Serial (SPI), 256K × 8, 40MHz, industrial #### **Features** - 2Mb ferroelectric random access memory (F-RAM) logically organized as 256K × 8 - Virtually unlimited endurance of 1000 trillion (10¹⁵) read/write cycles - 151-year data retention (See Data retention and endurance on page 25) - Infineon no delay technology writes - Advanced high-reliability ferroelectric process - Fast SPI - Up to 50 MHz frequency - Supports SPI mode 0 (0, 0) and mode 3 (1, 1) - Sophisticated write protection scheme - Hardware protection using the write protect (WP) pin - Software protection using write disable (WRDI) instruction - Software block protection for 1/4, 1/2, or entire array - Device ID and serial number - Device ID contains manufacturer ID and product ID - Unique ID - Serial number - Dedicated 256-byte special sector F-RAM - Dedicated special sector write and read - Stored content can survive up to three standard reflow soldering cycles - · Low-power consumption - 2.4 mA (typ) active current at 40 MHz - 2.3 μA (typ) standby current - 0.70 μA (typ) deep power down mode current - 0.1 μA (typ) hibernate mode current - Low-voltage operation - CY15V102QN: $V_{DD} = 1.71 \text{ V to } 1.89 \text{ V}$ - CY15B102QN: V_{DD} = 1.8 V to 3.6 V - Industrial operating temperature: –40°C to +85°C - Packages - 8-pin small outline integrated circuit (SOIC) package - 8-pin thin dual flat no leads (DFN) package - 8-pin plastic dual in-line (PDIP) package - · Restriction of hazardous substances (RoHS) compliant Serial (SPI), 256K × 8, 40MHz, industrial Functional description ### **Functional description** The EXCELON™ LP CY15X102QN is a low power, 2Mb nonvolatile memory employing an advanced ferroelectric process. A ferroelectric random access memory or F-RAM is nonvolatile and performs reads and writes similar to a RAM. It provides reliable data retention for 151 years while eliminating the complexities, overhead, and system-level reliability problems caused by serial flash, EEPROM, and other nonvolatile memories. Unlike serial flash and EEPROM, the CY15X102QN performs write operations at bus speed. No write delays are incurred. Data is written to the memory array immediately after each byte is successfully transferred to the device. The next bus cycle can commence without the need for data polling. In addition, the product offers substantial write endurance compared to other nonvolatile memories. The CY15X102QN is capable of supporting 10^{15} read/write cycles, or 1000 million times more write cycles than EEPROM. These capabilities make the CY15X102QN ideal for nonvolatile memory applications, requiring frequent or rapid writes. Examples range from data collection, where the number of write cycles may be critical, to demanding industrial controls where the long write time of serial flash or EEPROM can cause data loss. The CY15X102QN provides substantial benefits to users of serial EEPROM or flash as a hardware drop-in replacement. The CY15X102QN uses the high-speed SPI bus, which enhances the high-speed write capability of F-RAM technology. The device incorporates a read-only Device ID and Unique ID features, which allow the host to determine the manufacturer, product density, product revision, and unique ID for each part. The device also provides a writable, 8-byte serial number registers, which can be used to identify a specific board or a system. ### Logic block diagram ### Serial (SPI), 256K × 8, 40MHz, industrial # Table of contents | Features | | |---|----------------| | Functional description | 2 | | Logic block diagram | 2 | | Table of contents | 3 | | 1 Pinouts | | | 2 Pin definitions | 5 | | 3 Functional overview | 6 | | 3.1 Memory architecture | 6 | | 3.2 SPI bus | 6 | | 3.3 SPI overview | 6 | | 3.4 Terms used in SPI protocol | 6 | | 3.4.1 SPI master | 6 | | 3.4.2 SPI slave | 6 | | 3.4.3 Chip select (CS) | | | 3.4.4 Serial clock (SCK) | 7 | | 3.4.5 Data transmission (SI/SO) | 7 | | 3.4.6 Most significant bit (MSb) | 8 | | 3.4.7 Serial opcode | 8 | | 3.4.8 Invalid opcode | 8 | | 3.4.9 Status register | 8 | | 3.5 SPI modes | 8 | | 3.6 Power-up to first access | | | 4 Functional description | 10 | | 4.1 Command structure | | | 4.1.1 Write enable control commands | 11 | | 4.1.2 Register access commands | | | 4.1.3 Memory operation | 13 | | 4.1.4 Memory write operation commands | | | 4.1.5 Memory read operation commands | | | 4.1.6 Special sector memory access commands | | | 4.1.7 Identification and serial number commands | | | 4.1.8 Low power mode commands | | | 5 Maximum ratings | 21 | | 6 Operating range | 22 | | 7 DC electrical characteristics | | | 8 Data retention and endurance | | | 9 Capacitance | | | 10 Thermal resistance | | | 11 AC test conditions | | | 12 AC switching characteristics | | | 13 Power cycle timing | | | 14 Ordering information | | | 14.1 Ordering code definitions | 32 | | 4F Darling at the survey of | | | 15 Package diagrams | 33 | | 16 Acronyms | 33 | | 16 Acronyms | 33
36
37 | | 16 Acronyms | 33
36
