on page 322, The after Element on page 322, and The action Element (for use in a
Custom Protocol file) on page 326 topics for more information.)

Therefore, some result array fields are left empty unless you manually update them. These fields might be needed in later stages
in order for the Soft Parser to correctly interpret the custom protocol header. A list of result array fields that should be updated
appears in the Frame Manager Parser section of the QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual.
These fields include $Classificationplanid, $nxtHdr, $Runningsum, HXS offsets, Last E Type Offset, and $nxtHdrOffset. Note that
the HXS offsets, $nxtHdr, and $nxtHdrOffset fields are also used internally by the Soft Parser; therefore, these fields should be
modified carefully.

The $nxtHdr fields should be modified only if the custom protocol does not jump to 'after_ip' or 'after_ethernet', or if you want to
change the next protocol when jumping to 'after_ip' or 'after_ethernet'. You should only modify the HXS offsets and next header
offsets in the 'after' element or in the 'before' element if the parser exits without advancing the frame window.

Finally, the LCV should be manually updated when a custom protocol is being parsed. This can be done using the 'confirmcustom'
attribute, which is available in the 'before', 'after', and 'action' elements.

4.2.8.1.6.11.7.2 Result Array Fields that Should Not be Modified

Some fields in the result array are for the Soft Parser's exclusive use and therefore should not be modified by the user. These
fields are:

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
338 NXP Semiconductors

• $GPR1 is used to store temporary values in complex operations; therefore, you should not modify it.

• $nxtHdr is used to calculate the position of the next protocol header when the 'protocol' element's 'nextproto' attribute is set
to 'next_ethernet' or 'next_ip'. Therefore, this variable should not be modified when 'nextproto' equals one of these values.

• $prevprotoOffset is used to advance the frame window between the 'before' and 'after' elements or when using the 'action'
element with the 'advance' attribute in the 'before' element. Therefore, this variable should not be modified in the 'before'
element unless the Soft Parser exits this element without advancing the frame window. In addition, $prevprotoOffset can
equal these result array variables: $ethoffset, $greoffset, $ipoffset_n, $llcsnapoffset, minencapoffset, mplsoffset_n,
pppoeoffset, l4offset, vlanoffset_n, and $nxtHdrOffset. As a result, these variable should also not be modified by code in
the 'before' element.

• $nxtHdrOffset is used to advance the frame window between the 'before' and 'after' elements or when using the 'action'
element with the 'advance' attribute in the 'before' element. Therefore, this variable should not be modified in the 'before'
element unless the Soft Parser exits this element without advancing the frame window.

4.2.8.1.6.11.7.3 Setting the Next Protocol

The Soft Parser can be used to add code for an existing protocol or to define an entirely new protocol. When it is used as an
extension for an existing protocol and no new frame headers are being parsed, the 'nextproto' attribute of the 'action' element
should be set to 'return'. In this case, the nextproto attribute can also be left empty since 'return' is the default value. If 'return' is
set, the Soft Parser will execute its code and then the Hard Parser will continue parsing at the same position in the frame header
at which it stopped.

When the Soft Parser is used for a custom protocol with its own header, the Hard Parser must skip this header (since it does not
know how to parse it) and, therefore, the next protocol must be set to a specific protocol. If the next protocol is unknown, the
'nextproto' attribute in the 'action' element can be set to 'after_ip' or 'after_ethernet'. In these cases, the next protocol header is
determined using the value of the $nxtHdr field.

Example

1. If we want to execute the Soft Parser because when we parse the Ethernet protocol, our code will likely include an action
similar to the action below, which will appear in the 'before' element.

<action type="exit" advance="no" next="return">

2. If we want to add a custom protocol after Ethernet and then jump to IPv6, our code will likely include an action similar to
the action below, which will appear in the 'after' element...

<action type="exit" advance="yes" next="ipv6">

3. If we want to add a custom protocol after the Ethernet header, and we do not know where to jump next, our code will
likely include an action similar to the action shown below, which will appear in the 'after' element. In this case when
"after_ethernet" is used as next protocol, $nxtHdr variable but be dynamically assigned accordingly from custom protocol
header by using next protocol and field names as value.

<assign-variable name="$nxtHdr" value="protocol.field"/>
<action type="exit" advance="yes" next="after_ethernet">

4.2.8.1.6.11.8 Limitations
This section discusses limitations you should consider when working with the FMC Tool's Soft Parser functionality.
4.2.8.1.6.11.8.1 Complex Expressions

Some expressions contain so many operations and parentheses that they are too complicated for the Soft Parser. If you receive
an error stating that an expression is too complex, it may be necessary to simplify the expression by splitting it into multiple, smaller
expressions, using parentheses, or storing temporary values in the result array variables.

Note: $GPR1 is recommended for storing temporary variables. Do not use $GPR2 for temporary variables because it is used
internally by the tool).

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 339

Note that the checksum operation expressions can easily become too complex and must be simplified.

4.2.8.1.6.12 NetPCD Reference
4.2.8.1.6.12.1 The netpcd element
The 'netpcd' element is the root element of a NetPCD document (also known as a policy file). As a result, the 'netpcd' element
must appear before any other NetPCD element.
4.2.8.1.6.12.1.1 netpcd Attribute Definitions

Table 53. netpcd Attribute Definitions

Attribute Requirement Description

name optional Free text. Use to describe the name and the purpose of the Policy file.

version="1.0" optional Version of the NetPCD DTD or XML schema.

Currently there is only one version - "1.0," which is the default.

creator optional Author's name

date optional Date the document was created

4.2.8.1.6.12.1.2 netpcd Example

<?xml version="1.0"?>
<netpcd version="1.0" name="Example" creator="Serge Lamikhov">
 <!-- Other NetPCD elements like 'policy', 'distribution', etc -->
 <policy name="ipv4">
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
 </policy>
</netpcd>

4.2.8.1.6.12.2 The policy element
The 'policy' element defines a prioritized list of distributions.

A policy element is assigned (via its name attribute) to a port or ports using markup in the Configuration file. Thus, the 'policy'
element is the means by which specific PCD rules defined in the Policy file are applied to traffic arriving on particular FMan ports.

Upon receipt of a frame on given port, the Hard Parser tries to match this frame to the distribution listed first in the policy assigned
to this port. If the frame matches, this distribution handles the frame. If the frame does not match, the Hard Parser next tries to
match the frame to the second distribution in the policy list. This process continues until a distribution in the list matches or no
more distributions are left in the policy element's list, in which case, the frame is placed on the FMan's default receive queue.

4.2.8.1.6.12.2.1 policy Attribute Definitions

Table 54. policy Attribute Definitions

Attribute Requirement Description

name required Name of the policy.

A port definition in the Configuration file references this name, thereby applying this
policy to all frames arriving on this port.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
340 NXP Semiconductors

4.2.8.1.6.12.2.2 policy Example

Policy File

<policy name="ipv4"> <!-- policy name is ipv4 -->
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

Configuration File

<cfgdata>
 <config>
 <engine="fm0">
 <port type="MAC" number="1" policy="ipv4"/> <!-- policy name ipv4 goes here -->
 </engine>
 </config>
</cfgdata>

4.2.8.1.6.12.3 The dist_order element
The 'dist_order' element is a container for a list of distribution references.

The Hard Parser chooses a particular distribution in this list at the moment when the protocol set made from the protocols
participating in a distribution is a subset of the protocols found in the current network packet.

The distribution reference list contained within 'dist_order' element is processing sequentially, and the first conforming distribution
is the distribution that is used. Thus, the order of distribution references is important.

4.2.8.1.6.12.3.1 dist_order Attribute Definitions

Table 55. dist_order Attribute Definitions

Attribute Requirement Description

none n/a n/a

4.2.8.1.6.12.3.2 dist_order Example

<policy name="ipv4">
 <dist_order>
 <distributionref name="tcp_dist"/>
 <distributionref name="udp_dist"/>
 <distributionref name="ethernet_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

Note: In this example, putting "ethernet_dist" (which is supposed to process network traffic other than TCP and UDP) above
"tcp_dist" will lead to all traffic be distributed according to "ethernet_dist" rule and no packets will reach "tcp_dist" or "udp_dist"
rules. This is because the Ethernet protocol is a part of TCP and UDP frames as well.

4.2.8.1.6.12.4 The distributionref element
The 'distributionref' element references a 'distribution' element by its name.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 341

The 'dist_order' element contains one or more 'distributionref' elements, thereby defining a prioritized list of distributions.

4.2.8.1.6.12.4.1 distributionref Attribute Definitions

Table 56. distributionref Attribute Definitions

Attribute Requirement Description

name required Name of the referenced 'distribution' element

4.2.8.1.6.12.4.2 distributionref Example

<policy name="ipv4">
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

4.2.8.1.6.12.5 The distribution element
The 'distribution' element is a container for child elements that define frame match rules and frame handling rules.

Frame match rules determine whether the current frame matches (and is therefore handled by) this distribution. Frame handling
rules define what action is performed on matching frames.

Use the 'protocols' element and/or the 'key' element to define frame match rules.

Use the 'action', 'key', 'queue', and 'combine' elements to define frame handling rules.

An 'action' element within a the distribution passes the frame to the specified Policy file element for further processing

The 'key', 'queue' and (optional) 'combine' elements within a distribution together provide inputs to a hash algorithm that distributes
frames evenly over a range of frame queues. The 'key' element defines the protocol header fields to use as the hash key, the
'queue' element defines the base value and number of FQIDs in the frame queue range, and the optional 'combine' elements
give you fine control over the exact FQIDs that the algorithm generates.

Note: You can use an 'action' element in the hash scenario described above to pass the frame to a policer profile, which may
abort the enqueue operation and drop the frame if traffic conditions warrant. In the absence of an 'action' element, frame
processing concludes (and the frame leaves the FMan) at the end of the 'distribution' element.

A distribution's frame queue ID calculation is performed as follows:

• A hash key is formed by extracting and concatenating the protocol header fields specified by the 'key' element.

• The result value is hashed to a 64-bit CRC.

• The number of least significant bits is taken based on the 'count' attribute of the 'queue' element.

• The resulting value is ORed with the data retrieved according to the 'combine' elements.

• The resulting value is ORed with the 'base' attribute value of the 'queue' element.

All child elements are optional. Appropriate hardware dependent default values are used in cases where a child element does
not exist in the 'distribution' definition.

4.2.8.1.6.12.5.1 distribution Attribute Definitions

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
342 NXP Semiconductors

Table 57. distribution Attribute Definitions

Attribute Requirement Description

name required Name of the distribution. Any references to a distribution are made using to this name.

description optional Free text describing the element purpose.

comment optional Free text providing any other information.

4.2.8.1.6.12.5.2 distribution Example

<distribution name="eth_dist" description="Ethernet protocol based distribution">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
 <combine portid="true" offset="10" mask="0xFF"/>
 <combine frame="112" offset="2" size="16" mask="0xFF"/>
 <action type="classification" name="eth_dest_clsf"/>
</distribution>

4.2.8.1.6.12.5.3 Default Groups

XML 'defaults' element is a container for parameters necessary for configuration of the default groups and private default registers.
The element, if it exists, can be used as a child of element 'distribution'. This element contains a list of ‘default’ elements.

Table 58. 'default' Elements Attributes:

Attribute Requirement Description

private0 optional The scheme default register 0.

private1 optional The scheme default register 1.

Element 'default' attributes. This element can appear as a child to the element 'defaults':

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 343

Table 59. 'default' Element Attributes:

Attribute Requirement Description

type required Default type select. Possible values are:

1. "from_data” – any data extraction that is not one of the full fields
that can be used as type.

2. "from_data_no_v” – any data extraction without validation.

3. "not_from_data” – extraction from parser result or direct use of
default value.

4. "mac_addr” – MAC Address.

5. "tci” – TCI field.

6. "enet_type” – ENET Type.

7. "ppp_session_id” – PPP Session id.

8. "ppp_protocol_id” – PPP Protocol id.

9. "mpls_label” – MPLS Label.

10. "ip_addr” – IP Addr.

11. "protocol_type” – Protocol type.

12. "ip_tos_tc” – TOC or TC.

13. "ipv6_flow_label” – IPV6 flow label.

14. "ipsec_spi” – IPSEC SPI.

15. "l4_port” – L4 Port.

16. "tcp_flag” – TCP Flag

select required Default register select. Possible values are:

1. "gbl0” – Default selection is KG register 0.

2. "gbl1” – Default selection is KG register 1.

3. "private0” – Default selection is a per scheme register 0.

4. "private1” – Default selection is a per scheme register 1

Here is an example of possible default groups and nonheader definition:

<distribution name="Distribution1">
 <queue base="1" count="8"/>
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 <fieldref name="ipv4.nextp"/>
 <nonheader source="default" offset="0" size="4"/>
 </key>
 <defaults private0="0xAAAAAAAA">
 <default type="from_data" select="private0"/>
 <default type="from_data_no_v" select="private0"/>
 <default type="not_from_data" select="private0"/>
 </defaults>
 <action type="drop"/>
</distribution>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
344 NXP Semiconductors

4.2.8.1.6.12.6 The key element
The 'key' element contains a list of 'fieldref' elements. The 'filedref' elements define the protocol header fields whose values are
concatenated to form a hash key. The Key Gen sub block hashes this key and uses a portion of the result in its frame queue ID
(FQID) calculation.
4.2.8.1.6.12.6.1 key Attribute Definitions

Table 60. key Attribute Definitions

Attribute Requirement Description

shift optional Defines the amount by which the concatenation of the fields in the 'key' element are
right shifted. The default value is zero.

Note: The 'shift' attribute is ignored if the 'key' elements appears within a 'classification'
element.

symmetric optional Generate the same hash for frames with swapped source and destination fields on all
layers. If source is selected, destination must also be selected, and vice versa.

4.2.8.1.6.12.6.2 key Example

<key shift="16">
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
</key>

4.2.8.1.6.12.7 The fieldref element
The 'fieldref' element refers to a protocol header field by its name.

The Standard Protocol file contains the names of the available protocols and their fields. This file is named hxs_pdl_v3.xml and
is in the directory /etc/fmc/config/.

4.2.8.1.6.12.7.1 fieldref Attribute Definitions

Table 61. fieldref Attribute Definitions

Attribute Requirement Description

name required The referenced field name.

The field's name should be provided in the form of "protocolname.fieldname".

4.2.8.1.6.12.7.2 fieldref Example

<key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
</key>

4.2.8.1.6.12.8 The queue element
The 'queue' element defines the number of queues (default is one) and the base value for the FQIDs for these queues.

When used within a 'distribution' element, the 'queue' element defines a range of queues over which to evenly distribute frames.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 345

When used within other elements, such as a 'classification' element, the 'queue' element defines the single queue on which to
place a frame.

4.2.8.1.6.12.8.1 queue Attribute Definitions

Table 62. queue Attribute Definitions

Attribute Requirement Description

base required The base frame queue ID value.

count optional This attribute is only relevant only when a 'queue' element appears within a 'distribution'
element. In this case, the 'count' attribute defines the number of frame queues over
which to distribute frames.

Valid values for 'count' are powers of 2. The default value is 1.

4.2.8.1.6.12.8.2 queue Example

<distribution name="eth_dist">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
</distribution>

4.2.8.1.6.12.9 The protocols and protocolref elements
The 'protocols' and 'protocolref' elements are used together to extend a 'distribution' element's frame match conditions.

