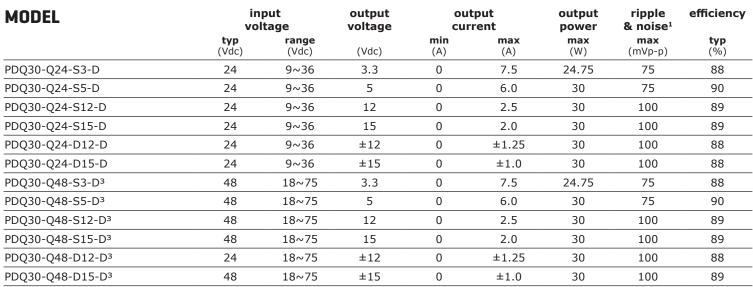


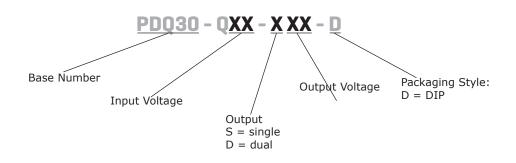
06/15/2023 date


page 1 of 10

SERIES: PD030-D **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 30 W isolated output
- industry standard 1" x 1" package
- 4:1 input range
- single/dual regulated output
- over voltage, input under voltage lockout, and short circuit protections
- 1,500 Vdc isolation voltage
- five-sided shielded case
- remote on/off control
- output trim
- -40 to 105°C temperature range
- efficiency up to 90%
- EN 62368-1
- meets UL 62368-1



Notes

- 1. At full load, nominal input, 20 MHz bandwidth oscilloscope, with 10 µF tantalum and 1 µF ceramic capacitors on the output.
- 2. All specifications are measured at Ta=25°C, nominal input voltage, and rated output load unless otherwise specified.
- 3. CE does not apply to 48 Vin models.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage	24 Vdc input models 48 Vdc input models	9 18	24 48	36 75	Vdc Vdc
surge voltage	for maximum of 100 ms 24 Vdc input models 48 Vdc input models			50 100	Vdc Vdc
current	24 Vdc input models 48 Vdc input models			3.9 1.95	A A
under voltage shutdown	24 Vdc input models, power up 24 Vdc input models, power down 48 Vdc input models, power up 48 Vdc input models, power down	8.5 8.0 17 16			Vdc Vdc Vdc Vdc
remote on/off¹	turn on (3.5~75 Vdc or open circuit) turn off (<1.2 Vdc)				
filter	pi filter				
input reverse polarity protection	no				
input fuse	6 A time delay fuse for 24 Vdc input models (recommended) 3 A time delay fuse for 48 Vdc input models (recommended)				

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3 Vdc output models			7,500	μF
naximum capacitive load oltage accuracy ne regulation oltage balance ross regulation urn-on delay time, from input urn-on delay time, from n/off control se time djustability² witching frequency	5 Vdc output models			6,000	μF
	12 Vdc output models			2,500	μF
пахіпшті сарасісіче юай	15 Vdc output models			2,000	μF
	±12 Vdc output models			1,250	μF
	±15 Vdc output models			1,000	μF
voltage accuracy				±1.5	%
	from high line to low line				
line regulation	single output models			±0.2	%
	dual output models			±0.5	%
	from full load to minimum load				
	single output models			±0.2	%
	dual output models			±1.0	%
voltage balance	dual output models			±1.5	%
cross regulation	load cross variation 10%/100% (dual output			±5	%
turn-on delay time, from input	from Vin, min to 10% Vo		10		ms
turn-on delay time, from on/off control	from Von/off to 10% Vo		10		ms
rise time	from 10% Vo to 90% Vo		10		ms
adjustability ²	see application notes		±10		%
switching fraguency	3.3, 5 Vdc output models		270		kHz
	all other models		330		kHz
	75%-100% step load change				
dynamic load response	error band (Vout)		5		%
from high line to low line single output models dual output models from full load to minimum load single output models dual output models dual output models dual output models load cross variation 10%/100% (dual output models) rn-on delay time, from input from Vin, min to 10% Vo rn-on delay time, from /off control e time from 10% Vo to 90% Vo justability² see application notes ritching frequency 3.3, 5 Vdc output models all other models rn-ond (Vout) recovery time		250		μs	
temperature coefficient			±0.03		%/°C