37 | #### **Pinouts** 1 **Pinouts** Figure 1 8-pin SOIC/PDIP pinout Figure 2 8-lead DFN pinout Serial (SPI), 256K × 8, 40MHz, industrial Pin definitions ### **2** Pin definitions #### Table 1 Pin definitions | | | m definitions | | | | | |-------------------|--------------|--|--|--|--|--| | Pin name | I/O type | Description | | | | | | CS | Input | Chip select . This active LOW input activates the device. When HIGH, the device enters low-power standby mode, ignores other inputs, and the output is tristated. When LOW, the device internally activates the SCK signal. A falling edge on CS must occur before every opcode. | | | | | | SCK | Input | Serial clock . All I/O activity is synchronized to the serial clock. Inputs are latched on the rising edge and outputs occur on the falling edge of the serial clock. The clock frequency may be any value between 0 MHz and 50 MHz and may be interrupted at any time due to its synchronous behavior. | | | | | | SI ^[1] | Input | Serial input . All data is input to the device on this pin. The pin is sampled on the rising edge of SCK and is ignored at other times. It should always be driven to a valid logic level to meet the power (I _{DD}) specifications. | | | | | | SO ^[1] | Output | Serial output. This is the data output pin. It is driven during a read and remains tristated at all other times. Data transitions are driven on the falling edge of the serial clock SCK. | | | | | | WP | Input | Write protect. This Active LOW pin prevents write operation to the Status Register when WPEN bit in the Status Register is set to '1'. This is critical because other write protection features are controlled through the Status Register. A complete explanation of write protection is provided in Table 3 and Table 6 . This pin has an internal weak pull-up resistor which keeps this pin HIGH if left floating (not connected on the board). This pin can also be tied to V _{DD} if not used. | | | | | | DNU | Do not use | Do not use. Either leave this pin floating (not connected on the board) or tie to V _{DD} . | | | | | | V _{SS} | Power supply | Ground for the device. Must be connected to the ground of the system. | | | | | | V_{DD} | Power supply | Power supply input to the device. | | | | | | EXPOSED
PAD | No connect | The EXPOSED PAD on the bottom of 8-lead DFN package is not connected to the die. The EXPOSED PAD should not be soldered on the PCB. | | | | | #### Note 1. SI may be connected to SO for a single pin data interface. Serial (SPI), 256K × 8, 40MHz, industrial **Functional overview** #### 3 Functional overview The CY15X102QN is a serial F-RAM memory. The memory array is logically organized as 262,144 × 8 bits and is accessed using an industry-standard SPI bus. The functional operation of the F-RAM is similar to serial flash and serial EEPROMs. The major difference between the CY15X102QN and a serial flash or EEPROM with the same pinout is the F-RAM's superior write performance, high endurance, and low power consumption. #### 3.1 Memory architecture When accessing the CY15X102QN, the user addresses 256K locations of eight data bits each. These eight data bits are shifted in or out serially. The addresses are accessed using the SPI protocol, which includes a chip select (to permit multiple devices on the bus), an opcode, and a three-byte address. The upper five bits of the address range are 'don't care' values. The complete address of 18 bits specifies each byte address uniquely. Most functions of the CY15X102QN are either controlled by the SPI interface or handled by on-board circuitry. The access time for the memory operation is essentially zero, beyond the time needed for the serial protocol. That is, the memory is read or written at the speed of the SPI bus. Unlike a serial flash or EEPROM, it is not necessary to poll the device for a ready condition because writes occur at bus speed. By the time a new bus transaction can be shifted into the device, a write operation is complete. This is explained in more detail in the interface section. #### 3.2 SPI bus The CY15X102QN is an SPI slave device and operates at speeds of up to 50 MHz. This high-speed serial bus provides high-performance serial communication to an SPI master. Many common microcontrollers have hardware SPI ports allowing a direct interface. It is simple to emulate the port using ordinary port pins
for microcontrollers that do not have this feature. The CY15X102QN operates in SPI Modes 0 and 3. #### 3.3 SPI overview The SPI is a four-pin interface with chip select (CS), serial input (SI), serial output (SO), and serial clock (SCK) pins. The SPI is a synchronous serial interface, which uses clock and data pins for memory access and supports multiple devices on the data bus. A device on the SPI bus is activated using the CS pin. The relationship between chip select, clock, and data is dictated by the SPI mode. This device supports SPI modes 0 and 3. In both of these modes, data is clocked into the F-RAM on the rising edge of SCK starting from the first rising edge after CS goes active. The SPI proto<u>co</u>l is controlled by opcodes. These opcodes specify the commands from the bus master to the slave device. After CS is activated, the first byte transfer<u>red</u> from the bus master is the