As explained in the 'dist_order' description, a distribution is chosen based on the set of protocols specified in its 'key' element.
The 'protocols' and 'protocolref' elements let you extend this set of protocols beyond those listed in the 'key' element.

4.2.8.1.6.12.9.1 protocols and protocolref Attribute Definitions

Table 63. protocols and protocolref Attribute Definitions

Attribute Requirement Description

name required The name of the protocol.

opt optional Applicable only for protocolref attribute

Use it in a scheme for detecting protocols with the chosen options (e.g. to detect
ETHERNET with BROADCAST or MULTICAST option)

Table 2 contains all possible values. The values are grouped, each group being
separated by a blank row. Values from different groups can be ORed

Table 64. Protocol options. Groups are separated by empty rows.

Value Description

0x800000
00

Ethernet Broadcast

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
346 NXP Semiconductors

Table 64. Protocol options. Groups are separated by empty rows. (continued)

Value Description

0x400000
00

Ethernet Multicast

0x200000
00

Stacked VLAN

0x100000
00

Stacked MPLS

0x080000
00

IPv4 Broadcast

0x040000
00

IPv4 Multicast

0x020000
00

Tunneled IPv4 - Unicast

0x0100000
0

Tunneled IPv4 - Broadcast/Multicast

0x000000
08

IPV4 reassembly option. When using this option, the IPV4 Reassembly manipulation requires network environment
with IPV4 header

0x008000
00

IPv6 Multicast

0x004000
00

Tunneled IPv6 - Unicast

0x002000
00

Tunneled IPv6 - Multicast

0x000000
04

IPV6 reassembly option. When using this option, the IPV6 Reassembly manipulation requires network environment
with IPV6 header.In case where fragment found, the fragment-extension offset may be found at 'shim2' (in parser-
result).

0x000000
08

CAPWAP reassembly option. When using this option, the CAPWAP Reassembly manipulation requires network
environment with CAPWAP header. In case where fragment found, the fragment-extension offset may be found at
'shim2' (in parser-result).

4.2.8.1.6.12.9.2 protocols and protocolref Example

<!-- The example demonstrates the case in which -->
<!-- frame queue ID calculation is done using Ethernet header fields, -->

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 347

<!-- but the condition for matching a frame to this distribution is -->
<!-- extended by also requiring the presence of a UDP protocol header -->
<distribution name="eth_dist">
 <protocols>
 <protocolref name="udp" opt="0x00000008"/>
 </protocols>

 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
</distribution>

4.2.8.1.6.12.10 The combine element
The 'combine' element (like the 'key' element) is used in a 'distribution' element's frame queue ID calculation. The value built by
the 'key' element is hashed, but the value of the 'combine' element is directly bitwised OR'd with the previous 24-bit FQID
result.

A single 'combine' element identifies just one byte to retrieve and OR. To work around this limitation, you can have multiple
'combine' elements in a 'distribution' element.

4.2.8.1.6.12.10.1 combine Attribute Definitions

Table 65. combine Attribute Definitions

Attribute Requirement Description

portid required (in
absence of
frame attribute)

Valid values: true or false

If true, this attribute indicates that the logical port ID byte specified in the Configuration
file should be retrieved and used in the bitwise OR part of a distribution's FQID
calculation.

Note that portid and frame are mutually exclusive attributes.

frame required (in
absence of
portid attribute)

Valid values: numeric string

This attribute identifies the byte with the frame header to extract and use in the bitwise
OR part of the FQID calculation. The attribute's value indicates the bit offset from the
beginning of the frame. The specified value must be divisible by 8, so it references the
first bit of a byte.

Note that portid and frame are mutually exclusive attributes.

offset optional This attribute controls the placement of the extracted data in the result Frame Queue
ID. The offset starts at the FQID's most significant bit.

mask optional This attribute defines valid bits in the retrieved value. The extracted value is bitwise
ANDed with the mask prior to being ORed with the previous Frame Queue ID value.

4.2.8.1.6.12.10.2 combine Example

<distribution name="eth_dist">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
348 NXP Semiconductors

 </key>
 <combine portid="true" offset="10" mask="0xFF"/>
 <combine frame="64" offset="2" mask="0xFF"/>
 <action type="classification" name="eth_dest_clsf"/>
</distribution>

4.2.8.1.6.12.11 The action element (for use in a policy file)
The 'action' element permits you to establish a topological parse, classify, police, distribute configuration by defining the next
processing element within a distribution, classification, or policer profile.

If there is no 'action' element within a distribution, classification, or policer profile, the default behavior is the completion of PCD
frame processing, allowing the frame to leave the Frame Manager. Some hardware restrictions apply in the choice of the next
processing element.

4.2.8.1.6.12.11.1 action Attribute Definitions

Table 66. action Attribute Definitions

Attribute Requirement Description

type required The type of the 'action' element defines the next processing element.

Valid values are:

• "distribution"

• "classification"

• "policer"

• "drop" (Permitted only when the 'action' element is inside a 'policer' element.)

name required The name of the element of the type defined in the 'type' attribute. This attribute is
not relevant if type is "drop".

condition required (when used
within a 'policer' element)
optional (when used
within a 'distribution' or
'classification' element)

This attribute defines the condition under which the 'action' is to be taken. This
attribute is only relevant when used inside a 'policer' or a 'classification' element.

Valid values are:

• "on-green"

• "on-yellow"

• "on-red"

• "on-miss"

4.2.8.1.6.12.11.2 Statistics

Attribute 'statistics' for action element of the classification and classification entries. This tells if statistics are made on that entry
or on the on-miss.

Table 67. 'statistics' Element Attributes:

Attribute Requirement Description

statistics optional Enable statistics for a particular action. Possible values
are:

• enable/yes/true – to enable it.

• disable

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 349

4.2.8.1.6.12.11.3 action Example

<distribution name="special_dist">
 <queue count="1" base="0xABCD"/>
 <action type="policer" name="policer2"/>
</distribution>

<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>1000000</CIR>
 <EIR>1400000</EIR>
 <CBS>1000000</CBS>
 <EBS>1400000</EBS>
 <unit>packet</unit>
 <action condition="on-green" type="distribution" name="special2_dist"/>
 <action condition="on-yellow" type="drop"/>
 <action condition="on-red" type="drop"/>
</policer>

4.2.8.1.6.12.12 The classification element
The 'classification' element allows exact match frame processing.

A classification starts with a 'classification' element, which is a container for these child elements:

• A 'key' element that defines the header fields (in protocol.field form) to use in the exact match operation

• One or more 'entry' elements, each of which defines a value to which the specified fields are compared and a 'queue'
and/or 'action' element that defines what to do with the frame upon a match

• An optional 'action' element that defines the default action to take if none of the exact match conditions is met

4.2.8.1.6.12.12.1 classification Attribute Definitions

Table 68. classification Attribute Definitions

Attribute Requirement Description

name required The name of the classification

4.2.8.1.6.12.12.2 classification Statistics

The statistics are enabled on the Classification element. The parameters to setup the statistics are: - the attribute statistics of
the element classification, the attribute statistics of the actions on entries/on-miss and the element framelength with attributes
index and value.

Attribute ‘statistics’ for classification – this specifies the type of statistic used in the entire classification

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
350 NXP Semiconductors

Table 69. 'statistics' Element Attributes:

Attribute Requirement Description

statistics optional Choose statistic mode for the particular entry. Possible
values are:

• none

• frame

• byteframe

• rmon

4.2.8.1.6.12.12.3 classification Example

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>

 <entry>
 <data>0x1234567890AB1234567890AB</data>
 <queue base="0x550000"/>
 </entry>

 <entry>
 <data>0xFFFFFFFFFFFFFFFFFFFFFFFF</data>
 <action type="classification" name="eth_dest_2_clsf"/>
 </entry>

 <action condition="on-miss" type="distribution" name="default_dist"/>
</classification>

4.2.8.1.6.12.12.4 Frame Replicators
The element replicator is implemented in FMC as a standalone entity.

This element can follow a Classification in the flow, as a target for one of the actions of the entries or on the on-miss. It is similar
to Classification but it has no data/mask in entries, on-miss action and key element.

Table 70. 'fragmentation' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the
frame replicator.

max optional The maximum number of entries the frame replicator
can have (default and minimum is 2). If the value
entered is smaller than 2 or the attribute is not set, the
value is set to 2.

The element entry has the same syntax as the element classification, but the data and mask are not needed and thus are
ignored. The action targets of the entry are restricted to:

• policer

• enqueue

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 351

• direct distribution

replicator example:

 <replicator name="frep_1" max="32">
 <entry>
 <action type="policer" name="policer_1"/>
 </entry>
 <entry>
 <queue base="0x0"/>
 <action type="distribution" name="dist_1"/>
 </entry>
 <entry>
 <queue base="0x220"/>
 <vsp name=”vsp01”>
 </entry>
 <entry>
 <queue base="0x240"/>
 <vsp base=”2”>
 </entry>
 </replicator>

Using the frame replicator in an action:

 <classification name="class_1" max="0" masks="yes">
 <key>
 <fieldref name="ethernet.type"/>
 </key>
 <entry>
 <data>0x8870</data>
 <queue base="0x01"/>
 <action type="replicator" name="frep_1"/>
 </entry>
 <action condition="on-miss" type="replicator" name="frep_1"/>
 </classification>

4.2.8.1.6.12.12.5 framelength Statistics

Element framelength attributes (there can be up to 10 values set, in ascending order and last one must be 0xFFFF). The element
framelength is valid only for RMON statistics.

Table 71. 'framelength' Element Attributes:

Attribute Requirement Description

statistics required The index for the frame length value specified. Possible
values are from 0 to 9.

value required The value to be added at the specified index. Maximum
value is 0xFFFF and must be added at index 9. (FMC
sets it initially by default).

4.2.8.1.6.12.12.6 Statistics Example

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
352 NXP Semiconductors

Statistics Example

<!-- Coarse classification -->
 <classification name="classif_1" max="32" masks="yes" statistics="rmon">
 <!-- Key value to be extracted from the packet -->
 <key>
 <fieldref name="ipv4.dst"/>
 </key>

 <framelength index="0" value="0x1100"/>
 <framelength index="1" value="0x1200"/>
 <framelength index="2" value="0x1300"/>
 <framelength index="3" value="0x1400"/>
 <framelength index="4" value="0x1500"/>
 <framelength index="5" value="0x1600"/>
 <framelength index="6" value="0x1700"/>
 <framelength index="7" value="0x1800"/>
 <framelength index="8" value="0x1900"/>
 <framelength index="9" value="0xFFFF"/>

 <!-- Entries in the lookup table -->
 <entry>
 <!-- 192.168.10.10 -->
 <data>0xC0A80A0A</data>
 <queue base="0x1010"/>
 <action statistics="enable"/>
 </entry>
 </classification>

4.2.8.1.6.12.12.7 Coarse Classification Resource Reservation

FMD API changes allow pre-allocation of MURAM memory for classification tables. This will be reflected in NetPCD XML syntax
extension by introducing attibutes max and masks of the element classification as shown in the example below. In addition, to
allow proper order of PCD elements initialization, and for the condition that not all entry elements are known at initialization time,
the XML element may-use is introduced:

 <!-- Coarse classification -->
 <classification name="classif_1" max="32" masks="yes" statistics="mode">
 <!-- Key value to be extracted from the packet -->
 <key>
 <fieldref name="ipv4.dst"/>
 </key>

 <may-use>
 <action type="classification" name="fman_test_classif_1"/>
 <action type="distribution" name="default_dist"/>
 </may-use>

 <!-- Entries in the lookup table -->
 <entry>
 <!-- 192.168.10.10 -->
 <data>0xC0A80A0A</data>
 <queue base="0x1010"/>
 </entry>
 </classification>

Resource Allocation Attributes:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 353

Table 72. Resource Reservation Attributes:

Attribute Requirement Description

max optional If it exists, this parameter defines the maximum number of coarse
classification entries allocated for this PCD element.

The element classification may still contain pre-

initialized entries, or, alternatively, be empty.

 NOTE

For the case of empty or partially initialized element

classification, usage of the element may-use might

be required .

 NOTE

masks optional If provided, indicates that MURAM allocation should be done with the
assumption that additional memory is required for an elements’ masks.
Possible values are:

• no – don’t allocate memory for masks (default)

• yes – allocate memory for masks.

'may-use Element Description:

Table 73. 'may-use' Element Attributes:

Attribute Requirement Description

may-use optional Contains list of ‘action’ elements that may appear in the ‘classification’
entries or, be applied dynamically after partial initial configuration.

Attention: the use of this element is required if initial

‘classification’ is empty and dynamic entries, added

through FMD API, use those PCD entities

 NOTE

4.2.8.1.6.12.13 The entry element
The 'entry' element defines:

• the value to use in an exact match comparison with the fields specified by the 'key' element in a classification

• the action to be taken upon a match

An 'entry' element contains a 'data' element which, in turn, contains a numeric value written in hexadecimal form (that is, with a
"0x" prefix). The data length of this value is determined by length of the set of 'key' fields.

In addition to the 'data' element, each 'entry' element may also contain these elements:

• queue - causes the frame to be placed on the specified queue

• action - passes the frame to the specified element within the Policy file for further processing.

• mask - a value in hexadecimal format that is applied to the data element

4.2.8.1.6.12.13.1 entry Attribute Definitions

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
354 NXP Semiconductors

Table 74. entry Attribute Definitions

Attribute Requirement Description

none n/a n/a

4.2.8.1.6.12.13.2 entry Example

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>

 <entry>
 <data>0x1234567890AB1234567890AB</data>
 <queue base="0x550000"/>
 </entry>
</classification>

4.2.8.1.6.12.14 The policer element
The 'policer' element is a container whose child elements define a policer profile that performs network bandwidth
management.
4.2.8.1.6.12.14.1 policer Attribute Definitions

Table 75. policer Attribute Definitions

Attribute Requirement Description

name required Name of the policer profile.

algorithm required Algorithm used for policing. Valid values: "rfc2698", "rfc4115", pass_through".

color_mode required Color mode used for policing. Valid values: "color_aware", "color_blind".

default_color optional Use when algorithm is "pass_through" and color_mode is "color_blind". In this mode,
the policer re-colors incoming packets with the specified default color.

Valid values: "red", "yellow", "green", or "override".

If the value is override, the next invoked action is that specified for "green".

The default value is "green".

unit required The unit to be used for numeric parameters. Valid values: "packet", "byte".

CIR required Committed information rate1

PIR required Peak (or excess) information rate1

CBS required Committed burst size2

PBS required Peak (or excess) burst size2

1. If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/
second.

2. If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 355

4.2.8.1.6.12.14.2 policer Example

<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>1000000</CIR>
 <EIR>1400000</EIR>
 <CBS>1000000</CBS>
 <EBS>1400000</EBS>
 <unit>packet</unit>
 <action condition="on-green" type="distribution" name="default_dist"/>
 <action condition="on-yellow" type="distribution" name="special2_dist"/>
 <action condition="on-red" type="drop"/>
</policer>

4.2.8.1.6.12.15 The nonheader element
Use the 'nonheader' element within a 'key' element to select a non-header extraction source.

Note: The 'nonheader' element can appear within a 'classification' element only. Further, the 'nonheader' element cannot be used
at the same time as the 'fieldref' element.