Note: 2. For single output models only.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection	zener or TVS clamp 3.3 Vdc output models 5 Vdc output models 12 Vdc output models (single and dual) 15 Vdc output models (single and dual)		3.9 6.2 15 18		Vdc Vdc Vdc Vdc
over current protection	hiccup mode	110	140	170	%
short circuit protection	continuous, automatic recovery				
over temperature protection	output shutdown, automatic recovery 110			°C	

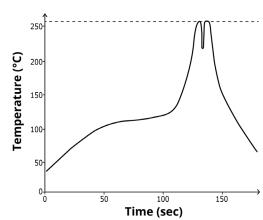
SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute	1 minute 1,500			Vdc
isolation resistance	sistance input to output 1,0				MΩ
isolation capacitance input to output			1,500		pF
safety approvals 62368-1: EN meets 62368-1: UL					
conducted emissions EN 55022 Class A (external circuit required, see Figure 3)					
RoHS	2011/65/EU				

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		105	°C
storage temperature		-55		125	°C
operating humidity	non-condensing			95	%

SOLDERABILITY


parameter	conditions/description	min	typ	max	units
wave soldering	see wave soldering profile			260	°C

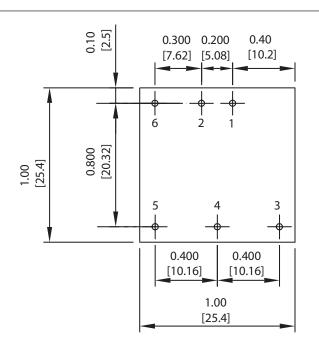
Notes:

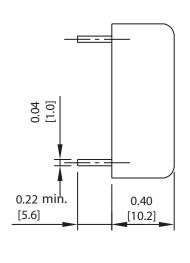
- 1. Soldering materials: Sn/Cu/Ni

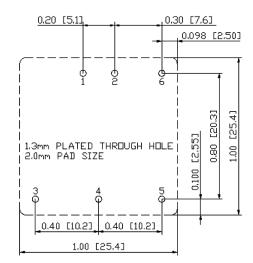
- 1. Soldering materials: Sn/Cu/M
 2. Ramp up rate during preheat: 1.4°C/s (from 50°C to 100°C)
 3. Soaking temperature: 0.5°C/s (from 100°C to 130°C), 60±20 seconds
 4. Peak temperature: 260°C, above 250°C for 3~6 seconds
 5. Ramp down rate during cooling: -10°C/s (from 260°C to 150°C)

WAVE SOLDERING PROFILE

MECHANICAL

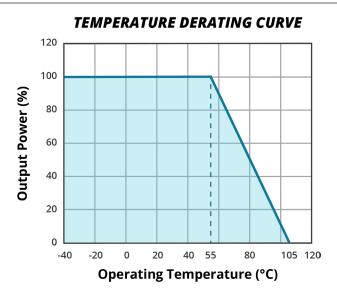

parameter	conditions/description	min	typ	max	units
dimensions	1.00 x 1.00 x 0.4 [25.4 x 25.4 x 10.2 mm]				inches
case material	black coated copper with non-conductive base				
weight			18		g