opcode. Following the opcode, any addresses and data are then transferred. The CS must go inactive after an operation is complete and before a new opcode can be issued. ### 3.4 Terms used in SPI protocol The commonly used terms in the SPI protocol are as follows: #### 3.4.1 SPI master The SPI master device controls the operations on the SPI bus. An SPI bus may have only one master with one or more slave devices. All the slaves share the same SPI bus lines and the master may select any of the slave devices using the CS pin. All of the operations must be initiated by the master activating a slave device by pulling the CS pin of the slave LOW. The master also generates the SCK and all the data transmission on SI and SO lines are synchronized with this clock. #### 3.4.2 SPI slave The SPI slave device is activated by the master through the chip select line. A slave device gets the SCK as an input from the SPI master and all the communication is synchronized with this clock. An SPI slave never initiates a communication on the SPI bus and acts only on the instruction from the master. The CY15X102QN operates as an SPI slave and may share the SPI bus with other SPI slave devices. Serial (SPI), 256K × 8, 40MHz, industrial **Functional overview** ### 3.4.3 Chip select (\overline{CS}) To select any slave device, the master needs to pull down the corresponding \overline{CS} pin. Any instruction can be issued to a slave device only while the \overline{CS} pin is LOW. When the device is not selected, data through the SI pin is ignored and the serial output pin (SO) remains in a high-impedance state. **Note:** A new instruction must begin with the falling edge of \overline{CS} . Therefore, only one opcode can be issued for each active Chip Select cycle. #### 3.4.4 Serial clock (SCK) The serial clock is generated by the SPI master and the communication is synchronized with this clock after $\overline{\text{CS}}$ goes LOW. The CY15X102QN supports SPI modes 0 and 3 for data communication. In both of these modes, the inputs are latched by the slave device on the rising edge of SCK and outputs are issued on the falling edge. Therefore, the first rising edge of SCK signifies the arrival of the first Most Significant Bit (MSb) of an SPI instruction on the SI pin. Further, all data inputs and outputs are synchronized with SCK. ### 3.4.5 Data transmission (SI/SO) The SPI data bus consists of two lines, SI and SO, for serial data communication. SI is also referred to as master out slave In (MOSI) and SO is referred to as master in slave out (MISO). The master issues instructions to the slave through the SI pin, while the slave responds through the SO pin. Multiple slave devices may share the SI and SO lines as described earlier. The CY15X102QN has two separate pins for SI and SO, which can be connected with the master as shown in **Figure 3**. For a microcontroller that has no dedicated SPI bus, a general-purpose port may be used. To reduce hardware resources on the controller, it is possible to connect the two data pins (SI, SO) together and tie off (HIGH) the WP pin. **Figure 4** shows such a configuration, which uses only three pins. Figure 3 System configuration with SPI port Figure 4 System configuration without SPI port Serial (SPI), 256K × 8, 40MHz, industrial **Functional overview** ### 3.4.6 Most significant bit (MSb) The SPI protocol requires that the first bit to be transmitted is the MSb. This is valid for both address and data transmission. The 2Mb serial F-RAM requires a 3-byte address for any read or write operation. Because the address is only 18 bits, the first six bits, which are fed in are ignored by the device. Although these six bits are 'don't care', CYPRESS™ recommends that these bits be set to 0s to enable seamless transition to higher memory densities. #### 3.4.7 Serial opcode After the slave device is selected with $\overline{\text{CS}}$ going LOW, the first byte received is treated as the opcode for the intended operation. CY15X102QN uses the standard opcodes for memory accesses. #### 3.4.8 Invalid opcode If an invalid opcode is received, the opcode is ignored and the device ignores any additional serial data on the SI pin until the next falling edge of CS, and the SO pin remains tristated. #### 3.4.9 Status register CY15X102QN has an 8-bit Status Register. The bits in the status register are used to configure the device. These bits are described in **Table 4**. #### 3.5 SPI modes CY15X102QN may be driven by a microcontroller with its SPI peripheral running in either of the following two modes: - SPI Mode 0 (CPOL = 0, CPHA = 0) - SPI Mode 3 (CPOL = 1, CPHA = 1) <u>For</u> both these modes, the input data is latched in on the rising edge of SCK starting from the first rising edge after CS goes active. If the clock starts from a HIGH state (in mode 3), the first rising edge after the clock toggles is considered. The output data is available on the falling edge of SCK. The two SPI modes are shown in **Figure 5** and **Figure 6**. The status of the clock when the bus master is not transferring data is: - SCK remains at 0 for Mode 0 - SCK remains at 1 