4.2.8.1.6.12.15.1 nonheader Attribute Definitions

Table 76. nonheader Attribute Definitions

Attribute Requirement Description

source required Non-header extraction source

Valid values are:

• "frame_start" - Extract from beginning of frame.

• "key" - Extract from key value built by ‘distribution’ at preceding step (CC only).

• "hash" - Extract from hash value built by ‘distribution’ at preceding step (CC only).

• "parser" - Extract from parse result array.

• "fqid" - Use enqueue FQID as the key value.

• "flowid" - Use dequeue FQID as the key value (CC only)

• "default" - Extract from a default value (distribution only).

• "endofparse" - Extract from the point where parsing had finished (distribution
only).

action Required if
source is "hash",
"flowid" or "key".
In other cases,
this attribute
must not be
used.

The type of action for the extraction

Valid values are:

• "indexed_lookup" (permitted only for "hash" and "flowid" sources). The extracted
value is interpreted as an entry index of classification table

• "exact_match" (permitted only for "key" and "hash" sources). The extracted value
is compared with ‘key’ value of the entry.

offset required Byte offset. Offset of key from start of frame, internal frame context or parse result array.
Refer “Table 8-398. Table Descriptor (Type = 01)” of DPAA Reference Manual for full
description and possible values

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
356 NXP Semiconductors

Table 76. nonheader Attribute Definitions (continued)

Attribute Requirement Description

size required Size of the key in bytes.

ic_index_mask Optional

(Valid only if
action is
"indexed_lookup
")

Internal context index mask. For the full description and possible values, refer “Table
8-399. Operation Code Description” of DPAA Reference Manual

If the action is “indexed_lookup” and the source is “hash” special checks are done in the drivers on the configured entries and
maximum nuber of entries according to the internal context index mask specified. FMC is adjusting automatically the configured
entries if they don’t match the provided mask: if the entry must be initialized but the user didn’t supplied it a default one is created
and if the entry must be uninitialized it’s deleted by FMC. Also FMC ajdusts the maxim number of entries if it’s not configured as
0.

4.2.8.1.6.12.15.2 nonheader Example

<classification name="ptp_condition_class">
 <key>
 <nonheader source="hash" action="indexed_lookup" offset="2" size="2" ic_index_mask="0x01b0">
 </key>

 <entry>
 <data>0x13F</data>
 <queue base="0x01"/>
 </entry>
</classification>

4.2.8.1.6.12.16 Hash Tables
The element 'hashtable' can be specified inside an element 'key' of a 'classification'. The element 'hashtable' cannot appear in
the same time with either elements 'fieldref' or 'nonheader' in the same 'key'. If the element 'hashtable' is used, the 'classification'
may have no entries as these are supposed to be filled at runtime.

Table 77. 'fragmentation' Element Attributes:

Attribute Requirement Description

mask required Mask that will be used on the hash-result; The number-of-sets for this
hash will be calculated as (2^(number of bits set in 'mask ')); The 4 lower
bits must be cleared.

hashshift optional Byte offset from the beginning of the KeyGen hash result to the 2-bytes to
be used as hash index.(Default 0)

keysize required Size of the exact match keys held by the hash buckets.

Hash table example:

<classification name="classif_1" max="2" statistics="none">
 <key>
 <hashtable mask="0x30" hashshift="0" keysize="24"/>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 357

 </key>
</classification>

4.2.8.1.6.12.17 Virtual Storage Profiles Element
The element 'vsp' (Virtual Storage Profile) is implemented in FMC as a standalone entity or can be defined directly in the element
that uses it. The element 'vsp'can be used inside distributions, classification and entries (both classification and replicator). When
used directly in the ‘classification’ element (not in ‘entry’) it counts for the on-miss action. If the 'action' of the 'entry' or on-miss
goes to another 'classification' or 'replicator' the 'vsp' is ignored.

4.2.8.1.6.12.17.1 vsp Attributes

Table 78. 'vsp' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the virtual storage
profile inside the elements that are using it.

type optional The type of the VSP. Values:

• direct – (default) the relative profile ID is selected directly by the
‘base’ attribute.

• indirect – the relative profile ID is selected base on the attributes
fqshift, vspoffset, and vspcount can be used only in
distribution.

base required for direct. --

fqshift required for indirect. Shift of KeyGen results without the FQID base.

vspoffset optional for indirect OR of KeyGen results without the FQID base; should indicate the
storage profile offset within the port's storage profiles window.

vspcount optional for indirect Range of profiles starting at base.

4.2.8.1.6.12.17.2 vsp Examples

VSP examples (standalone, defined in element, direct/indirect): The action targets of the entry are restricted to:

<vsp name = "storage01" base = "6"/>
<vsp name = "storage02" type = "indirect" fqshift="2" vspoffset="3" vspcount="8"/>
<vsp name = "storage03" type = "direct" base = "7"/>

Usage:

...

<entry>
 <queue base="0x220"/>
 <vsp name=”storage01”>
</entry>

...

<distribution name="dist1">
 ...
 <queue count="8" base="0x230"/>
 <vsp type=”indirect” fqshift=”2” vspoffset=”0” vspcount=”4”/>
 ...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
358 NXP Semiconductors

</distribution>

...

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>
...
 <vsp name=”storage03”>
 <action condition="on-miss" type="distribution" name="garbage"/>
</classification>

4.2.8.1.6.12.18 Manipulation Parameters
Frame Manager accelerator (FMan) attaches manipulation actions as an extension to ethernet port and coarse classification ‘next
engine’ dispatch activity.

To reflect the frame data processing and manipulation capabilities of the hardware, which are propagated through Frame Manager
Driver (FMD) API, Frame Manager Configuration (FMC) Tool extends the syntax of the NetPCD configuration language by
introducing XML entities described in this document.

Manipulation entities are diverse in their purpose and configuration parameters sets. The same manipulation entity can be referred,
or attached, from/to several port or classification actions. That is why they are separated from their usage into a separate group
called manipulations. At the moment of use, an action refers to the corresponding manipulation entity. For example:

<netpcd>
 <manipulations>
 <reassembly name=”name1”>

 </reassembly>
 <reassembly name=”name2”>

 </reassembly>
 <fragmentation name=”defrag1”>

 </fragmentation>
 </manipulations>

 <classification name=”clsf1”>

 <!-- 192.168.30.30 -->
 <data>0xC0A81E1E</data>
 <fragmentation name=”defrag1”/>

 </classification>

</netpcd>

Formal Definition:

XML element manipulation is a container for all types of manipulation algorithms. Configuration for each algorithm has its own
XML element name.

Currently three manipulations algorithms are available:

1. IP reassembly

2. IP fragmentation

3. header manipulation

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 359

Parameters for these entities are described next.

4.2.8.1.6.12.18.1 IP Fragmentation

XML element fragmentation is a container for parameters necessary for configuration of the corresponding action modification.
The element, if exists, can be used as a child of element classification.

Attention: If element fragmentation is present together with other ‘action’ of ‘classification’ element, the element fragmentation
is ignored. This is a subject of FMan firmware capabilities and may change in future.

Table 79. 'fragmentation' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the manipulation
algorithm.

Table 80. 'fragmentation' Child Elements:

Attribute Requirement Description

size required IP fragmentation will be executed for frames with length greater than this
value.

dontFragAction optional If an IP packet is larger than MTU and its DF bit is set, then this field will
determine the action to be taken. Possible values are:

• discard - the packet (default action)

• fragment – fragment the packet and continue normal processing

• continue - continue normal processing without fragmenting the
packet

scratchBpid required for existing HW
platforms, but not for
9164

Absolute buffer pool id according to BM configuration (DPAA 1.0 only)

sgBpid optional Scatter/Gather buffer pool id. If used sgBpidEn will be set to TRUE.

optionsCounterEn optional Enables the counter if the value is set to ‘yes’, ‘true’ or ‘enable’. Disabled
for other values. Default is disabled.

Here is an example of possible IP fragmentation definition:

<manipulations>
 <fragmentation name=”frag1”>
 <size>256</size>
 <dontFragAction>continue</dontFragAction>
 </fragmentation>
</manipulations>

<classification name=”clsf1”>

 <!-- 192.168.30.30 -->
 <data>0xC0A81E1E</data>
 <fragmentation name=”frag1”/>

</classification>

4.2.8.1.6.12.18.2 IP Reassembly

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
360 NXP Semiconductors

XML element reassembly is a container for parameters necessary for configuration of the corresponding action modification.
The element, if it exists, can be used as a child of the element policy.

Attention: Up to 2 additional KeyGen schemes will be constructed when using this manipulation action. Custom protocol shim2
is reserved when element reassembly participates in a configuration.

Table 81. 'reassembly' Element Attributes:

Attribute Requirement Description

Name required Name of the element. The name is used to refer the manipulation
algorithm

Table 82. 'reassembly' Child Elements:

Attribute Requirement Description

sgBpid required Absolute buffer pool id according to BM configuration for scatter-gather
(DPAA 1.0 only)

maxInProcess required Number of frames which can be processed by reassembly at the same
time. It has to be power of 2

dataLiodnOffset optional Offset of LIODN. Default value is 0

dataMemId optional Memory partition ID for data buffers

ipv4minFragSize required Minimum fragmentation size for IPv4

ipv6minFragSize required EMinimum fragmentation size for IPv6. The value must be equal or
higher than 256

timeOutMode optional Expiration delay initialized by Reassembly process. Possible values are:

• frame - limits the time of the reassembly process from the first
fragment to the last (default)

• fragment - limits the time of receiving the fragment

fqidForTimeOutFrames required FQID to assign for frames enqueued during Time Out Process.

numOfFramesPerHash
Entry
(numOfFramesPerHash
Entry1)

required Number of frames per hash entry needed for reassembly process – for
ipv4. Possible values are: numeric values from 1 to 8.

numOfFramesPerHash
Entry2

optional Number of frames per hash entry needed for reassembly process – for
ipv6. Possible values are: numeric values from 1 to 6.

timeoutThreshold required Represents the time interval in microseconds which defines if opened
frame (at least one fragment was processed but not all the fragments)is
found as too old

nonConsistentSpFqid optional Handles the case when other fragments of the frame corresponds to a
different storage profile than the opening fragment. (DPAA >= 1.1 only).
Default is 0

Here is an example of possible IP reassembly definition:

<manipulations>
 <reassembly name=”reasm1”>
 <sgBpid>2</sgBpid>
 <maxInProcess>1024</maxInProcess>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 361

 <timeOutMode>fragment</timeOutMode>
 <fqidForTimeOutFrames>1024</fqidForTimeOutFrames>
 <numOfFramesPerHashEntry>8</numOfFramesPerHashEntry>
 <timeoutThreshold>1000000</timeoutThreshold>
 <ipv4minFragSize>0</ipv4minFragSize>
 <ipv6minFragSize>256</ipv6minFragSize>
 </reassembly>
</manipulations>

<policy name="udp_port">
 <dist_order>
 <distributionref name="custom_dist"/>
 <distributionref name="udp_port_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>

 <reassembly name=”reasm1”/>
</policy>

4.2.8.1.6.12.18.3 Header Manipulation

XML element header is a container for parameters necessary for configuration of the corresponding action modification. The
element, if it exists, can be used as parameter to the distribution action going to a classification or inside a classification element
entry.

The XML element header may contain:

• insert

• remove

• insert_header

• remove_header

• update

• custom

Certain combinations between them are possible, for example you can have a remove and an insert_header in the same
manipulation.

The header manipulation can be used inside the PCD by inserting an element header in the classification entry that specifies
the name of the header manipulation defined in the section manipulations. This makes sense in a entry that goes to a policer,
distribution or PCD done:

 <entry>
 <data>0x9100</data>
 <queue base="0x01"/>
 <action type="policer" name="plcr_01"/>
 <header name="upd_hdr"/>
 </entry>

Table 83. 'header' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the manipulation
algorithm

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
362 NXP Semiconductors

Table 83. 'header' Element Attributes: (continued)

Attribute Requirement Description

parse optional Activate the parser a second time after completing the manipulation of
the frame (if ‘yes’)

duplicate optional Will duplicate the header manipulation with the same setting a the
specified number of times. The names of the nodes will have “_x” added
at the end where x is the index of the node. For example <header
name=”upd_ipv4” duplicate=”3”> will create the nodes: upd_ipv4_1,
upd_ipv4_2 and upd_ipv4_3. This is only a simple tool to duplicate a
header manipulation, it does not allow defining chaining between the
elements created by duplication.

4.2.8.1.6.12.18.3.1 Header Manipulation - Insert

XML element insert is a container for parameters necessary to configure a header insert manipulation operation. The element,
if it exists, can be used as a child of element header. There can be only one element insert in a header manipulation.

Table 84. 'insert' Child Elements:

Element Requirement Description

size required Size of inserted section

offset required Offset from beginning of header to the start location of the insertion.

replace optional If provided, specifies to override (replace) existing data at 'offset' (if ‘yes’),
‘no’ to insert. Possible values:

• no - insert (default)

• yes - replace

data required Data to insert

4.2.8.1.6.12.18.3.2 Header Manipulation - Remove

XML element remove is a container for parameters necessary to configure a header remove manipulation operation. The element,
if it exists can be used as a child of element header. There can only be one element remove in a header manipulation.

Table 85. 'remove' Child Elements:

Element Requirement Description

size required Size of removed section

offset required Offset from beginning of header to the start location of the removal.

4.2.8.1.6.12.18.3.3 Header Manipulation - Insert-Header

XML element insert_header is a container for parameters necessary to configure a header insert manipulation operation of an
entire header (different than generic element insert). The element insert_header ,if it exists, can be used as a child of element
header. With some restrictions, there can be more than one element insert_header in one header manipulation

Table 86. 'insert_header' Element Attributes

Element Requirement Description

type required The type of the header inserted. Only ‘mpls’ is valid at this time.

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 363

Table 86. 'insert_header' Element Attributes (continued)

Element Requirement Description

header_index optional The header index of the header has possible values "1" and "2". The
restrictions on this attribute are:

• if the value is ‘2’ an ‘insert_header’ with ‘header_index’ 1 must be
present in the header manipulation.

• a value of header_index can be used only once per header
manipulation

Table 87. 'insert_header' Child Elements

Element Requirement Description

data optional The data of the header to be inserted.

replace optional If provided, specifies to override (replace) existing data (if ‘yes’), ‘no’ to
insert.

insert_header example:

<header name="insert_2_l2">
 <insert_header type="mpls" header_index="1">
 <data>0x00000048</data>
 </insert_header>
 <insert_header type="mpls" header_index="2">
 <data>0x00000048</data>
 </insert_header>
</header>

4.2.8.1.6.12.18.3.4 Header Manipulation - Remove_Header

XML element remove_header is a container for parameters necessary to configure a header remove manipulation operation of
an entire header (different then element remove that is a generic one). The element, if it exists, can be used as a child of element
header'. There can be only one instance of element remove_header in a manipulation and it cannot appear in the same time
with the generic remove.