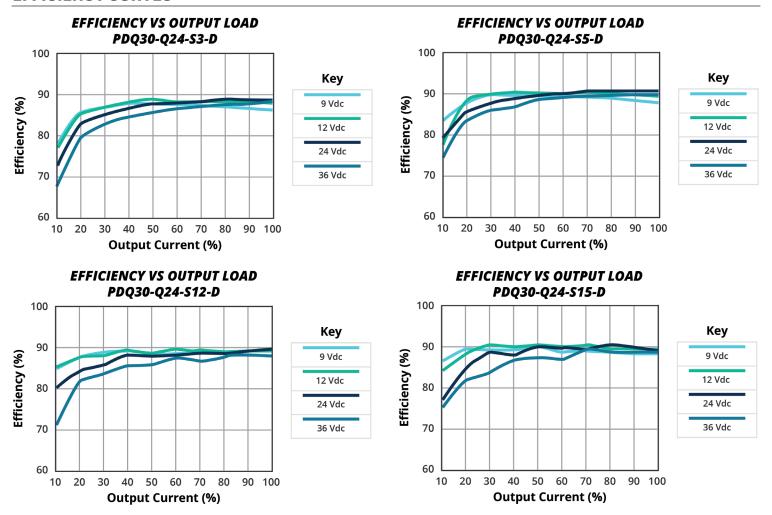

MECHANICAL DRAWING


units: inches [mm] tolerance: X.XX ±0.02 [±0.5]

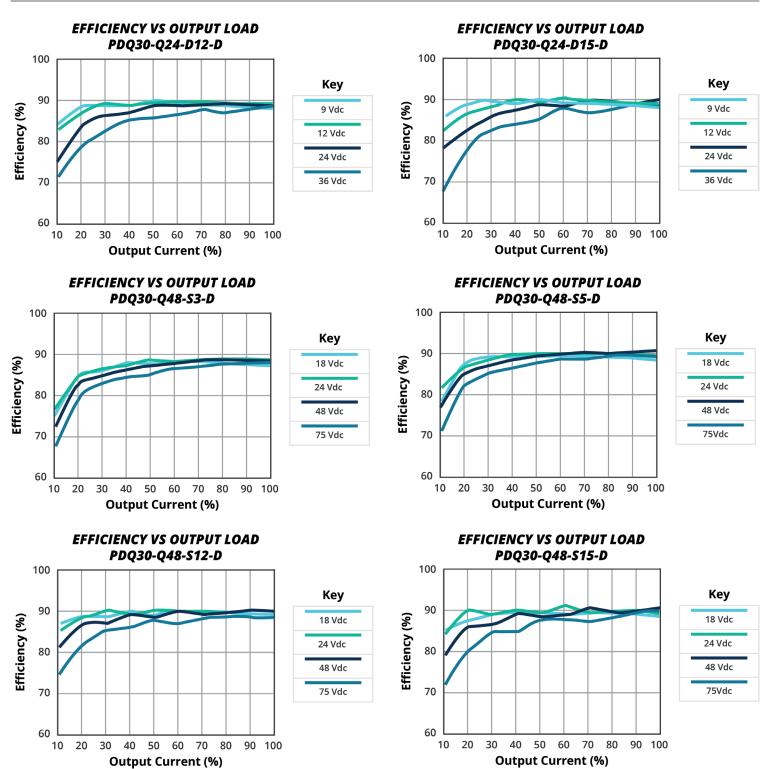
tolerance: X.XX ± 0.02 [± 0.5] X.XXX ± 0.010 [± 0.25] pin diameter tolerance: ± 0.004 [± 0.1]

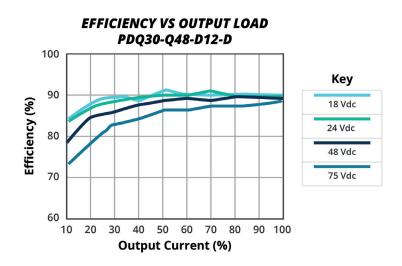
PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	+Vin	+Vin			
2	-Vin	-Vin			
3	+Vout	+Vout			
4	Trim	Common			
5	-Vout	-Vout			
6	Remote	Remote			