for Mode 3 The device detects the SPI mode from the status of the SCK pin when the device is selected by bringing the CS pin LOW. If the SCK pin is LOW when the device is selected, SPI mode 0 is assumed and if the SCK pin is HIGH, it works in SPI Mode 3. Figure 5 SPI mode 0 Figure 6 SPI mode 3 Serial (SPI), 256K × 8, 40MHz, industrial infineon **Functional overview** ### 3.6 Power-up to first access The CY15X102QN is not accessible for a t_{PU} time after power-up. Users must comply with the timing parameter, t_{PU} , which is the minimum time from V_{DD} (min) to the first CS LOW. Refer to **Power cycle timing on page 31** for details. Serial (SPI), 256K × 8, 40MHz, industrial Functional description # 4 Functional description #### 4.1 Command structure There are 15 commands, called opcodes, that can be issued by the bus master to the CY15X102QN (see **Table 2**). These opcodes control the functions performed by the memory. Table 2 Opcode commands | Name | Description | O | ocode | Max. frequency | |--------------|--------------------------|-----|-------------------------------|----------------| | Name | Description | Hex | Binary | (MHz) | | Write enab | le control | | | | | WREN | Set write enable latch | 06h | 0000 0110b | 50 | | WRDI | Reset write enable latch | 04h | 0000 0100b | 50 | | Register ac | cess | | | | | RDSR | Read status register | 05h | 0000 0101b | 50 | | WRSR | Write status register | 01h | 0000 0001b | 50 | | Memory wr | ite | | | | | WRITE | Write memory data | 02h | 0000 0010b | 50 | | Memory rea | ad | | | | | READ | Read memory data | 03h | 0000 0011b | 40 | | FSTRD | Fast read memory data | 0Bh | 0000 1011b | 50 | | Special sec | tor memory access | | | | | SSWR | Special sector write | 42h | 0100 0010b | 50 | | SSRD | Special sector read | 4Bh | 0100 1011b | 40 | | Identificati | on and serial number | | | | | RDID | Read device ID | 9Fh | 1001 1111b | 50 | | RUID | Read unique ID | 4Ch | 0100 1100b | 50 | | WRSN | Write serial number | C2h | 1100 0010b | 50 | | RDSN | Read serial number | C3h | 11000 011b | 50 | | Low power | mode commands | | | | | DPD | Enter deep power-down | BAh | 1011 1010b | 50 | | HBN | Enter hibernate mode | B9h | 1011 1001b | 50 | | Reserved | | • | | | | Reserved | Reserved | | des are reserved
ture use. | - | #### 4.1.1 Write enable control commands #### 4.1.1.1 Set write enable latch (WREN, 06h) The CY15X102QN will power up with writes disabled. The WREN command must be issued before any write operation. Sending the WREN opcode allows the user to issue subsequent opcodes for write operations. These include writing to the status register (WRSR), the memory (WRITE), special sector (SSWR), and write serial number (WRSN). Sending the WREN opcode causes the internal write enable latch to be set. A flag bit in the status register, called WEL, indicates the state of the latch. WEL = '1' indicates that writes are permitted. Attempting to write the WEL bit in the Status Register has no effect on the state of this bit - only the WREN opcode can set this bit. The WEL bit will be automatically cleared on the rising edge of CS following a WRDI, a WRSR, a WRITE, a SSWR, or a WRSN operation. This prevents further writes to the Status Register or the F-RAM array without another WREN command. Figure 7 illustrates the WREN command bus configuration. Figure 7 WRDI bus configuration #### 4.1.1.2 Reset write enable latch (WRDI, 04h) The WRDI command disables all write activity by clearing the write enable latch. Verify that the writes are disabled by reading the WEL bit in the Status Register and verify that WEL is equal to '0'. Figure 8 illustrates the WRDI command bus configuration. Figure 8 WREN Bus configuration ### **4.1.1.3** Status register and write protection The write protection features of the CY15X102QN are multi-tiered and are enabled through the status register. The status register is organized as follows.
(The default value shipped from the factory for WEL, BP0, BP1, bits 4–5, and WPEN is '0', and for bit 6 is '1'). Table 3 Status register | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |----------|-------|-------|-------|---------|---------|---------|-------| | WPEN (0) | X (1) | X (0) | X (0) | BP1 (0) | BP0 (0) | WEL (0) | X (0) | #### Serial (SPI), 256K × 8, 40MHz, industrial Functional description Table 4 Status register bit definition | Bit | Definition | Description | |--------------|-----------------------------|---| | Bit 0 | Don't care | This bit is non-writable and always returns '0' upon read. | | Bit 1 (WEL) | Write enable | WEL indicates if the device is write enabled. This bit defaults to '0' (disabled) on power-up. WEL = 1 = Write enabled WEL = 0 = Write disabled | | Bit 2 (BP0) | Block protect bit '0' | Used for block protection. For details, see Table 5 . | | Bit 3 (BP1) | Block protect bit '1' | Used for block protection. For details, see Table 5 . | | Bit 4-5 | Don't care | These bits are non-writable and always return '0' upon read. | | Bit 6 | Don't care | This bit is non-writable and always returns '1' upon read. | | Bit 7 (WPEN) | Write protect