Table 88. 'remove_header' Child Elements

Element Requirement Description

type required The type of the header remove. Possible values:

• "qtags"

• "mpls"

• "ethmpls (or "ethernet_mpls")

• "eth" (or "ethernet")

remove_header example:

<header name="remove_l2">
 <remove_header type="qtags/>
</header>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
364 NXP Semiconductors

4.2.8.1.6.12.18.3.5 Header Manipulation - Update

XML element update is a container for parameters necessary to configure a header update manipulation. The element if exists
can be used as a child of element header. There can be only one update in a header manipulation.

update Element Attributes:

Table 89. 'remove_header' Child Elements

Element Requirement Description

type required The type of the update. Possible values:

• "vlan"

• "ipv4"

• "ipv6"

• "tcpudp"

update Child Elements:

Table 90. 'remove_header' Child Elements

Element Requirement Description

field required Specifies the field to be updated. There must be atleast one inside an
update. For some types of updates the field element can appear multiple
times.

Field Element Attributes:

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 365

Table 91. 'remove_header' Child Elements

Element Requirement Description

type required The type of the header remove. Possible values:

• for 'vlan'

— dscp - DSCP to VLAN priority bits translation.

— vpri - Replace VPri of outer most VLAN tag .

• for 'ipv4'

— tos - update TOS with the given value.

— id - update IP ID with the new 16 bit given value.

— ttl - Decrement TTL by 1.

— src - update IP source address with the given value.

— dst - update IP destination address with the given value.

• for 'ipv6'

— tc - update Traffic Class address with the given value.

— hl - Decrement Hop Limit by 1.

— src - update IP source address with the given value.

— dst - update IP destination address with the given value.

• for 'tcpudp'

— checksum - update TCP/UDP checksum.

— src - update TCP/UDP source address with the given value.

— dst - update TCP/UDP destination address with the given value.

value optional The value used for the update. It is not valid for:

• hl

• ttl

• checksum

fill optional Only valid for dscp - fills the entire array with the given value. The fill is
performed before the other dscp operations.

index optional Only valid for dscp. Speciefies the index in the array where that value is
set. The index starts from 0.

'update' Example:

<header name="upd_checksum">
 <update type = "tcpudp">
 <field type="checksum"/>
 </update>
</header>

<header name="upd_ipv4src">
 <update type = "ipv4">
 <field type="src" value="0xC0A80101"/>
 </update>
</header>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
366 NXP Semiconductors

<header name="upd_vpri">
 <update type = "vlan">
 <field type="dscp" fill="yes" value="4"/>
 <field type="dscp" index="20" value="2"/>
 <!--...-->
 <field type="dscp" index="30" value="2"/>
 </update>
</header>

4.2.8.1.6.12.18.3.6 Header Manipulation - Custom

XML element custom is a container for parameters necessary to configure custom header manipulation. The custom header
manipulation supported by the drivers is now custom IP replace, and allows changing between ipv4 and ipv6.

'custom' Element Attributes

Table 92. 'custom' Element Attributes:

Element Requirement Description

type required The type of the custom header manipulation. Possible values are:

• “ipv4byipv6” (or just “ipv4”) – Replaces ipv4 by ipv6.

• -“ipv6byipv4” (or just “ipv6”) – Replaces ipv6 by ipv4.

'custom' Child Elements

Table 93. nextmanip Element Attributes:

Element Requirement Description

size required Size of the header to be inserted. (max is 256)

data required The header data to be inserted.

decttl optional Decrement TTL by 1 (ipv4). Possible values:

• "yes"

• "no"

dechl optional Decrement Hop Limit by 1 (ipv6). Possible values:

• "yes"

• "no"

ip (or 'ipid') optional 16 bit New IP ID (ipv4)

'custom' Example:

<header name="custom_ex">
 <custom type="ipv6byipv4">
 <decttl>yes</decttl>
 <id>1</id>
 <size>0x20</size>
 <data>0x4500000012340000000100001011121314151617</data>
 </custom>
</header>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 367

4.2.8.1.6.12.18.3.7 Header Manipulation - Nextmanip

XML element nextmanip Can be used to setup cascading header manipulations. It relates to the header manipulation element
and not sub-elements (insert, remove and update).

Table 94. Nextmanip element attributes

Element Requirement Description

name required The name of the next header manipulation

4.2.8.1.6.12.18.3.8 Header Manipulation - Example

Here is a general example of possible header manipulation definition:

<manipulations>
 <header name=”ins_rmv” parse=”yes”>
 <insert>
 <size>14</size>
 <offset>0</offset>
 <data>0x0102030405061112131415168100</data>
 </insert>
 <remove>
 <size>14</size>
 <offset>0</offset>
 </remove>
 </header>

 <header name="vpri_update">
 <update type="vlan">
 <field type="vpri" fill="yes" value="0"/>
 </update>
 </header>

 <header name=”ins_vlan” parse=”no”>
 <insert>
 <size>4</size>
 <offset>12</offset>
 <data>0x81004416</data>
 </insert>
 <nextmanip name="vpri_update"/>
 </header>
</manipulations>

<classification name="clsf_1" max="0" masks="yes" statistics="none">
 <key>
 <fieldref name="ethernet.type”/>
 </key>
 <entry>
 <data>0x8847</data>
 <queue base="0x01"/>
 <action type="policer" name="plcr_1"/>
 <header name="ins_vlan"/>
 </entry>
 <entry>
 <data>0x8848</data>
 <queue base="0x02"/>
 <header name="ins_rmv"/>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
368 NXP Semiconductors

 </entry>
</classification>

4.2.8.1.6.13 Standard Protocol File - Excerpt
The SDK includes a file called the Standard Protocol file. This file uses the NetPDL (Network Protocol Description Language)
XML dialect to define the fields in each standard protocol header that the FMan can parse with its Hard Parser. In addition, for
each protocol, the NetPDL statement define the actions the Hard Parser should take upon encountering this protocol header in
the frame window.

For this reason, the SDK includes a copy of the Standard Protocol file here: /etc/fmc/config/hxs_pdl_v3.xml. In addition, to give
you an idea what the file is like, a small portion is shown below.

<?xml version="1.0" encoding="utf-8"?>
<netpdl name="nbee.org NetPDL Database"
 version="0.2" creator="nbee.org" date="28-05-2008">
<!-- This file is for reference only. -->
<!-- It describes the protocols and fields supported by the FMan's Hard Parser-->

<!--
NetPDL description of the Ethernet Protocol
-->
<protocol name="ethernet" longname="Ethernet 802.3"
 comment="Ethernet DIX has been included in 802.3" showsumtemplate="ethernet">

 <execute-code>
 <!-- If we're on Ethernet IEEE 802.3, update the packet length -->
 <after when="buf2int(type) le 1500">
 <assign-variable name="$packetlength" value="buf2int(type) + 14"/>
 <!-- 14 is the size of the ethernet header -->
 </after>
 </execute-code>

 <format>
 <fields>
 <field type="fixed" name="dst" longname="MAC Destination" size="6"
 showtemplate="MACaddressEth"/>
 <field type="fixed" name="src" longname="MAC Source" size="6"
 showtemplate="MACaddressEth"/>
 <field type="fixed" name="type" longname="Ethertype - Length" size="2"
 </fields>
 </format>

 <encapsulation>
 <!-- We have four possible encapsulations for IPX:
 - Ethernet version II
 ==> type= 0x8137
 - Novell-specific framing (raw 802.3)
 ==> directly in Ethernet; check that IPX checksum is == 0xFFFF
 - Ethernet 802.3/802.2 without SNAP
 ==> directly in SNAP; check that IPX checksum is == 0xFFFF (after SNAP hdr)
 - Ethernet 802.3/802.2 with SNAP
 ==> type= 0x8137 (in SNAP)
 See the "IPX Ethernet and FDDI Encapsulation Methods" Cisco doc, at:
 http://www.cisco.com/en/US/tech/tk389/tk224/
 technologies_q_and_a_item09186a0080093d2e.shtml
 -->
 <if expr="buf2int($packet[$currentoffset:2]) == 0xFFFF">
 <if-true>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 369

 <nextproto proto="#ipx"/>
 </if-true>
 </if>
 <switch expr="buf2int(type)">
 <case value="0" maxvalue="1500"> <nextproto proto="#llc"/> </case>
 <case value="0x800"> <nextproto proto="#ip"/> </case>
 <case value="0x806"> <nextproto proto="#arp"/> </case>
 <case value="0x8863"> <nextproto proto="#pppoed"/> </case>
 <case value="0x8864"> <nextproto proto="#pppoe"/> </case>
 <case value="0x86DD"> <nextproto proto="#ipv6"/> </case>
 <case value="0x8100"> <nextproto proto="#vlan"/> </case>
 <case value="0x8137"> <nextproto proto="#ipx"/> </case>
 <case value="0x81FD"> <nextproto proto="#ismp"/> </case>
 <case value="0x8847" comment="mpls-unicast">
 <nextproto proto="#mpls"/>
 </case>
 <case value="0x8848" comment="mpls-multicast">
 <nextproto proto="#mpls"/>
 </case>
 </switch>
 </encapsulation>

 <visualization>
 <showsumtemplate name="ethernet">
 <section name="next"/>
 <text value="Eth: "/>
 <protofield name="src" showdata="showvalue"/>
 <text value=" => "/>
 <protofield name="dst" showdata="showvalue"/>
 </showsumtemplate>
 </visualization>

</protocol> <!-- End Ethernet protocol definition -->

<!--
NetPDL description of the VLAN Protocol
-->
<protocol name="vlan" longname="Virtual LAN (802.3ac)" showsumtemplate="vlan">
 <format>
 <fields>
 <block name="vlan" size="2" longname="Tag Control Information">
 <field type="bit" name="pri" longname="User Priority"
 mask="0xE000" size="2" showtemplate="FieldHex"/>
 <field type="bit" name="cfi" longname="CFI"
 mask="0x1000" size="2" showtemplate="FieldDec"/>
 <field type="bit" name="vlanid" longname="VLAN ID"
 mask="0x0FFF" size="2" showtemplate="FieldDec"/>
 </block>
 <field type="fixed" name="type" longname="Ethertype - Length"
 size="2" showtemplate="eth.typelength"/>
 </fields>
 </format>

 <encapsulation>
 <switch expr="buf2int(type)">
 <case value="0" maxvalue="1500"> <nextproto proto="#llc"/> </case>
 <case value="0x800"> <nextproto proto="#ip"/> </case>
 <case value="0x806"> <nextproto proto="#arp"/> </case>
 <case value="0x8863"> <nextproto proto="#pppoed"/> </case>
 <case value="0x8864"> <nextproto proto="#pppoe"/> </case>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
370 NXP Semiconductors

 <case value="0x86DD"> <nextproto proto="#ipv6"/> </case>
 </switch>
 </encapsulation>

 <visualization>
 <showsumtemplate name="vlan">
 <text value=" (VLAN-ID "/>
 <protofield name="vlanid" showdata="showvalue"/>
 <text value=")"/>
 </showsumtemplate>
 </visualization>

</protocol> <!-- End VLAN protocol definition -->

<!- snip - code removed ... -->

<!--
NetPDL description of the IPv6 Protocol
-->
<protocol name="ipv6" longname="IPv6 (Internet Protocol version 6)
 showsumtemplate="ipv6">
 <!-- We should check that 'version' is equal to '6' -->
 <execute-code>
 <after>
 <!-- Store ipsrc and ipdst in a couple of variables for the sake of speed -->
 <!-- Hids differences between IPv4 and IPv6 for session tracking -->
 <assign-variable name="$ipsrc" value="src"/>
 <assign-variable name="$ipdst" value="dst"/>
 <if expr="$ipsrc lt $ipdst" >
 <if-true>
 <assign-variable name="$firstip" value="src"/>
 <assign-variable name="$secondip" value="dst"/>
 </if-true>
 <if-false>
 <assign-variable name="$firstip" value="dst"/>
 <assign-variable name="$secondip" value="src"/>
 </if-false>
 </if>
 </after>
 </execute-code>

 <format>
 <fields>
 <field type="bit" name="ver" longname="Version"
 mask="0xF0000000" size="4" showtemplate="FieldDec"/>
 <field type="bit" name="tos" longname="Type of service"
 mask="0x0F000000" size="4" showtemplate="FieldHex"/>
 <field type="bit" name="flabel" longname="Flow label"
 mask="0x00FFFFFF" size="4" showtemplate="FieldHex"/>
 <field type="fixed" name="plen" longname="Payload Length"
 size="2" showtemplate="FieldDec"/>
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="hop" longname="Hop limit"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="src" longname="Source address"
 size="16" showtemplate="ip6addr"/>
 <field type="fixed" name="dst" longname="Destination address"
 size="16" showtemplate="ip6addr"/>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 371

 <loop type="while" expr="1">
 <!-- Loop until we find a 'break' -->
 <switch expr="buf2int(nexthdr)">
 <case value="0">
 <includeblk name="HBH"/>
 </case>
 <case value="43">
 <includeblk name="RH"/>
 </case>
 <case value="44">
 <includeblk name="FH"/>
 </case>
 <case value="51">
 <includeblk name="AH"/>
 </case>
 <case value="60">
 <includeblk name="DOH"/>
 </case>
 <default>
 <loopctrl type="break"/>
 </default>
 </switch>
 </loop>
 </fields>

 <block name="HBH" longname="Hop By Hop Option">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="helen"
 longname="Length (multiple of 8 bytes, not including first 8)"
 size="1" showtemplate="ipv6.hbhlen"/>
 <loop type="size" expr="(buf2int(helen) * 8) + 6">
 <!-- '6' because the first two bytes are nexthdr and helen -->
 <includeblk name="Option"/>
 </loop>
 </block>

 <block name="FH" longname="Fragment Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="reserved"
 longname="Reserved (multiple of 8 bytes)"
 comment="This is in multiple of 8 bytes"
 size="1" showtemplate="FieldDec"/>
 <field type="bit" name="fragment offset" longname="Fragment Offset"
 mask="0xFFF0" size="2" showtemplate="FieldDec"/>
 <field type="bit" name="res" longname="Res"
 mask="0x0004" size="2" showtemplate="FieldHex"/>
 <field type="bit" name="m" longname="M"
 mask="0x0001" size="2" showtemplate="FieldBin"/>
 <field type="fixed" name="identification"
 longname="Identification" size="4" showtemplate="FieldDec"/>
 </block>

 <block name="AH" longname="Authentication Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="payload len" longname="Payload Len"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="reserved" longname="Reserved"

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
372 NXP Semiconductors

 size="2" showtemplate="FieldDec"/>
 <field type="fixed" name="spi" longname="Security Parameters Index"
 size="4" showtemplate="FieldDec"/>
 <field type="fixed" name="snf" longname="Sequence Number Field"
 size="4" showtemplate="FieldDec"/>
 </block>

 <block name="DOH" longname="Destination Option Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="helen"
 longname="Length (multiple of 8 bytes, not including first 8)"
 size="1" showtemplate="ipv6.hbhlen"/>
 <loop type="size" expr="(buf2int(helen) * 8)+6">
 <!-- '6' because the first two bytes are nexthdr and helen -->
 <includeblk name="Option"/>
 </loop>
 </block>

 <block name="RH" longname="Routing Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="hlen"
 longname="Length (multiple of 8 bytes)"
 comment="This is in multiple of 8 bytes"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="rtype" longname="Routing Type"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="segment left" longname="Segment Left"
 size="1" showtemplate="FieldDec"/>
 <field type="variable" name="tsd" longname="Type Specific Data"
 expr="buf2int(hlen)" showtemplate="Field4BytesHex"/>
 </block>