Recommended PCB Layout Top View


DERATING CURVE


EFFICIENCY CURVES

EFFICIENCY CURVES (CONTINUED)

EFFICIENCY CURVES (CONTINUED)

TEST CONFIGURATIONS

Input Ripple Current & Output Noise

Figure 1 Measuring Input Ripple Current

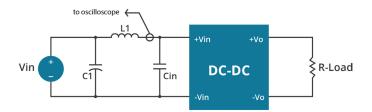


Figure 2 Measuring Output Ripple And Noise

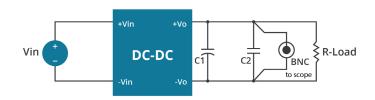


Table 1

L1	12 μΗ
C1	220 μF ESR < 0.1 Ω at 100 kHz
Cin	33 μF ESR < 0.7 Ω at 100 kHz

Table 2

C1	10 μF tantalum capacitor
C2	1 μF ceramic capacitor

EMC RECOMMENDED CIRCUIT

Test Condition

Input Voltage: Nominal Output Load: Full Load

Figure 3 Conducted Emissions Test Circuit

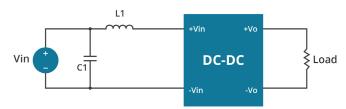


Table 3

EN55022 Class A Recommended External Circuit Components				
Input Voltage C1 L1 (Vdc)				
24	100 μF / 50 V	0.47 µH		
48	4.7 μF / 100 V	2.2 μΗ		

APPLICATION NOTES

Output Voltage Trimming

The output voltage can be adjusted (single outputs only) by using the trim pin and the use of either an external trim pot or the use of a single fixed resistor (see Figures below). If the trim function is not needed, leave the trim pin open.

Figure 4 Trim Adjustments Using A Trimpot

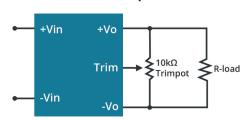


Figure 5 Trim Adjustments To Increase **Output Voltage Using A Fixed Resistor**

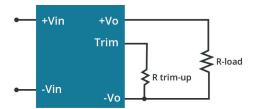
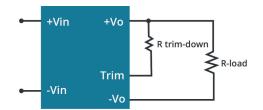



Figure 6 Trim Adjustments To Decrease **Output Voltage Using A Fixed Resistor**

$$R_{TRIM} = \begin{bmatrix} V_{REF} \times R_{TOP} \times (R_{BOTTOM} + R_{O}) \\ \hline R_{BOTTOM} \times (V_{OUT} - V_{OUT, NOM}) \end{bmatrix} - R_{T} (K \Omega)$$

Formula for Trim up

 $R_{TRIM} = R_{TOP} \times \left[\frac{V_{REF} \times R_{TOP}}{R_{BOTTOM} \times (V_{OUT, NOM} - V_{OUT})} - 1 \right] - R_{T} \quad (K \Omega)$

Formula for Trim down

Table 4

V _{NOM}	R _{TOP}	R _{воттом}	R _o	R _T	V_{REF}
(Vdc)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(V)
3.3	2.74	1.8	0.27	9.1	1.24
5	2.32	2.32	0	8.2	2.5
12	6.8	2.4	2.32	22	2.5
15	8.06	2.4	3.9	22	2.5

Note: Value for $R_{\text{TOP'}}$ $R_{\text{BOTTOM'}}$ $R_{\text{O'}}$ R_{T} and V_{REF} refer to Table 4 (fixed internal values).

R_{TRIM}: Trim resistance

a: User-defined parameter, no actual meanings

V_{NOM}: Nominal output voltage V_{OUT} : Target output voltage

REVISION HISTORY

rev.	description	date
1.0	initial release	07/12/2016
1.01	added 5 Vdc output efficiency curves	09/04/2018
1.02	safeties updated	05/25/2021
1.03	derating curve and circuit figures updated	03/14/2022
1.04	output voltage trimming updated	06/15/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.