enable bit | Used to enable the function of write protect pin (WP). For details, see Table 6 . | Bits 0 and 4–5 are fixed at '0' and bit 6 is fixed at '1'; none of these bits can be modified. Note that bit 0 ("ready or write in progress" bit in serial flash and EEPROM) is unnecessary, as the F-RAM writes in real-time and is never busy, so it reads out as a '0'. An exception to this is when the device is waking up either from **Deep power-down mode (DPD, BAh)** or **Hibernate mode (HBN, B9h)**. The BP1 and BP0 control the software write-protection features and are nonvolatile bits. The WEL flag indicates the state of the write enable latch. Attempting to directly write the WEL bit in the status register has no effect on its state. This bit is internally set and cleared via the WREN and WRDI commands, respectively. BP1 and BP0 are memory block write protection bits. They specify portions of memory that are write-protected as shown in **Table 5**. Table 5 Block memory write protection | BP1 | BP0 | Protected address range | |-----|--------------------------------|------------------------------| | 0 | 0 None | | | 0 | 1 | 30000h to 3FFFFh (upper 1/4) | | 1 | 0 20000h to 3FFFFh (upper 1/2) | | | 1 | 1 1 00000h to 3FFFFh (all) | | The BP1 and BP0 bits and the write enable latch are the only mechanisms that protect the memory from writes. The remaining write protection features protect inadvertent changes to the block protect bits. The write protect enable bit ($\underline{WP}EN$) in the status register controls the effect of the hardware write protect (\overline{WP}) pin. Refer to **Figure 24** for the WP pin timing diagram. When the WPEN bit is set to '0', the status of the WP pin is ignored. When the WPEN bit is set to '1', a LOW on the \overline{WP} pin inhibits a write to the Status Register. Thus the Status Register is write-protected only when WPEN = '1' and WP = '0'. **Table 6** summarizes the write protection conditions. Table 6 Write protection | WEL | WPEN | WP | Protected blocks | Unprotected blocks | Status register | |-----|------|----|------------------|--------------------|-----------------| | 0 | Х | Х | Protected | Protected | Protected | | 1 | 0 | Х | Protected | Unprotected | Unprotected | | 1 | 1 | 0 | Protected | Unprotected | Protected | | 1 | 1 | 1 | Protected | Unprotected | Unprotected | #### 4.1.2 Register access commands #### 4.1.2.1 Read status register (RDSR, 05h) The RDSR command allows the bus master to verify the contents of the status register. Reading the status register provides information about the current state of the write-protection features. Following the RDSR opcode, the CY15X102QN will return one byte with the contents of the Status Register. Figure 9 RDSR bus configuration #### 4.1.2.2 Write status register (WRSR, 01h) The WRSR command allows the SPI bus master to write into the status register and change the write <u>protect</u> configuration by setting the WPEN, BPO, and BP1 bits as <u>required</u>. Before issuing a WRSR command, the WP pin must be HIGH or inactive. Note that on the CY15X102QN, WP only prevents writing to the status register, not the memory array. Before sending the WRSR command, the user must send a WREN command to enable writes. Executing a WRSR command is a write operation and therefore, clears the Write Enable Latch. Figure 10 WRSR bus configuration (WREN not shown) ### 4.1.3 Memory operation The SPI interface, which is capable of a high clock frequency, highlights the fast write capability of the F-RAM technology. Unlike serial flash and EEPROMs, the CY15X102QN can perform sequential writes at bus speed. No page register is needed and any number of sequential writes may be performed. #### 4.1.4 Memory write operation commands #### 4.1.4.1 Write operation (WRITE, 02h) All writes to the memory begin with a WREN opcode with $\overline{\text{CS}}$ being asserted and deasserted. The next opcode is WRITE. The WRITE opcode is followed by a three-byte address containing the 18-bit address (A17–A0) of the first data byte to be written into the memory. The upper six bits of the three-byte address are ignored. Subsequent bytes are data bytes, which are written sequentially. Addresses are incremented internally as long as the bus master continues to issue clocks and keeps $\overline{\text{CS}}$ LOW. If the last address of 3FFFFh is reached, the internal address counter will roll over to 00000h. Every data byte to be written is transmitted on SI in 8-clock cycles with MSb first and the LSb last. The rising edge of $\overline{\text{CS}}$ terminates a write operation. The CY15X102QN write operation is shown in **Figure 11**. #### Notes - When a burst write reaches a protected block address, the automatic address increment stops and all the subsequent data bytes received for write will be ignored by the device. EEPROMs use page buffers to increase their write throughput. This compensates for the technology's inherently slow write operations. F-RAM memories do not have page buffers because each byte is written to the F-RAM array immediately after it is clocked in (after the eighth clock). This allows any number of