 <block name="Option" longname="Option">
 <field type="fixed" name="opttype" longname="Option Type"
 size="1" showtemplate="ipv6.opttype">
 <field type="bit" name="act"
 longname="Action (action if Option Type is unrecognized)" mask="0xC0"
 size="1" showtemplate="ipv6.optact"/>
 <field type="bit" name="chg"
 longname="Change(whether or not option data can change while packet en-route)"
 mask="0x20" size="1" showtemplate="ipv6.optchg"/>
 <field type="bit" name="res" longname="Option Code" mask="0x1F"
 size="1" showtemplate="FieldDec"/>
 </field>

 <switch expr="buf2int(opttype)">
 <case value="0">
 <!-- No fields are present if the option is not 'Pad1'-->
 </case>
 <case value="5"><!-- Router Alert -->
 <field type="fixed" name="optlen" longname="Option Length"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="value" size="2" longname="Option Value"
 showtemplate="ipv6.optroutalert"/>
 </case>
 <default>
 <field type="fixed" name="optlen" longname="Option Length"
 size="1" showtemplate="FieldDec"/>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 373

 <field type="variable" name="optval" longname="Option Value"
 expr="buf2int(optlen)" showtemplate="Field4BytesHex"/>
 </default>
 </switch>
 </block>
 </format>

 <encapsulation>
 <switch expr="buf2int(nexthdr)">
 <case value="4"> <nextproto proto="#ip"/> </case>
 <case value="6"> <nextproto proto="#tcp"/> </case>
 <case value="17"> <nextproto proto="#udp"/> </case>
 <!-- <case value="29"> <nextproto proto="#TP4"/> </case> -->
 <!-- <case value="45"> <nextproto proto="#IDRP"/> </case> -->
 <case value="50"> <nextproto proto="#ipsec_esp"/> </case>
 <case value="51"> <nextproto proto="#ipsec_ah"/> </case>
 <case value="58"> <nextproto proto="#icmp6"/> </case>
 <case value="89"> <nextproto proto="#ospf6"/> </case>
 <case value="103"> <nextproto proto="#pim6"/> </case>
 </switch>
 </encapsulation>

 <visualization>
 <showtemplate name="ipv6.nexthdr" showtype="dec">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" how="Hop By Hop Option Header"/>
 <case value="43" show="Fragment Header"/>
 <case value="44" show="Authentication Header"/>
 <case value="51" show="Destination Option Header"/>
 <case value="60" show="Routing Header"/>
 <case value="50" show="Encapsulating Security Payload"/>
 <case value="58" show="Internet Control Message Protocol (ICMPv6)"/>
 <case value="59" show="No next Header"/>
 <default show="Upper Layer Header"/>
 </switch>
 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.opttype" showtype="hex">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Pad1 Option"/>
 <case value="1" show="PadN Option"/>
 <case value="5" show="Router Alert Option"/>
 <default show="Error in IPv6 Option Type lookup"/>
 </switch>
 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.optact" showtype="bin">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Skip over option"/>
 <case value="1" show="Discard packet silently"/>
 <case value="2" show="Discard packet-send ICMP"/>
 <case value="3" show="Discard packet-send ICMP if packet was unicast"/>
 <default show="Error in IPv6 Option Action lookup"/>
 </switch>
 </showmap>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
374 NXP Semiconductors

 </showtemplate>

 <showtemplate name="ipv6.optchg" showtype="bin">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Option data does not change en-route"/>
 <case value="1" show="Option data may change en-route"/>
 <default show="Error in IPv6 Option Change lookup"/>
 </switch>
 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.optroutalert" showtype="dec">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Datagram contains Multicast Listener Disc msg"/>
 <case value="1" show="Datagram contains RSVP message"/>
 <case value="2" show="Datagram contains an Active Networks msg"/>
 <default show="Error in IPv6 Router Alert Option lookup"/>
 </switch>
 </showmap>
 </showtemplate>

 <!-- Length of the hop by hop option header -->
 <showtemplate name="ipv6.hbhlen" showtype="dec">
 <showdtl>
 <text expr="(buf2int(this) * 8) + 8"/>
 <text value=" (field value = "/>
 <protofield showdata="showvalue"/>
 <text value=")"/>
 </showdtl>
 </showtemplate>

 <showsumtemplate name="ipv6">
 <if expr="($prevproto == #ip) or ($prevproto == #ipv6) or
 ($prevproto == #ppp) or ($prevproto == #pppoe) or
 ($prevproto == #gre)">
 <if-true>
 <text value=" - "/>
 </if-true>
 <if-false>
 <section name="next"/>
 </if-false>
 </if>

 <text value="IPv6: "/>
 <protofield name="src" showdata="showvalue"/>
 <text value=" => "/>
 <protofield name="dst" showdata="showvalue"/>
 <text value=" (Len " expr="buf2int(plen) + 40"/>
 <text value=")"/>
 </showsumtemplate>
 </visualization>
</protocol> <!-- End IPv6 definition -->

<!- snip - code removed ... -->

</netpdl>

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 375

<!-- End of Standard Protocol file -->

4.2.8.1.6.14 Custom Protocol File - GTP Protocol Example
The following "GTP_example.xml" file describes the custom GTP protocol.

<?xml version="1.0" encoding="utf-8"?>
<netpdl name="GTP" description="GTP-U Example">
 <!-- Gtpu program is an extension to the udp hard shell -->
 <protocol name="gtpu" longname="GTP-U" prevproto="udp">
 <!-- fields in GTP header used for validation and calculating length -->
 <format>
 <fields>
 <field type="bit" name="flags" mask="0xE0" size="1" />
 <field type="bit" name="pt" mask="0x80" size="1" />
 <field type="bit" name="version" mask="0x07" size="1" />
 <field type="fixed" name="mtype" size="1" longname="message type"/>
 <field type="fixed" name="length" size="2" />
 <field type="fixed" name="teid" size="4" />
 <field type="fixed" name="snum " size="2" longname="sequence number"/>
 <field type="fixed" name="npdunum" size="1" longname="N-PDU number"/>
 <field type="fixed" name="next" size="1" longname="Next ext header type"/>
 </fields>
 </format>

 <execute-code>
 <!-- Check that UDP port is 2152 -->
 <before confirm="yes">
 <if expr="udp.dport == 2152">
 <if-true>
 </if-true>
 <if-false>
 <!-- Confirms UDP layer and exits-->
 <action type="exit" confirm="yes" advance="no" nextproto="return"/>
 </if-false>
 </if>
 </before>

 <!-- Done after UDP layer is confirmed-->
 <!--Check version and calculate length-->
 <after confirm="no">
 <if expr="version == 1">
 <if-true>
 <assign-variable name="$shimoffset_1" value="$NxtHdrOffset"/>
 </if-true>
 <if-false>
 <assign-variable name="$ShimR" value="0x23"/>
 <action type="exit" confirm="no" confirmcustom="no" nextproto="none"/>
 </if-false>
 </if>

 <if expr="flags != 0">
 <if-true>
 <assign-variable name="$NxtHdrOffset" value="$shimoffset_1+12"/>
 </if-true>
 <if-false>
 <assign-variable name="$NxtHdrOffset" value="$shimoffset_1+8"/>

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
376 NXP Semiconductors

 </if-false>
 </if>
 <action type="exit" confirm="no" confirmcustom="shim1" nextproto="none"/>
 </after>
 </execute-code>
 </protocol>
</netpdl>

4.2.8.1.7 Security Engine (SEC)
SEC Device Driver for DPAA1

Introduction

Current chapter is focused on DPAA1-specific SEC details - Queue Interface (QI) backend and frontend drivers. More information
is provided in chapter Security Engine (SEC) on page 381, including:

• JRI - the common Job Ring Interface (on which QI is currently dependent)

• crypto algorithms supported by each backend (RI, JRI, QI, DPSECI)

• kernel configuration - how to build backend and frontend drivers

• how to make sure the algorithms registered successfully

• how to check that crypto requests are being offloaded on SEC engine

On SoCs with DPAA v1.x, QI backend can be used to submit crypto API service requests from the frontend drivers. The
corresponding frontend compatible with QI backend is caamalg_qi, which supports symmetric encryption and AEAD
algorithms-based crypto API service requests.

The Linux driver automatically sets the enable bit for the SEC hardware's Queue Interface (QI), depending on QI feature availability
in the hardware. This enables the hardware to also operate as a DPAA component for use by e.g., USDPAA apps. This behaviour
does not conflict with normal in-kernel job ring operation, other than the potential performance-observable effects of internal SEC
hardware resource contention, and vice-versa.

Device Tree binding

There is no device tree node corresponding to SEC DPAA1. A platform device is created dynamically at runtime, as a child of the
crypto node.

Module loading

Both QI backend and frontend drivers can be compiled either built-in or as modules. If compiled as modules, QI backend driver
is (part of) the caam module, while the corresponding frontend driver is the caamalg_qi module.

Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is doing the crypto
by looking for driver messages in dmesg.

The driver emits console message at initialization time:

platform caam_qi: algorithms registered in /proc/crypto

If the message is not present in the logs, either the driver is not configured in the kernel, or no SEC compatible device tree node
is present in the device tree.

Another option is to examine the hardware statistics registers in debugfs.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 377

Incrementing IRQs in /proc/interrupts
Given a time period when crypto requests are being made, the SEC hardware will fire completion notification interrupts on the
corresponding QMan (Queue Manager) portal IRQ:

$ cat /proc/interrupts | grep QMan
 CPU0 CPU1 CPU2 CPU3
[...]
 21: 0 0 0 22 GICv2 214 Level QMan portal 3
 22: 0 0 61 0 GICv2 216 Level QMan portal 2
 23: 0 29 0 0 GICv2 218 Level QMan portal 1
 24: 273 0 0 0 GICv2 220 Level QMan portal 0

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver. If the algorithm is
supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and the hardware statistics in debugfs
(inbound / outbound bytes encrypted / protected - see below) should be monitored.

Note: CAAM driver might be sharing the QMan portal with other drivers in the system; meaning that the interrupt counters shown
in /proc/interrupts are for all drivers sharing the portal.

Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the kernel crypto API:

name : cbc(aes)
driver : cbc-aes-caam-qi
module : kernel
priority : 2000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 16
min keysize : 16
max keysize : 32
ivsize : 16
geniv : <built-in>

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit messages
saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-caam-qi)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam-qi)
[...]
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-des-caam-
qi)
alg :No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-des-caam-
qi)
[...]

Supporting Documentation

General SEC information, Job Ring Interface (JRI): Security Engine (SEC) on page 381

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
378 NXP Semiconductors

4.2.8.1.8 Decompression Compression Engine (DCE)

Description

The following section describes the DCE software running on the DCE hardware block that is part of the QorIQ family of SoCs.

Linux

The DCE driver software includes a Linux kernel driver. The driver provides a set of kernel level APIs.

The driver includes the following functionality:

DCE Kernel Driver Interface

The DCE kernel driver APIs provide a callback based interface to the DCE. The driver provides APIs to perform either stateless
(chunk) based (de)compression or stateful (stream) based (de)compression. The driver internally co-ordinates commands to the
DCE and corresponding results from the DCE. The chunk interface is meant for inline (de)compression where each DCE operation
is on a complete and independent piece of information. The stream interface is is designed to (de)compress many related pieces
of information (e.g. a file).

DCE FLIB interface

The DCE FLIB interface provides a consistent interface to the CCSR registers, the memory defined DMA structures and to the
dce_flow software object.

DCE Configuration interface

The DCE configuration interface is an encapsulation of the DCE CCSR register space and the global/error interrupt source. This
is expected to be managed only by (and visible to) a control-plane operating system,

DCE User-space Interface

There is a debugfs interface available for device debugging. No other userspace interface is available. Debugfs provides easy
access to DCE memory map registers space. See the DPAA Reference Manual for the “DCE Individual Register Memory Map”.
e.g.

0x000 DCE_CFG — DCE configuration
0x03C DCE_IDLE— DCE Idle status Register
0x3F8 DCE_IP_REV_1 — DCE IP Block Revision 1 register

Mount debugfs to explore DCE status:

mount -t debugfs none /sys/kernel/debug
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_addr
DCE register offset = 0x0
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_rw
DCE register offset = 0x0
value = 0x00000003 <-DCE configuration, x03= Enable. Block is operational, Frame Queues are
consumed.
root@t4240qds:/dev/shm# echo 0x03c > /sys/kernel/debug/dce/ccsrmem_addr
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_rw
DCE register offset = 0x3c
value = 0x00000001 <- DCE Idle status Register, 1 = idle
root@t4240qds:/dev/shm# echo 0x3f8 > /sys/kernel/debug/dce/ccsrmem_addr
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_rw
DCE register offset = 0x3f8
value = 0x0af00101 <-match default value of “0x0AF0_0101”

Functionality

Configuration

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 379

The DCE device is configured via device-tree nodes and by some compile-time options controlled via Linux's Kconfig system.
See the “DCE Kernel Configure Options” section for more info.

Debugfs Interface

The DCE has a debugfs interface available to assist in device debugging. The code can be built either as a loadable module or
statically.

Module Loading

The driver can be statically built or as a dynamically loadable module.

DCE Kernel Configure Options

Common Kernel Configure Options Description

CONFIG_STAGING Required in order to make “staging” drivers such as DCE
available.

CONFIG_FSL_DCE Required to build DCE support.

CONFIG_FSL_DCE_CONFIG Compiles in dce device driver support.

CONFIG_FSL_DCE_DEBUGFS Compiles in support for debugfs interface for the DCE.

CONFIG_FSL_DCE_TESTS Compiles DCE test code.

Compile-time Configuration Options

The "Kernel Configure Options" above describe the compile-time configuration options for the kernel.

Source Files

Linux

Source Files Description

drivers/staging/fsl_dce/fsl_dce_chunk.h The DCE driver APIs for chunk based (de)compression

drivers/staging/fsl_dce/fsl_dce_stream.h The DCE driver APIs for stream based (de)compression

drivers/staging/fsl_dce/flib/*.* The DCE flib interface

drivers/staging/fsl_dce/flib/dce_regs.h The DCE CCSR register macros. Used in conjunction with
bitfield_macros.h macros.

drivers/staging/fsl_dce/flib/dce_defs.h The DCE dma defined memory structures.

drivers/staging/fsl_dce/flib/dce_flow.h Object which defines the transport mechanism with the DCE
engine. This object encompasses the QMan frame queues
required to communicate with the DCE. The chunk and
stream object use the flow object as a base.

drivers/staging/fsl_dce/dce_debugfs.* The DCE debugfs interface

drivers/staging/fsl_dce/tests/performance_simple/*.* Test which demontrates the DCE throughput performance
using single input files. Refer to local README file for more
details.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
380 NXP Semiconductors

Build Procedure

The procedure is a standard SDK build.

Test Procedure

Refer to drivers/staging/fsl_dce/tests/performance_simple/README for detailed descriptions of sample DCE throughput
performance test.

Known Bugs, Limitations, or Technical Issues

• The APIs have been tested in the context of the performance test applications.

• It is possible that in future releases additions and or modification to APIs may occur.

4.2.9 Security Engine (SEC)
SEC Device Drivers

Introduction and Terminology

The Linux kernel contains a Scatterlist Crypto API driver for the NXP SEC v4.x, v5.x security hardware blocks.

