

Ceramic Capacitor Technology

CeraLink[®] Opens New Dimensions in Power Electronics

TDK Electronics AG Piezo and Protection Devices Business Group Product Marketing PI AE/IE Munich, Germany June 2020

Ceramic Capacitor Technology

Ceramic Capacitor Technology • CeraLink®

© © **TDK Electronics AG** • 2020 Product Marketing PI AE/IE • 06/20 • 2

Attracting Tomorrow

PZT – a highly flexible ceramic material class

公TDK

CeraLink[®] at a first glance

Applications SiC & GaN

Image: Panasonic

CeraLink at a first glance

CeraLink in output filter

New demands for DC link capacitors

Improvements in power density and efficiency were mainly driven by semiconductor technology in the last decade.

Example: principle block picture and size comparison of a motor inverter

"Today the package of a motor inverter is mainly driven by the size of the capacitor, the bus bars, the terminal box and the filter components."

Source: Plikat, Mertens, Koch, Volkswagen AG, Corporate Research, 2013

Requirements for a DC link capacitor

- High capacitance density
- High current density
- Low parasitic values (ESR/ESL) for fast switching
- Low losses in operation
- High operating and peak temperatures
- High cooling efficiency due to high thermal conductivity
- Support of distributed DC link capacitor topologies with low inductance components (modular design)

Attracting Tomorrow

Technology guideline

How does CeraLink meet these requirements?

Ceramic Capacitor Technology • CeraLink®

Material PLZT – an antiferroelectric material

High capacitance density at operating condition

- Due to antiferroelectric behavior, the characteristics of CeraLink are strongly non-linear and optimized for conditions under operation in power electronics
- Film capacitors and class 1 ceramics have a dielectric constant (nearly) independent on the electrical field (ε < 100)
- The permittivity of ferroelectric (e.g. X7R) MLCC capacitors is decreasing with electrical field
- CeraLink features an increasing dielectric constant up to the operating voltage
- At higher AC voltage (peaks), the material is able to provide even higher permittivities

DC bias characteristics at room temperature

	Film capacitor	Class 2 MLCC	CeraLink	
Nominal / rated capacitance	100 %	100 %	100 %	
No bias voltage $0.5 V_{RMS}$	100%	100 %	35 %	
DC link voltage $0.5 \text{ V}_{\text{RMS}}$	100 %	35 %	60 %	DC link (energy)
DC link voltage $20 V_{RMS}$	100 %	35 %	100 %	Snubber

Attracting Tomorrow

CeraLink is ideal for fast switching

Device characteristics lead to a low inductive commutation loop

- High capacitance density of 2 to 5 μF/cm³
- Low self-inductance (ESL) of 2.5 to 4 nH
- High thermal robustness allows CeraLink to be placed very close to the semi-conductor with operation up to 150 °C permissible
- No limitation of dV/dt

Semiconductor overshoot principle

Ceramic Chip Features Design for robustness against ceramic cracks

MLSC design

- Series connection of two MLCC geometries in one component.
- **MLSC** design prevents short circuits caused by cracks from mechanical overstress

MFD design

 Chip is segmented in height to reduce piezoelectric stress between active and inactive area

Ceramic chip design for high current capability and high thermal conductivity

Copper inner electrodes

- Co-firing of PLZT ceramic material together with Cu is difficult, but possible
- Cu process is one core competence of the piezo mother factory in Deutschlandsberg, Austria

Cross section of the CeraLink multilayer chip consisting of appr. 80 dielectric ceramic layers

Attracting Tomorrow

Packaging Robust interconnection of metallic contacts

*Invar: 36Ni-Fe

Attracting Tomorrow

Low losses at high temperatures and frequencies

Comparison @ 1 V_{AC} , 1 kHz, 400 V_{DC} , 25 °C

Low dielectric loss at high temperatures

Comparison @ 0.1 V_{AC} , 0 V_{DC} , 25 °C

Minimal ESR due to low-loss copper electrodes and HF-suited backend

BTO = barium titanate oxide = standard MLCC material

Low self-heating and high current capability

Due to low losses at high temperature and high frequency, CeraLink can carry more current under these conditions

Measurement condition	MKP film capacitor	BTO Class 2 MLCC	CeraLink
Typical capacitance density @ DC link voltage, 20 V _{RMS} , 25 °C	0.7 µF/cm³	2.5 µF/cm ³	4.9 µF/cm ³
Typical current rating per capacitance @ 100 kHz, 105 °C	< 1 A/µF	< 4.5 A/µF	12 A/µF

Comparison @ 400 V_{DC}, 105 °C, 200 kHz

Comparison @ 400 V_{DC}, 85 °C, 5 A_{rms}

Measurements were carried out without active cooling (no forced air flow, no heat sink)

Attracting Tomorrow

Exceptional lifetime at high temperatures

Lifetime @ 200 °C three orders of magnitude higher than that of conventional ceramic capacitors

Ceramic Capacitor Technology • CeraLink®

© © TDK Electronics AG • 2020 Product Marketing PI AE/IE • 06/20 • 20

Lifetime at high temperatures – comparison of ceramic capacitors

CeraLink offers highest lifetime and capacitance density compared to conventional ceramic capacitors

Low leakage current at high temperatures

CeraLink shows stable and outstanding high isolation properties compared to all existing capacitor technologies

- low leakage current at elevated temperatures even above 150 °C
- No thermal runaway observed for CeraLink ceramic material

Comparison @ 400 V_{DC}

Parallel capacitors No thermal runaway

The capacitance characteristic and low ESR of CeraLink avoid a thermal runaway:

Green: CeraLink small signal capacitance measurement (0.1 V_{rms}, 1 kHz) **Black:** TDK Megacap 1 μ F 630 V \rightarrow measurement (0.1 V_{rms}, 1 kHz) Higher temperature leads to:

- Lower capacitance
- Higher impedance
- Lowest current through the <u>hottest</u> capacitor

Attracting Tomorrow

CeraLink Product portfolio – modular design

CeraLink product range

Sorios	Maximum voltage ratings			Footuroo	
Series	650 V	900 V	1300 V	reatures	
Low Profile LP (L /J leads)	1 µF / 500 V	0.5 μF / 700 V	0.25 μF / 900 V	Innovative anti-ferroelectric ceramic material	
Flex Assembly FA2 / FA3	2/3 μF / 500 V	1/1.5 μF / 700 V	0.5/0.75 μF / 900 V	Use CeraLink when	
Flex Assembly FA10	10 μF / 500 V	5 µF / 700 V	2.5 μF / 900 V	 Temperature is demanding (+150 °C) High current rating is vital Requirements for capacitance density are tough 	
Solder Pin SP	20 µF / 500 V	10 μF / 700 V	5 µF / 900 V	 High switching frequencies are applied (SiC, GaN) Qualified based on AEC-Q200 and Complex 	

Application examples Integrated servo drive

Ceramic Capacitor Technology • CeraLink®

© © **TDK Electronics AG** • 2020 Product Marketing PI AE/IE • 06/20 • 28

GaN power module with integrated driver and DC-Link capacitor

• 1x CeraLink LP 500 V, 1 μ F \rightarrow low inductive commutation loop ~3nH

2x integrated driver for 2x GaN systems 650 V

CeraLink as DC-Link capacitors

 Supports miniaturization with low inductive design

Attracting Tomorrow

 Supports fast-switching GaN and high switching frequencies

Source: Fraunhofer IZM

Application examples Onboard chargers

Recommended products (selection)

- 1. Chip NTCs (thermal sensing against overheating) - B57232V5103+360
 - B5/232V51U3+36U
 - B57332V5103+360
 - NTCG164LH104H
- 2. Chip varistors (ESD protection for data lines)
 - CT0402S17AG
 - CT0603L25HSG
 - AVRM1608C270MT*
- 3. Chip varistors (low voltage surge protection)
 - CT0805S14BAUTOG
 - CT1206S14BAUTOG
 - CT2220K30G
 - AVRM2012C390KT6AB
- 4. Leaded varistors (high voltage surge protection)
 - SNF14K***E2K1
 - SNF20K***E2K1
- 5. Surge arresters (high voltage protection)
 - EHV6*-H...B1-B7
 - EHV60-H...SMD
- 6. PTC ICLs (inrush current protection)
 - J21x series
- 7. CeraLink[®] (DC link capacitor or output filtering) - B58031*
 - Flex Assembly FA2 or FA3

CeraLink as Snubber

1 per half bridge - mounted close to the semiconductor

Soriac	Maximum voltage ratings			e ratings	
Series	650 V	900 V	1300 V	reatures	
Low Profile LP (L /J leads)	1 μF / 500 V	0.5 μF / 700 V	0.25 μF / 900 V	 Low ESL (typ. 3 nH) Low losses at high frequencies and 	
Flex Assembly FA2 / FA3	2/3 μF / 500 V	1/1.5 μF / 700 V	0.5/0.75 μF / 900 V	 high temperatures (up to +150 °C) No limitation of dV/dt 	

Over-voltages or over-shoots occur when switching off a Semiconductor.

This will cause an overvoltage according the formula (see left)

The low inductance of the CeraLink enables a faster switching of the semiconductor resulting in lower switching losses, enabling a reduction of switching losses of up to **40%**!

Application examples Ideal for demanding applications

Attracting Tomorrow

Outlook: Chip CeraLink 2220 in development

	TDK MLCC Height: 2.5 mm	CeraLink 2220 Height: 1.4 mm	
Capacitance @ 0 V DC, 25 °C	470 nF	60 nF	×
Capacitance @ 400 ∨ DC, 25 °C	183 nF	110 nF	×
Capacitance @ 400 V DC, large signal, 25 °C	183 nF	220 nF	~
Size [l x w x h]	5.7 x 5 x 2.5 mm	5.6 x 4.7 x 1.4 mm	~
Capacitance density @ 400 V DC (400 V DC large signal)	2.57 µF/cm ³	3.4 (6.6) µF/cm³	~
T _{max}	125 °C	150 °C	✓
I _{rms} @ 100 kHz*	2.1 A _{RMS}	4.0 A _{RMS}	~

* T_{amb} = 85 °C / f = 100 kHz / VDC = 400V / calculated from I_{rms} = 3 A and device temperature after 15 min

Target: CeraLink 2220 2220 200 nF 500 V Standard termination

Benchmark MLCC: **C5750X7T2J474K250KC** 2220 470 nF 630 V Standard termination

- Optimized for capacitance density (MLCC design)
- No stress-relief layer necessary for 1 mm active packet (1.4 mm chip height)
- Termination: Cu cap with Ni/Sn galvanics

Summary

Key benefits of CeraLink®

- Effective capacitance increases with rising voltage and leads to **high capacitance density**
- Low ESL and low inductive connection
- Low ESR especially at high frequencies and high temperatures
- High current density
- High operating and peak temperatures with temperature excursions up to 150 °C
- High robustness against high temperatures
- Supports fast-switching semiconductors and high switching frequencies
- Supports further miniaturization of power electronics at the system level

www.tdk-electronics.tdk.com