bytes to be written without page buffer delays. - If power is lost in the middle of the write operation, only the last completed byte will be written. Figure 11 Memory write (WREN not shown) operation #### 4.1.5 Memory read operation commands ### 4.1.5.1 Read operation (READ, 03h) After the falling edge of \overline{CS} , the bus master can issue a READ opcode. Following the READ command is a three-byte address containing the 18-bit address (A17–A0) of the first byte of the read operation. The upper six bits of the address are ignored. After the opcode and address are issued, the device drives out the read data on the next eight clocks. The SI input is ignored during read data bytes. Subsequent bytes are data bytes, which are read out sequentially. Addresses are incremented internally as long as the bus master continues to issue clocks and \overline{CS} is LOW. If the last address of 3FFFFh is reached, the internal address counter will roll over to 00000h. The device also provides a writable, 8-byte serial number registers, which can be used to identify a specific board or a system. The rising edge of \overline{CS} terminates a read operation and tristates the SO pin. The CY15X102QN read operation is shown in Figure 12. Figure 12 Memory read operation ### **4.1.5.2** Fast read operation (FAST_READ, 0Bh) The CY15X102QN supports a FAST READ opcode (0Bh) that is provided for opcode compatibility with serial flash devices. The FAST READ opcode is followed by a three-byte address containing the 18-bit address (A17–A0) of the first byte of the read operation and then a dummy byte. The dummy byte inserts a read latency of 8-clock cycle. The fast read operation is otherwise the same as an ordinary read operation except that it requires an additional dummy byte. After receiving the opcode, address, and a dummy byte, the CY15X102QN starts driving its SO line with data bytes, with MSb first, and continues transmitting as long as the device is selected and the clock is available. In case of bulk read, the internal address counter is incremented automatically, and after the last address 3FFFFh is reached, the internal address counter rolls over to 00000h. When the device is driving data on its SO line, any transition on its SI line is ignored. The rising edge of $\overline{\text{CS}}$ terminates a fast read operation and tristates the SO pin. The CY15X102QN Fast Read operation is shown in Figure 13. Figure 13 Fast read operation ### 4.1.6 Special sector memory access commands ### 4.1.6.1 Special sector write (SSWR, 42h) All writes to the 256-byte special begin with a WREN opcode with \overline{CS} being asserted and deasserted. The next opcode is SSWR. The SSWR opcode is followed by a three-byte address containing the 8-bit sector address (A7–A0) of the first data byte to be written into the special sector memory. The upper 16 bits of the three-byte address are ignored. Subsequent bytes are data bytes, which are written sequentially. Addresses are incremented internally as long as the bus master continues to issue clocks and keeps \overline{CS} LOW. Once the internal address counter auto increments to XXX7Fh, \overline{CS} should toggle HIGH to terminate the ongoing SSWR operation. Every data byte to be written is transmitted on SI in 8-clock cycles with MSb first and the LSb last. The rising edge of \overline{CS} terminates a write operation. The CY15X102QN special sector write operation is shown in
Figure 14. #### Notes - If power is lost in the middle of the write operation, only the last completed byte will be written. - The special sector F-RAM memory guarantees to retain data integrity up to three cycles of standard reflow soldering. Figure 14 Special sector write (WREN not shown) operation #### 4.1.6.2 Special sector read (SSRD, 4Bh) After the falling edge of \overline{CS} , the bus master can issue an SSRD opcode. Following the SSRD command is a three-byte address containing the 8-bit address (A7–A0) of the first byte of the special sector read operation. The upper 16 bits of the address are ignored. After the opcode and address are issued, the device drives out the read data on the next eight clocks. The SI input is ignored during read data bytes. Subsequent bytes are data bytes, which are read out sequentially. Addresses are incremented internally as long as the bus master continues to issue clocks and \overline{CS} is LOW. Once the internal address counter auto increments to XXX7Fh, \overline{CS} should toggle HIGH to terminate the ongoing SSRD operation. Every read data byte on SO is driven in 8-clock cycles with MSb first and the LSb last. The rising edge of \overline{CS} terminates a special sector read operation and tristates the SO pin. The CY15X102QN special sector read operation is shown in **Figure 15**. **Note** The special sector F-RAM memory guarantees to retain data integrity up to three cycles of standard reflow soldering. Figure 15 Special sector write read operation #### 4.1.7 Identification and serial number commands ### 4.1.7.1 Read device ID (RDID, 9Fh) The CY15X102QN device can be interrogated for its manufacturer, product