It integrates seamlessly with in-kernel crypto users, such as IPsec, in a way that any IPsec suite that configures IPsec tunnels
with the kernel will automatically use the hardware to do the crypto.

SEC v5.x is backward compatible with SEC v4.x hardware, so one can assume that subsequent SEC v4.x references include
SEC v5.x hardware, unless explicitly mentioned otherwise.

SEC v4.x hardware is known in Linux kernel as 'caam', after its internal block name: Cryptographic Accelerator and Assurance
Module.

There are several HW interfaces ("backends") that can be used to communicate (i.e. submit requests) with the engine, their
availability depends on the SoC:

• Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs)

Its main purpose is debugging (for e.g. single-stepping through descriptor commands), though it is used also for RNG
initialization.

• Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings

Note: there are cases when fewer rings are accessible / visible in the kernel - for e.g. when firmware like Trusted
Firmware-A (TF-A) reserves one of the rings.

• Queue Interface (QI) - available on SoCs implementing DPAA v1.x (Data Path Acceleration Architecture)

Requests are submitted indirectly via Queue Manager (QMan) HW block that is part of DPAA1.

• Data Path SEC Interface (DPSECI) - available on SoCs implementing DPAA v2.x

Similar to QI, requests are submitted via Queue Manager (QMan) HW block; however, the architecture is different -
instead of using the platform bus, the Management Complex (MC) bus is used, MC firmware performing needed
configuration to link DP* objects - see DPAA2 Linux Software chapter for more details.

NXP provides device drivers for all these interfaces. Current chapter is focused on JRI, though some general / common topics
are also covered. For QI and DPSECI backends and compatible frontends, please refer to the dedicated chapters: for DPAA1,
Security Engine for DPAA2.

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto API and backend drivers. Their
main tasks are to:

• register supported crypto algorithms

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 381

• process crypto requests coming from users (via the Linux Crypto API) and translate them into the proper format understood
by the backend being used

• forward the CAAM engine responses from the backend being used to the users

Note: It is obvious that QI and DPSECI backends cannot co-exist (they can be compiled in the same "multi-platform" kernel image,
however run-time detection will make sure only the proper one is active). However, JRI + QI and JRI + DPSECI are valid
combinations, and both backends will be active if enabled; if a crypto algorithm is supported by both corresponding frontends (for
e.g. both caamalg and caamalg_qi register cbc(aes)), a user requesting cbc(aes) will be bound to the implementation having the
highest "crypto algorithm priority". If the user wants to use a specific implementation:

• it is possible to ask for it explicitly by using the specifc (unique) "driver name" instead of the generic "algorithm name" - please
see official Linux kernel Crypto API documentation (section Crypto API Cipher References And Priority); currently default
priorities are: 3000 for JRI frontend and 2000 for QI and DPSECI frontends

• crypto algorithm priority could be changed dynamically using the "Crypto use configuration API" (provided that
CONFIG_CRYPTO_USER is enabled); one of the tools available that is capable to do this is "Linux crypto layer configuration
tool" and an example of increasing the priority of QI frontend based implementation of
echainiv(authenc(hmac(sha1),cbc(aes))) algorithm is:

$./crconf update driver "echainiv-authenc-hmac-sha1-cbc-aes-caam-qi" type 3 priority 5000

Figure 85. Linux kernel - SEC device drivers overview

Source Files

The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam. Below is a non-exhaustive list
of files, mapping to Security Engine (SEC)(some files have been omitted since their existence is justified only by driver logic /
design):

Source File(s) Description Module name

ctrl.[c,h] Init (global settings, RNG, power
management etc.)

caam

desc.h HW description (CCSR registers etc.) N/A

desc_constr.h Inline append - descriptor construction
library

N/A

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
382 NXP Semiconductors

https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://sourceforge.net/projects/crconf
https://sourceforge.net/projects/crconf

Table continued from the previous page...

Source File(s) Description Module name

caamalg_desc.[c,h] (Shared) Descriptors library (symmetric
encryption, AEAD)

caamalg_desc

caamrng.c RNG (runtime) caamrng

jr.[c,h] JRI backend caam_jr

qi.[c,h] QI backend caam

dpseci.[c,h], dpseci_cmd.h DPSECI backend N/A (built-in)

caamalg.c JRI frontend (symmetric encryption,
AEAD)

caamalg

caamhash.c JRI frontend (hashing) caamhash

caampkc.c, pkc_desc.c JRI frontend (public key cryptography) caam_pkc

caamalg_qi.c QI frontend (symmetric encryption,
AEAD)

caamalg_qi

caamalg_qi2.[c,h] DPSECI frontend (symmetric
encryption, AEAD)

caamalg_qi2

Module loading

CAAM device drivers can be compiled either built-in or as modules (with the exception of DPSECI backend, which is always built-
in). See section Source Files on page 382 for the list of module names and section Kernel Configuration on page 383 for how
kernel configuration looks like and a mapping between menu entries and modules and / or functionalities enabled.

Kernel Configuration

CAAM device drivers are located in the "Cryptographic API" -> "Hardware crypto devices" sub-menu in the kernel configuration.
Depending on the target platform and / or configuration file(s) used, the output will be different; below is an example taken from
NXP Layerscape SDK for ARMv8 platforms with default options:

Kernel Configure Tree View Options Description

Cryptographic API --->
 [*] Hardware crypto devices --->
 <*> Freescale CAAM-Multicore platform
driver backend (SEC)
 [] Enable debug output in CAAM
driver
 <*> Freescale CAAM Job Ring driver
backend (SEC)
 (9) Job Ring size
 [] Job Ring interrupt coalescing
 <*> Register algorithm
implementations with the Crypto API
 <*> Queue Interface as Crypto API
backend
 <*> Register hash algorithm
implementations with Crypto API

Enable CAAM device drivers, options:

• basic platform driver: Freescale CAAM-Multicore platform
driver backend (SEC); all non-DPAA2 sub-options depend on
it

• backends / interfaces:

— Freescale CAAM Job Ring driver backend (SEC) - JRI;
this also enables QI (QI depends on JRI)

— QorIQ DPAA2 CAAM (DPSECI) driver - DPSECI

• frontends / crypto algorithms:

— symmetric encryption, AEAD, "stitched" AEAD, TLS;
Register algorithm implementations with the Crypto API

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 383

Table continued from the previous page...

Kernel Configure Tree View Options Description

 <*> Register public key
cryptography implementations with Crypto API
 <*> Register caam device for
hwrng API
 <M> QorIQ DPAA2 CAAM (DPSECI) driver

- via JRI (caamalg driver) or Queue Interface as Crypto
API backend - via QI (caamalg_qi drive)

— Register hash algorithm implementations with Crypto
API - hashing (only via JRI - caamhash driver)

— Register public key cryptography implementations with
Crypto API - asymmetric / public key (only via JRI -
caam_pkc driver)

— Register caam device for hwrng API - HW RNG (only
via JRI - caamrng driver)

— QorIQ DPAA2 CAAM (DPSECI) driver - DPSECI

• options: debugging, JRI ring size, JRI interrupt coalescing

Networking support --->
 Network option --->
 <*> TCP/IP networking
 <*> IP: AH transformation
 <*> IP: ESP transformation
 <*> IP: IPsec transport mode
 <*> IP: IPsec tunnel mode

For IPsec support the TCP/IP networking option and
corresponding sub-options should be enabled.

Device Tree binding

Property Type Status Description

compatible String Required fsl,sec-vX.Y (preferred) OR
fsl,secX.Y

Sample Device Tree crypto node

 crypto@30000 {
 compatible = "fsl,sec-v4.0";
 fsl,sec-era = <2>;
 #address-cells = <1>;
 #size-cells = <1>;
 reg = <0x300000 0x10000>;
 ranges = <0 0x300000 0x10000>;
 interrupt-parent = <&mpic>;
 interrupts = <92 2>;
 clocks = <&clks IMX6QDL_CLK_CAAM_MEM>,
 <&clks IMX6QDL_CLK_CAAM_ACLK>,
 <&clks IMX6QDL_CLK_CAAM_IPG>,
 <&clks IMX6QDL_CLK_EIM_SLOW>;
 clock-names = "mem", "aclk", "ipg", "emi_slow";
 };

See linux/Documentation/devicetree/bindings/crypto/fsl-sec4.txt file in the Linux kernel tree for more info.

 NOTE

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
384 NXP Semiconductors

How to test the drivers

To test the drivers, under the "Cryptographic API -> Cryptographic algorithm manager" kernel configuration sub-menu,
ensure that run-time self tests are not disabled, i.e. the "Disable run-time self tests" entry is not set
(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n). This will run standard test vectors against the drivers after they register
supported algorithms with the kernel crypto API, usually at boot time. Then run test on the target system. Below is a snippet
extracted from the boot log of ARMv8-based LS1046A platform, with JRI and QI enabled:

[...]
platform caam_qi: Linux CAAM Queue I/F driver initialised
caam 1700000.crypto: Instantiated RNG4 SH1
caam 1700000.crypto: device ID = 0x0a11030100000000 (Era 8)
caam 1700000.crypto: job rings = 4, qi = 1, dpaa2 = no
alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-ecb-cipher_null-caam)
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-caam)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-hmac-sha224-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-hmac-sha256-cbc-aes-caam)
alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-hmac-sha384-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-hmac-sha512-cbc-aes-caam)
alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-hmac-md5-cbc-des3_ede-
caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-hmac-sha1-cbc-des3_ede-
caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-authenc-hmac-sha224-cbc-
des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-authenc-hmac-sha256-cbc-
des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-authenc-hmac-sha384-cbc-
des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-authenc-hmac-sha512-cbc-
des3_ede-caam)
alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-sha1-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-hmac-sha224-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-hmac-sha256-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-des-caam)
alg: No test for authenc(hmac(md5),rfc3686(ctr(aes))) (authenc-hmac-md5-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(md5),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-md5-rfc3686-ctr-aes-
caam)
alg: No test for authenc(hmac(sha1),rfc3686(ctr(aes))) (authenc-hmac-sha1-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha1),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha1-rfc3686-ctr-
aes-caam)
alg: No test for authenc(hmac(sha224),rfc3686(ctr(aes))) (authenc-hmac-sha224-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha224),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha224-rfc3686-
ctr-aes-caam)
alg: No test for authenc(hmac(sha256),rfc3686(ctr(aes))) (authenc-hmac-sha256-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha256),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha256-rfc3686-
ctr-aes-caam)
alg: No test for authenc(hmac(sha384),rfc3686(ctr(aes))) (authenc-hmac-sha384-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha384),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha384-rfc3686-

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 385

ctr-aes-caam)
alg: No test for authenc(hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha512-rfc3686-
ctr-aes-caam)
caam algorithms registered in /proc/crypto
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-caam-qi)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-hmac-sha224-cbc-aes-caam-
qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-hmac-sha256-cbc-aes-caam-
qi)
alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-hmac-sha384-cbc-aes-caam-
qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-hmac-sha512-cbc-aes-caam-
qi)
alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-hmac-md5-cbc-des3_ede-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-hmac-sha1-cbc-des3_ede-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-authenc-hmac-sha224-cbc-
des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-authenc-hmac-sha256-cbc-
des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-authenc-hmac-sha384-cbc-
des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-authenc-hmac-sha512-cbc-
des3_ede-caam-qi)
alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-sha1-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-hmac-sha224-cbc-des-caam-
qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-hmac-sha256-cbc-desi-caam-
qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-des-caam-
qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-des-caam-
qi)
platform caam_qi: algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto
[...]

Crypto algorithms support

Algorithms Supported in the linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation, sometimes referred to
as the NETKEY stack. The driver, after registering supported algorithms with the Crypto API, is therefore used to process per-
packet symmetric crypto requests and forward them to the SEC hardware.

Since SEC hardware processes requests asynchronously, the driver registers asynchronous algorithm implementations with the
crypto API: ahash, ablkcipher, and aead with CRYPTO_ALG_ASYNC set in .cra_flags.

Different combinations of hardware and driver software version support different sets of algorithms, so searching for the driver
name in /proc/crypto on the desired target system will ensure the correct report of what algorithms are supported.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
386 NXP Semiconductors

Authenticated Encryption with Associated Data (AEAD) algorithms

These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the data to be
authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the driver such that the hardware
makes a single pass over the input data, and both encryption and authentication data are written out simultaneously. The AEAD
algorithms are mainly for use with IPsec ESP (however there is also support for TLS 1.0 record layer encryption).

CAAM drivers currently supports offloading the following AEAD algorithms:

• "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x HMAC-{MD-5,
SHA-1,-224,-256,-384,-512}

• "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES

• TLS 1.0 record layer encryption using the "stitched" AEAD cipher suite CBC-AES-HMAC-SHA1

Encryption algorithms

The CAAM driver currently supports offloading the following encryption algorithms.

Authentication algorithms

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.

Asymmetric (public key) algorithms

Currently, RSA is the only public key algorithm supported.

Random Number Generation

caamrng frontend driver supports random number generation services via the kernel's built-in hwrng interface when implemented
in hardware. To enable:

1. verify that the hardware random device file, e.g., /dev/hwrng or /dev/hwrandom exists. If it doesn't exist, make it with:

$ mknod /dev/hwrng c 10 183

2. verify /dev/hwrng doesn't block indefinitely and produces random data:

$ rngtest -C 1000 < /dev/hwrng

3. verify the kernel gets entropy:

$ rngtest -C 1000 < /dev/random

If it blocks, a kernel entropy supplier daemon, such as rngd, may need to be run. See linux/Documentation/hw_random.txt for
more info.

Table 95. Algorithms supported by each interface / backend

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

rsa Yes No No

tls10(hmac(sha1),cbc(aes)) No Yes Yes

authenc(hmac(md5),cbc(aes)
)

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1),cbc(aes
))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 387

Table 95. Algorithms supported by each interface / backend (continued)

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

authenc(hmac(sha256),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5),cbc(des
3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1),cbc(des
3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5),cbc(des)
)

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1),cbc(des
))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5),rfc3686(
ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha1),rfc3686(
ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha224),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha256),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

Table continues on the next page...

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
388 NXP Semiconductors

Table 95. Algorithms supported by each interface / backend (continued)

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

authenc(hmac(sha384),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha512),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(md5),ecb(ciph
er_null))

Yes No No

authenc(hmac(sha1),ecb(ciph
er_null))

Yes No No

authenc(hmac(sha224),ecb(ci
pher_null))

Yes No No

authenc(hmac(sha256),ecb(ci
pher_null))

Yes No No

authenc(hmac(sha384),ecb(ci
pher_null))

Yes No No

authenc(hmac(sha512),ecb(ci
pher_null))

Yes No No

gcm(aes) Yes Yes Yes

rfc4543(gcm(aes)) Yes Yes Yes

rfc4106(gcm(aes)) Yes Yes Yes

cbc(aes) Yes Yes Yes

cbc(des3_ede) Yes Yes Yes

cbc(des) Yes Yes Yes

ctr(aes) Yes Yes Yes

rfc3686(ctr(aes)) Yes Yes Yes

xts(aes) Yes Yes Yes

hmac(md5) Yes No Yes

hmac(sha1) Yes No Yes

hmac(sha224) Yes No Yes

hmac(sha256) Yes No Yes

hmac(sha384) Yes No Yes

hmac(sha512) Yes No Yes

md5 Yes No Yes

sha1 Yes No Yes

sha224 Yes No Yes

sha256 Yes No Yes

Table continues on the next page...

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 389

Table 95. Algorithms supported by each interface / backend (continued)

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

sha384 Yes No Yes

sha512 Yes No Yes

CAAM Job Ring backend driver specifics

CAAM Job Ring backend driver (caam_jr) implements and utilizes the job ring interface (JRI) for submitting crypto API service
requests from the frontend drivers (caamalg, caamhash, caam_pkc, caamrng) to CAAM engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt coalescing. They can be used to fine-tune
performance for a particular use case.

The option Freescale CAAM-Multicore platform driver backend enables the basic platform driver (caam). All (non-DPAA2) sub-
options depend on this.

The option Freescale CAAM Job Ring driver backend (SEC) enables the Job Ring backend (caam_jr).

The sub-option Job Ring Size allows the user to select the size of the hardware job rings; if requests arrive at the driver enqueue
entry point in a bursty nature, the bursts' maximum length can be approximated etc. One can set the greatest burst length to save
performance and memory consumption.

The sub-option Job Ring interrupt coalescing allows the user to select the use of the hardware’s interrupt coalescing feature.
Note that the driver already performs IRQ coalescing in software, and zero-loss benchmarks have in fact produced better results
with this option turned off. If selected, two additional options become effective:

• Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD)

Selects the value of the descriptor completion threshold, in the range 1-256. A selection of 1 effectively defeats the coalescing
feature, and any selection equal or greater than the selected ring size will force timeouts for each interrupt.

• Job Ring interrupt coalescing timer threshold (CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD)

Selects the value of the completion timeout threshold in multiples of 64 SEC interface clocks, to which, if no new descriptor
completions occur within this window (and at least one completed job is pending), then an interrupt will occur. This is selectable
in the range 1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers to register their algorithm capabilities with
the corresponding APIs. They should be deselected only when the purpose is to perform Crypto API requests in software (on the
GPPs) instead of offloading them on SEC engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of the application may be such that it prefers
software (core) crypto latency due to many small-sized requests.

caam_pkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an alternate source of entropy available to
the kernel.

Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is doing the crypto
by looking for driver messages in dmesg.

The driver emits console messages at initialization time:

caam algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto

If the messages are not present in the logs, either the driver is not configured in the kernel, or no SEC compatible device tree
node is present in the device tree.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
390 NXP Semiconductors

Incrementing IRQs in /proc/interrupts

Given a time period when crypto requests are being made, the SEC hardware will fire completion notification interrupts on the
corresponding Job Ring:

$ cat /proc/interrupts | grep jr
 CPU0 CPU1 CPU2 CPU3
[...]
 78: 1007 0 0 0 GICv2 103 Level 1710000.jr
 79: 7 0 0 0 GICv2 104 Level 1720000.jr
 80: 0 0 0 0 GICv2 105 Level 1730000.jr
 81: 0 0 0 0 GICv2 106 Level 1740000.jr

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver. If the algorithm is
supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and the hardware statistics in debugfs
(inbound / outbound bytes encrypted / protected - see below) should be monitored.

Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the kernel crypto API:

name : cbc(aes)
driver : cbc-aes-caam
module : kernel
priority : 3000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 16
min keysize : 16
max keysize : 32
ivsize : 16
geniv : <built-in>

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit messages
saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]
alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-cipher_null-caam)
[...]
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-caam)
[...]
alg: No test for authenc(hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha512-rfc3686-ctr-
aes-caam)
[...]

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 391

Examining the hardware statistics registers in debugfs

When using the JRI or QI backend, performance monitor registers can be checked, provided CONFIG_DEBUG_FS is enabled
in the kernel’s configuration. If debugfs is not automatically mounted at boot time, then a manual mount must be performed in
order to view these registers. This normally can be done with a superuser shell command:

$ mount -t debugfs none /sys/kernel/debug

Once done, the user can read controller registers in /sys/kernel/debug/1700000.crypto/ctl. It should be noted that debugfs will
provide a decimal integer view of most accessible registers provided, with the exception of the KEK/TDSK/TKEK registers; those
registers are long binary arrays, and should be filtered through a binary dump utility such as hexdump.

Specifically, the CAAM hardware statistics registers available are:

fault_addr, or FAR (Fault Address Register): - holds the value of the physical address where a read or write error occurred.

fault_detail, or FADR (Fault Address Detail Register): - holds details regarding the bus transaction where the error occurred.

fault_status, or CSTA (CAAM Status Register): - holds status information relevant to the entire CAAM block.

ib_bytes_decrypted: - holds contents of PC_IB_DECRYPT (Performance Counter Inbound Bytes Decrypted Register)

ib_bytes_validated: - holds contents of PC_IB_VALIDATED (Performance Counter Inbound Bytes Validated Register)

ib_rq_decrypted: - holds contents of PC_IB_DEC_REQ (Performance Counter Inbound Decrypt Requests Register)

kek: - holds contents of JDKEKR (Job Descriptor Key Encryption Key Register)

ob_bytes_encrypted: - holds contents of PC_OB_ENCRYPT (Performance Counter Outbound Bytes Encrypted Register)

ob_bytes_protected: - holds contents of PC_OB_PROTECT (Performance Counter Outbound Bytes Protected Register)

ob_rq_encrypted: - holds contents of PC_OB_ENC_REQ (Performance Counter Outbound Encrypt Requests Register)

rq_dequeued: - holds contents of PC_REQ_DEQ (Performance Counter Requests Dequeued Register)

tdsk: - holds contents of TDKEKR (Trusted Descriptor Key Encryption Key Register)

tkek: - holds contents of TDSKR (Trusted Descriptor Signing Key Register)

For more information see section "Performance Counter, Fault and Version ID Registers" in the Security (SEC) Reference Manual
(SECRM) of each SoC (available on company's website).

Note: for QI backend there is also qi_congested: SW-based counter that shows how many times queues going to / from CAAM
to QMan hit the congestion threshold.

Kernel configuration to support CAAM device drivers

Using the driver

Once enabled, the driver will forward kernel crypto API requests to the SEC hardware for processing.

Running IPsec

The IPsec stack built-in to the kernel (usually called NETKEY) will automatically use crypto drivers to offload crypto operations to
the SEC hardware. Documentation regarding how to set up an IPsec tunnel can be found in corresponding open source IPsec
suite packages, e.g. strongswan.org, openswan, setkey, etc. DPAA2-specific section contains a generic helper script to configure
IPsec tunnels.

Running OpenSSL

Please see Hardware Offloading with OpenSSL for more details on how to offload OpenSSL cryptographic operations in the
SEC crypto engine (via cryptodev).

Executing custom descriptors

SEC drivers have public descriptor submission interfaces corresponding to the following backends:

• JRI: drivers/crypto/caam/jr.c:caam_jr_enqueue()

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
392 NXP Semiconductors

• QI: drivers/crypto/caam/qi.c:caam_qi_enqueue()

• DPSECI: drivers/crypto/caam/caamalg_qi2.c:dpaa2_caam_enqueue()

caam_jr_enqueue()

Name

caam_jr_enqueue — Enqueue a job descriptor head. Returns 0 if OK, -EBUSY if the ring is full, -EIO if it cannot map the caller's
descriptor.

Synopsis

int caam_jr_enqueue (struct device *dev, u32 *desc,
 void (*cbk) (struct device *dev, u32 *desc, u32 status, void *areq),
 void *areq);

Arguments

dev: contains the job ring device that is to process this request.

desc: descriptor that initiated the request, same as “desc” being argued to caam_jr_enqueue.

cbk: pointer to a callback function to be invoked upon completion of this request. This has the form: callback(struct device *dev,
u32 *desc, u32 stat, void *arg)

areq: optional pointer to a user argument for use at callback time.

caam_qi_enqueue()

Name

caam_qi_enqueue — Enqueue a frame descriptor (FD) into a QMan frame queue. Returns 0 if OK, -EIO if it cannot map the
caller's S/G array, -EBUSY if QMan driver fails to enqueue the FD for some reason.

Synopsis

int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req);

Arguments

qidev: contains the queue interface device that is to process this request.

req: pointer to the request structure the driver application should fill while submitting a job to driver, containing a callback function
and its parameter, Queue Manager S/Gs for input and output, a per-context structure containing the CAAM shared descriptor etc.

dpaa2_caam_enqueue()

Name

dpaa2_caam_enqueue — Enqueue a frame descriptor (FD) into a QMan frame queue. Returns 0 if OK, -EBUSY if QMan driver
fails to enqueue the FD for some reason or if congestion is detected.

Synopsis

int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req);

Arguments

dev: DPSECI device.

req: pointer to the request structure the driver application should fill while submitting a job to driver, containing a callback function
and its parameter, Queue Manager S/Gs for input and output, a per-context structure containing the CAAM shared descriptor etc.

Please refer to the source code for usage examples.

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 393

Supporting Documentation

DPAA1-specific SEC details - Queue Interface (QI)

DPAA2-specific SEC details - Data Path SEC Interface (DPSECI)

4.2.10 Watchdog

Module loading
Watchdog device driver supports kernel built-in mode.

U-Boot configuration

Run-time options

Env variable Env description Sub option Option description

bootargs Kernel command line
argument passed to kernel

setenv othbootargs
wdt_period=35

Sets the watchdog timer
period timeout

Kernel configuration options

Kernel configuration tree view options

Kernel configuration tree view options Description

Device Drivers --->

 [*] Watchdog Timer Support --->

 [*] Disable watchdog shutdown on close

 [*] IMX2+ Watchdog

IMX2 watchdog timer

Compile-time configuration options

Option Values Default Value Description

CONFIG_IMX2_WDT y/n y IMX2 watchdog timer

Source Files

The driver source is maintained in the Linux kernel source tree.

Source file Description

drivers/watchdog/imx2_wdt.c IMX2 watchdog timer

User space application

The following application will be used during functional or performance testing.

Linux kernel

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
394 NXP Semiconductors

Command name Description Package name

watch watchdog is a daemon for watchdog
feeding

watchdog

Verification in Linux

1. Set NFS rootfs. Build a rootfs image that includes watchdog daemon.

2. Set boot parameter. On the U-Boot prompt, set following parameter:

Set nfsargs:

setenv bootargs wdt_period=35 root=/dev/nfs rw nfsroot=$serverip:$rootpath ip=$ipaddr:$serverip:
$gatewayip:$netmask:$hostname:$netdev:off
console=$consoledev,$baudrate $othbootargs

Set nfsboot:

run nfsargs;tftp $loadaddr $bootfile;tftp $fdtaddr $fdtfile;bootm $loadaddr - $fdtaddr
run nfsboot

wdt_period is a watchdog timeout period. Set this parameter with the proper value depending on your board

bus frequency.

 NOTE

wdt_period is inversely proportional to watchdog expiry time, it means, the higher the wdt_period, the lower the watchdog
expiry time. Therefore, if wdt_period is increased to high, watchdog will expiry early.

When using watchdog as wake-up source with the default Ubuntu root filesystem, add watchdog-device

= /dev/watchdog to /etc/watchdog.conf.

 NOTE

Device Drivers

Layerscape FRWY-LS1046A BSP User Guide, Rev. 0.1, 18 April 2019
NXP Semiconductors 395

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, CodeWarrior, Layerscape, PowerQUICC,

QorIQ, CoreNet, and QUICC Engine are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. Arm, Cortex, and TrustZone are registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 April 2019

Document identifier: FRWY-LS1046ABSPUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Reference documentation

	2 Release Notes
	2.1 Summary of overall features
	2.2 Component location
	2.3 Feature Support Matrix
	2.4 Known issues

	3 FRWY-LS1046A BSP Overview
	3.1 FRWY-LS1046A BSP Quick Start
	3.1.1 Introduction
	3.1.2 Host system requirements
	3.1.3 Download and assemble FRWY-LS1046A BSP images
	3.1.4 Deploy FRWY-LS1046A BSP images on board
	3.1.4.1 FRWY-LS1046A reference information
	3.1.4.2 Option 1: Deploy FRWY-LS1046A BSP images using removable storage device
	3.1.4.3 Option 2: Deploy BSP images directly to storage device on a board

	3.2 How to build FRWY-LS1046A BSP with Flexbuild
	3.3 Secure boot
	3.3.1 Hardware Pre-Boot Loader (PBL) based platforms
	3.3.1.1 Introduction
	3.3.1.2 Secure boot process
	3.3.1.3 Pre-boot phase
	3.3.1.4 ISBC phase
	3.3.1.4.1 Flow in the ISBC code
	3.3.1.4.2 Super Root Keys (SRKs) and signing keys
	3.3.1.4.3 Key revocation
	3.3.1.4.4 Alternate image support
	3.3.1.4.5 ESBC with CSF header

	3.3.1.5 ESBC phase
	3.3.1.5.1 Boot script
	Where to place the boot script?
	Chain of Trust
	Sample boot script
	esbc_validate command
	esbc_halt command

	Chain of Trust with confidentiality
	blob enc command
	Sample encap boot script

	blob dec command
	Sample Decap Boot Script

	3.3.1.6 Next executable (Linux phase)
	3.3.1.7 Product execution
	3.3.1.7.1 Introduction
	3.3.1.7.2 Chain of Trust with confidentiality
	Other images required for the demo
	Running secure boot (Chain of Trust with confidentiality)

	3.3.1.8 Troubleshooting
	3.3.1.9 CSF Header Data Structure
	3.3.1.10 ISBC validation error codes
	3.3.1.11 ESBC Validation Error Codes
	3.3.1.12 Trust Architecture and SFP information

	3.3.2 Code Signing Tool
	3.3.2.1 Key generation
	3.3.2.1.1 gen_keys
	3.3.2.1.2 gen_otpmk_drbg
	3.3.2.1.3 gen_drv_drbg

	3.3.2.2 Header creation
	3.3.2.2.1 uni_pbi
	Sample Input File

	3.3.2.2.2 uni_sign
	Sample Input File

	3.3.2.3 Signature generation
	3.3.2.3.1 gen_sign
	3.3.2.3.2 sign_embed

	3.3.3 Procedure to Run Secure Boot
	3.3.3.1 Prepare board for secure boot
	3.3.3.2 Running secure boot on target platforms
	3.3.3.3 Steps to run Chain of Trust with confidentiality

	3.4 FRWY-LS1046A BSP memory layout
	3.5 Build tools

	4 Linux kernel
	4.1 Configuring and building Linux kernel
	4.2 Device Drivers
	4.2.1 Enhanced Secured Digital Host Controller (eSDHC)
	4.2.2 Dual Universal Asynchronous Receiver/Transmitter (DUART)
	4.2.3 Quad Serial Peripheral Interface (QSPI)
	4.2.4 Universal Serial Bus Interfaces
	4.2.4.1 USB 3.0 Controller (DesignWare USB3)

	4.2.5 Real Time Clock (RTC)
	4.2.6 PCI Express Interface Controller
	4.2.6.1 PCIe Linux Driver
	4.2.6.2 PCIe Advanced Error Reporting User Manual
	4.2.6.3 PCIe Remove and Rescan User Manual

	4.2.7 CAAM Direct Memory Access (DMA)
	4.2.8 Networking
	4.2.8.1 DPAA1-specific Software
	4.2.8.1.1 DPAA Software Architecture Overview
	Introduction
	General architectural considerations
	Multicore design
	Parse/classification software offload
	Flow order considerations
	Managing flow-to-core affinity