identification, and die revision. The RDID opcode 9Fh allows the user to read the 9-byte manufacturer ID and product ID, both of which are read-only bytes. The JEDEC-assigned manufacturer ID places the CYPRESS™ (Ramtron) identifier in bank 7; therefore, there are six bytes of the continuation code 7Fh followed by the single byte C2h. There are two bytes of product ID, which includes a family code, a density code, a sub code, and the product revision code. Table 6 shows 9-Byte Device ID field description. Refer to **Ordering information on page 32** for 9-Byte device ID of an individual part. The CY15X102QN read device ID operation is shown in **Figure 16**. **Note** The least significant data byte (Byte 0) shifts out first and the most significant data byte (Byte 8) shifts out last. Table 7 9-byte device ID | Device ID field description | | | | | | | | |-------------------------------|-------------------|-------------------|---------------|-------------------|-------------------|----------------|-----------------| | Manufacturer
ID
[71:16] | Family
[15:13] | Density
[12:9] | Inrush
[8] | Sub type
[7:5] | Revision
[4:3] | Voltage
[2] | Frequency [1:0] | | 56-bit | 3-bit | 4-bit | 1-bit | 3-bit | 2-bit | 1-bit | 2-bit | Figure 16 Read device ID Serial (SPI), 256K × 8, 40MHz, industrial **Functional description** #### 4.1.7.2 Read unique ID (RUID, 4Ch) The CY15X102QN device can be interrogated for unique ID which is a factory programmed, 64-bit number unique to each device. The RUID opcode, 4Ch allows to read the 8-byte, read only unique ID. The CY15X102QN read unique ID operation is shown in **Figure 17**. #### **Notes** - The least significant data byte (Byte 0) shifts out first and the most significant data byte (Byte 7) shifts out last. - The unique ID registers are guaranteed to retain data integrity of up to three cycles of the standard reflow soldering. Figure 17 Read unique ID ### 4.1.7.3 Write serial number (WRSN, C2h) The serial number is an 8-byte one-time programmable memory space provided to the user to uniquely identify a PC board or a system. A serial number typically consists of a two-byte customer ID, followed by five bytes of a unique serial number and one byte of CRC check. However, the end application can define its own format for the 8-byte serial number. All writes to the serial number register begin with a WREN opcode with CS being asserted and deasserted. The next opcode is WRSN. The WRSN instruction can be used in burst mode to write all the 8 bytes of serial number. After the last byte of the serial number is shifted in, CS must be driven high to complete the WRSN operation. The CY15X102QN write serial number operation is shown in Figure 18. **Note** The CRC checksum is not calculated by the device. The system firmware must calculate the CRC checksum on the 7-byte content and append the checksum to the 7-byte user-defined serial number before programming the 8-byte serial number into the serial number register. The factory default value for the 8-byte Serial Number is '0000000000000000'. Table 8 8-byte serial number | 16-bit custor | ner identifier | 40-bit unique number | | | | | 8-bit CRC | |---|--|----------------------|-----------|-----------|-----------|----------|-----------| | SN[63:56] | SN[55:48] | SN[47:40] | SN[39:32] | SN[31:24] | SN[23:16] | SN[15:8] | SN[7:0] | | | | | | | | | | | cs | | | | | | | | | SCK 0 1 2 3 4 5 6 7 0 1 2 3 52 53 54 55 56 57 58 59 60 61 62 63 | | | | | | 3 | | | SI | SI ——(1)—(1)—(0)—(0)—(1)—(0)—(05)—(04)—————————————————————————————————— | | | | | | | | so Hi-Z | | | | | | | | | ✓ ——Opcode (C2h) — → ✓ ——Write 8-Byte Serial Number — → | | | | | | | | Figure 18 Write serial number (WREN not shown) operation #### 4.1.7.4 Read serial number (RDSN, C3h) The CY15X102QN device incorporates an 8-byte serial space provided to the user to uniquely identify the device. The serial number is read using the RDSN instruction. A serial number read may be performed in burst mode to read all the eight bytes at once. After the last byte of the serial number is read, the device loops back to the first byte of the serial number. An RDSN instruction can be issued by shifting the opcode for RDSN after $\overline{\text{CS}}$ goes LOW. The CY15X102QN read serial number operation is shown in Figure 19. **Note** The least significant data byte (Byte 0) shifts out first and the most significant data byte (Byte 7) shifts out last. Figure 19 Read serial number operation #### 4.1.8 Low power mode commands #### 4.1.8.1 Deep power-down mode (DPD, BAh) A power-saving deep power-down mode is implemented on the CY15X102QN device. The device enters the deep power-down mode after t_{ENTDPD} time after the DPD opcode BAh is clocked in and a rising edge of CS is applied. When in deep power-down mode, the SCK and SI pins are ignored and SO will be Hi-Z, but the device continues to monitor the CS pin. A CS pulse-width of t_{CSDPD} exits the DPD mode <u>after</u> t_{EXTDPD} time. The CS pulse-width can be generated either by sending a dummy command cycle or toggling CS alone while SCK and I/Os are don't care. The I/Os remain in hi-Z