	DPAA1 Goals
	FMan Overview
	QMan Overview
	QMan Scheduling
	BMan
	Order Handling
	Pool Channels
	Application Mapping
	FQ/WQ/Channel

	4.2.8.1.2 Linux Ethernet
	Introduction
	The DPAA1-Ethernet view of the world
	The Linux kernel APIs
	The Driver's building blocks
	Net Devices
	Frame Queues
	Buffer Pools

	DPAA1 resources initialization
	What, Why and How resources are initialized
	Private Ethernet driver: Hashing/PCD frame queues

	The (Simplified) Life of a packet
	Private net device: Tx
	Private net device: Rx

	Private Ethernet Driver
	Network driver
	Configuration
	Device tree configuration
	Kconfig options
	Bootargs
	ethtool options

	Features
	Congestion management
	Scatter/Gather support
	Jumbo frames support
	GRO/GSO Support
	Transmit packet steering
	TX and RX Hardware Checksum
	Priority Flow Control
	Core Affined Queues

	Quality of Service
	Policing
	Scheduling and Shaping
	Description
	The CEETM architecture
	Features
	Integration with queuing disciplines

	User guide
	Supported platforms
	Getting started
	Limitations
	Usage

	Examples
	Rate limit two streams
	Prioritization of two streams
	Assigning weights to two streams
	Unshaped Fair Queuing of two streams

	Debugging
	Ethtool support
	Read/Write of FMan Registers
	Sysfs support

	Frequently Asked Questions
	Known Issues

	Upstream Ethernet Driver

	4.2.8.1.3 Queue Manager (QMan) and Buffer Manager (BMan)
	QMan/BMan Drivers Introduction
	QMan BMan API Reference Manual
	Introduction to the Queue Manager and the Buffer Manager
	Buffer Manager
	Buffer Manager (BMan) Overview
	BMan configuration interface
	BMan Device-Tree Node
	Free Buffer Proxy Records
	Logical I/O Device Number (BMan)

	Buffer Pool Node
	Buffer Pool ID
	Seeding Buffer Pools
	Depletion Thresholds

	BMan Portal Device-Tree Node
	Portal Initialization (BMan)
	Portal sharing

	BMan CoreNet portal APIs
	BMan High-Level Portal Interface
	Overview (BMan)
	Portal management (BMan)
	Modifying interrupt-driven portal duties (BMan)
	Processing non-interrupt-driven portal duties (BMan)
	Recovery support (BMan)
	Determining if the release ring is empty

	Pool Management
	Releasing and Acquiring Buffers
	Depletion State

	Queue Manager
	QMan Overview
	Queue Manager's Function
	Frame Descriptors
	Frame Queue Descriptors (QMan)
	Work Queues
	Channels
	Portals
	Dedicated Portal Channels
	Pool Channels
	Portal Sub-Interfaces
	Frame queue dequeuing
	Unscheduled Dequeues
	Scheduled Dequeues
	Pull Mode
	Push Mode
	Stashing to Processor Cache

	Frame Queue States
	Hold active
	Dequeue Atomicity
	Parking Scheduled FQs
	Order Preservation & Discrete Consumption Acknowledgement

	Enqueue Rejections
	Order Restoration

	QMan configuration interface
	QMan device-tree node
	Frame Queue Descriptors
	Packed Frame Descriptor Records
	Logical I/O Device Number (QMan)

	QMan pool channel device-tree node
	Channel ID

	QMan portal device-tree node
	Portal Access to Pool Channels
	Stashing Logical I/O Device Number
	Portal Initialization (QMan)
	Auto-Initialization

	QMan portal APIs
	QMan High-Level Portal Interface
	Overview (QMan)
	Frame and Message Handling
	Portal management (QMan)
	Modifying interrupt-driven portal duties (QMan)
	Processing non-interrupt-driven portal duties (QMan)
	Recovery support (QMan)
	Stopping and restarting dequeues to the portal
	Manipulating the portal static dequeue command
	Determining if the enqueue ring is empty

	Frame queue management
	Querying a FQ object
	Initialize a FQ
	Schedule a FQ
	Retire a FQ
	Put a FQ out of service
	Query a FQD from QMan
	Unscheduled (volatile) dequeuing of a FQ
	Set FQ flow control state

	Enqueue Command (without ORP)
	Enqueue Command with ORP
	DCA Mode
	Congestion Management Records
	Zero-Configuration Messaging
	FQ allocation
	Ad-hoc FQ allocator
	FQ range allocator
	Future FQ allocator changes

	Helper functions

	Sysfs and debugfs QMan/BMan interfaces
	QMan sysfs
	/sys/devices/ffe000000.soc/ffe318000.qman
	/sys/devices/ffe000000.soc/ffe318000.qman/error_capture
	/sys/devices/ffe000000.soc/ffe318000.qman/error_capture/sbec_< 0..6>
	/sys/devices/ffe000000.soc/ffe318000.qman/sfdr_in_use
	/sys/devices/ffe000000.soc/ffe318000.qman/pfdr_fpc
	/sys/devices/ffe000000.soc/ffe318000.qman/pfdr_cfg
	/sys/devices/ffe000000.soc/ffe318000.qman/idle_stat
	/sys/devices/ffe000000.soc/ffe318000.qman/err_isr
	/sys/devices/ffe000000.soc/ffe318000.qman/dcp< 0..3> _dlm_avg
	/sys/devices/ffe000000.soc/ffe318000.qman/ci_rlm_avg

	BMan sysfs
	/sys/devices/ffe000000.soc/ffe31a000.bman
	/sys/devices/ffe000000.soc/ffe31a000.bman/error_capture
	/sys/devices/ffe000000.soc/ffe31a000.bman/error_capture/sbec_< 0..1>
	/sys/devices/ffe000000.soc/ffe31a000.bman/pool_count
	/sys/devices/ffe000000.soc/ffe31a000.bman/fbpr_fpc
	/sys/devices/ffe000000.soc/ffe31a000.bman/err_isr

	QMan debugfs
	/sys/kernel/debug/qman
	/sys/kernel/debug/qman/query_cgr
	/sys/kernel/debug/qman/query_congestion
	/sys/kernel/debug/qman/query_fq_fields
	/sys/kernel/debug/qman/query_fq_np_fields
	/sys/kernel/debug/qman/query_cq_fields
	/sys/kernel/debug/qman/query_ceetm_ccgr
	/sys/kernel/debug/qman/query_wq_lengths
	/sys/kernel/debug/qman/fqd/avoid_blocking_[enable | disable]
	/sys/kernel/debug/qman/fqd/prefer_in_cache_[enable | disable]
	/sys/kernel/debug/qman/fqd/cge_[enable | disable]
	/sys/kernel/debug/qman/fqd/cpc_[enable | disable]
	/sys/kernel/debug/qman/fqd/cred
	/sys/kernel/debug/qman/fqd/ctx_a_stashing_[enable | disable]
	/sys/kernel/debug/qman/fqd/hold_active_[enable | disable]
	/sys/kernel/debug/qman/fqd/orp_[enable | disable]
	/sys/kernel/debug/qman/fqd/sfdr_[enable | disable]
	sys/kernel/debug/qman/fqd/state_[active | oos | parked | retired | tentatively_sched | truly_sched]
	/sys/kernel/debug/qman/fqd/tde_[enable | disable]
	/sys/kernel/debug/qman/fqd/wq
	/sys/kernel/debug/qman/fqd/summary
	/sys/kernel/debug/qman/ccsrmempeek
	/sys/kernel/debug/qman/query_ceetm_xsfdr_in_use

	BMan debugfs
	/sys/kernel/debug/bman
	/sys/kernel/debug/bman/query_bp_state

	Error handling and reporting
	Handling and Reporting

	Operating system specifics
	Portal maintenance
	Callback context
	Blocking semantics

	4.2.8.1.4 Configuring DPAA Frame Queues
	Introduction
	FMan Network interface Frame Queue Configuration
	FMan network interface ingress FQs configuration
	Ingress FQs common configuration guidelines
	Dynamic load balancing with order preservation - ingress FQs configuration guidelines
	Dynamic load balancing with order restoration - ingress FQs configuration guidelines
	Static distribution - Ingress FQs Configuration Guidelines
	FMan network interface egress FQs configuration
	Accelerator Frame Queue Configuration
	DPAA1 Frame Queue Configuration Guideline Summary

	4.2.8.1.5 Frame Manager
	Frame Manager Linux Driver User Guide
	Introduction
	The Linux FMD Devices
	Linux FMD Programming Model
	Frame Manager Linux Driver API Reference
	The Linux FMan Device
	The Linux PCD Device
	The Linux Port Devices

	Frame Manager Driver User Guide
	Introduction
	Frame Manager Features
	Frame Manager Driver Components
	Driver Modules in the System
	Multicore Approach
	SMP

	FMan Driver Calling Sequence
	Global FMan Driver
	FMan Hardware Overview
	Global FMan Driver Software Abstraction

	How to use the Global FMan Driver?
	Global FMan Driver Scope
	Global FMan Driver Sequence
	Global FMan Driver Functional Description
	FMan Configuration and Initialization
	Resource Management & Tuning
	Load Balancing
	Statistics

	FMan Parse-Classify-Distribute Driver
	FMan PCD Hardware Overview
	FMan PCD Software Abstraction
	FMan PCD Flow
	Global FMan PCD Module
	Global FMan-PCD Resources
	How to Associate PCD Resources
	FMan Header Manipulation
	Custom Classifier Hash-Table Node

	How to use the FMan PCD Driver?
	FMan PCD Driver Scope
	FMan PCD Driver Sequence
	FMan PCD Driver Functional Description
	Global PCD Initialization
	PCD Resources
	Network Environment Characteristics
	Software Parser
	Keygen Schemes
	Custom Classifier Root
	Match-Table Nodes
	Hash-Table Nodes
	Manipulations
	Header Manipulation
	IP Reassembly
	IP Fragmentation
	IPSec Manipulation

	Policer Profiles
	PCD Organization
	PCD Definition Sequence
	Host Command
	PCD Statistics
	Custom Classifier Statistics

	FMan Port Driver
	FMan Port Hardware Overview
	FMan Port Driver Software Abstraction

	How to use the FMan Port Driver?
	FMan Port Driver Scope
	FMan Port Driver Sequence
	FMan Port Driver Functional Description
	FMan Port Configuration and Initialization
	FMan Port Types
	Independent-Mode
	Resource Management
	Rate Limiting
	Simple BMI-to-BMI (regular) mode
	Port LIODN
	Port-PCD Binding
	Port-PCD Binding Changes

	FMan MAC Driver
	FMan MAC Hardware Overview
	FMan MAC Software Abstraction

	How To Use The FMan MAC Driver?
	FMan MAC Driver Scope
	FMan MAC Driver Sequence
	FMan MAC Driver Functional Description
	FMan MAC Configuration and Initialization
	FMan MAC Addressing
	IEEE1588 Support
	MAC Statistics

	FMan RTC (IEEE 1588) Driver
	FMan RTC Hardware Overview
	How To Use The RTC Driver?
	RTC Driver Scope
	RTC Driver Sequence
	RTC Driver Functional Description
	FMan RTC 1588 module utilization
	Utilizing IEEE1588 for MAC frames time stamping
	Utilizing IEEE1588 for PTP

	FMan MURAM Driver
	FMan MURAM Hardware Overview
	FMan MURAM Driver Software Abstraction

	How To Use The FMan MURAM Driver?
	FMan MURAM Driver Scope
	FMan MURAM Driver Sequence
	FMan MURAM Driver Functional Description

	Supported Network Protocols
	L2 Protocols
	L3 Protocols
	L4 Protocols
	Private Headers
	Fields Supported By Driver for Keygen Extraction

	4.2.8.1.6 Frame Manager Configuration Tool User Guide
	Introduction
	FMC Tool Features
	FMC Tool Components and Packaging
	FMC Tool - Runtime Environment Mode
	FMC Tool - Host Mode
	Host Mode Output - C Source Code Files

	FMC Tool Command-Line Arguments
	The NetPDL and NetPCD XML Markup Languages
	Protocol files
	Standard Protocol File
	Custom Protocol File

	Policy file
	Distribution Section
	Policy Section
	Classification Section
	Policer Section

	Configuration File
	NXP NetPDL Reference
	Basic XML Rules
	The netpdl Element
	The protocol element
	Effect of Setting prevproto Attribute to otherl3 or otherl4

	The format element
	The fields Element
	The field Element

	The execute-code element
	The before Element
	The after Element
	Child Elements of the before and after Elements
	The assign-variable Element
	The if Element
	The if-true Element
	The if-false Element

	The switch Element
	The case Element
	The default Element

	The action Element (for use in a Custom Protocol file)

	Expressions
	Operands
	Numbers
	Fields
	Variables
	Result Array Variables
	Parameter Array Variable
	Header Size Variables
	Frame Window Variable
	The prevprotoOffset Variable

	Operators
	The concat Operator
	The checksum Operator
	Expression Priorities
	Operator Precendence
	Variable Size

	Expression Types
	Logical Expressions
	Arithmetic Expressions

	Tips and Recommendations
	Result Array Fields that Must be Manually Updated
	Result Array Fields that Should Not be Modified
	Setting the Next Protocol

	Limitations
	Complex Expressions

	NetPCD Reference
	The netpcd element
	netpcd Attribute Definitions
	netpcd Example

	The policy element
	policy Attribute Definitions
	policy Example

	The dist_order element
	dist_order Attribute Definitions
	dist_order Example

	The distributionref element
	distributionref Attribute Definitions
	distributionref Example

	The distribution element
	distribution Attribute Definitions
	distribution Example
	Default Groups

	The key element
	key Attribute Definitions
	key Example

	The fieldref element
	fieldref Attribute Definitions
	fieldref Example

	The queue element
	queue Attribute Definitions
	queue Example

	The protocols and protocolref elements
	protocols and protocolref Attribute Definitions
	protocols and protocolref Example

	The combine element
	combine Attribute Definitions
	combine Example

	The action element (for use in a policy file)
	action Attribute Definitions
	Statistics
	action Example

	The classification element
	classification Attribute Definitions
	classification Statistics
	classification Example
	Frame Replicators
	framelength Statistics
	Statistics Example
	Coarse Classification Resource Reservation

	The entry element
	entry Attribute Definitions
	entry Example

	The policer element
	policer Attribute Definitions
	policer Example

	The nonheader element
	nonheader Attribute Definitions
	nonheader Example

	Hash Tables
	Virtual Storage Profiles Element
	vsp Attributes
	vsp Examples

	Manipulation Parameters
	IP Fragmentation
	IP Reassembly
	Header Manipulation
	Header Manipulation - Insert
	Header Manipulation - Remove
	Header Manipulation - Insert-Header
	Header Manipulation - Remove_Header
	Header Manipulation - Update
	Header Manipulation - Custom
	Header Manipulation - Nextmanip
	Header Manipulation - Example

	Standard Protocol File - Excerpt
	Custom Protocol File - GTP Protocol Example

	4.2.8.1.7 Security Engine (SEC)
	4.2.8.1.8 Decompression/Compression Acceleration (DCE)

	4.2.9 Security Engine (SEC)
	4.2.10 Watchdog