state during the wakeup from deep power-down. Refer to **Figure 20** for DPD entry and **Figure 21** for DPD exit timing. Figure 20 DPD entry timing Serial (SPI), 256K × 8, 40MHz, industrial Functional description Figure 21 DPD exit timing #### 4.1.8.2 Hibernate mode (HBN, B9h) A lowest power hibernate mode is implemented on the CY15X102QN device. The device enters hibernate mode after t_{ENTHIB} time after the HBN opcode B9h is clocked in and a rising edge of $\overline{\text{CS}}$ is applied. When in hibernate mode, the SCK and $\overline{\text{SI}}$ pins are ignored and SO will be Hi-Z, but the device continues to monitor the $\overline{\text{CS}}$ pin. On the next falling edge of $\overline{\text{CS}}$, the device will return to normal operation within t_{EXTHIB} time. The SO pin remains in a Hi-Z state during the wakeup from hibernate period. The device does not necessarily respond to an opcode within the wakeup period. To exit the hibernate mode, the controller may send a "dummy" read, for example, and wait for the remaining t_{EXTHIB} time. Figure 22 Hibernate mode operation Serial (SPI), 256K × 8, 40MHz, industrial Functional description #### 4.1.8.3 Endurance The CY15X102QN devices are capable of being accessed at least 10¹⁵ times, reads or writes. An F-RAM memory operates with a read and restore mechanism. Therefore, an endurance cycle is applied on a row basis for each access (read or write) to the memory array. The F-RAM architecture is based on an array of rows and columns of 32K rows of 64-bit each. The entire row is internally accessed once, whether a single byte or all eight bytes are read or written. Each byte in the row is counted only once in an endurance calculation. **Table 9** shows endurance calculations for a 64-byte repeating loop, which includes an opcode, a starting address, and a sequential 64-byte data stream. This causes each byte to experience one endurance cycle through the loop. F-RAM read and write endurance is virtually unlimited at a 50-MHz clock rate. Table 9 Time to reach endurance limit for repeating 64-byte loop | SCK freq (MHz) | Endurance cycles/sec | Endurance cycles/year | Years to reach 10 ¹⁵ limit | |----------------|----------------------|-------------------------|---------------------------------------| | 50 | 91,900 | 2.90 × 10 ¹² | 345 | | 40 | 73,040 | 2.30 × 10 ¹² | 43. | | 20 | 36,520 | 1.16 × 10 ¹² | 864 | | 10 | 18,380 | 5.79 × 10 ¹¹ | 1727 | | 5 | 9,190 | 2.90 × 10 ¹¹ | 3454 | Serial (SPI), 256K × 8, 40MHz, industrial Maximum ratings # 5 Maximum ratings | Exceeding the maximum ratings may impair the useful life of the device. User guidelines a | re not tested. | |---|--| | Storage temperature | 65°C to +125°C | | Maximum accumulated storage time At 125°C ambient temperature | 1000 h
10 Years |
 Maximum junction temperature | 125°C | | Supply voltage on V _{DD} relative to V _{SS} : CY15V102QN: CY15B102QN: | 0.5 V to +2.4 V
0.5 V to +4.1 V | | Input voltage | $V_{IN} \le V_{DD} + 0.5 V$ | | DC voltage applied to outputs in High-Z state | $-0.5 \text{ V to V}_{DD} + 0.5 \text{ V}$ | | Transient voltage (< 20 ns) on any pin to ground potential | $-2.0 \text{ V to V}_{DD} + 2.0 \text{ V}$ | | Package power dissipation capability (T _A = 25°C) | 1.0 W | | Surface mount lead soldering temperature (3 seconds) | +260°C | | DC output current (1 output at a time, 1s duration) | 15 mA | | Electrostatic discharge voltage
Human Body Model (JEDEC Std JESD22-A114-B)
Charged Device Model (JEDEC Std JESD22-C101-A) | 2 kV
500 V | | Latch-up current | >140 mA | Serial (SPI), 256K × 8, 40MHz, industrial Operating range # **6** Operating range ### Table 10 Operating range | Device | Range | Ambient temperature | V _{DD} | |------------|------------|---------------------|------------------| | CY15V102QN | Industrial | -40°C to +85°C | 1.71 V to 1.89 V | | CY15B102QN | | | 1.8 V to 3.6 V | Serial (SPI), 256K × 8, 40MHz, industrial DC electrical characteristics #### **DC** electrical characteristics 7 Over the **Operating range** #### Table 11 **DC** electrical characteristics | Parameter | Description | Test condition | ons | Min | Typ ^[2, 3] | Max | Unit | |------------------|---|---|--|--------------|------------------------------|---------|------| | V _{DD} | Power supply | CY15V102QN | | 1.71 | 1.80 | 1.89 | V | | | | CY15B102QN | | 1.80 | 3.30 | 3.60 | | | I _{DD} | V _{DD} supply current | V_{DD} = 1.71 V to 1.89 V;
SCK toggling between
V_{DD} – 0.2 V and V_{SS} ,
other inputs V_{SS} or
V_{DD} – 0.2 V. SO = Open;
CY15V102QN-50S/LP
parts | $f_{SCK} = 40 \text{ MHz}$
$f_{SCK} = 50 \text{ MHz}$ | - | 3 | 3 3.7 | mA | | | | V _{DD} = 1.8 V to 3.6 V; | f _{SCK} = 40 MHz | _ | 2.4 | 3 | | | | | SCK toggling between V_{DD} – 0.2 V and V_{SS} , other inputs V_{SS} or V_{DD} – 0.2 V. SO = Open; CY15B102QN-50S/LP parts | f _{SCK} = 50 MHz | - | 3 | 3.7 | | | I _{SB} | V _{DD} standby | V _{DD} = 1.71 V to 1.89 V; CS | T _A = 25°C | - | 2.3 | _ | μΑ | | | current | $= V_{DD}$. All other inputs V_{SS} or V_{DD} | T _A = 85°C | | | 65 | | | | | V_{DD} = 1.8 V to 3.6 V;
CS = V_{DD} . All other
inputs V_{SS} or V_{DD} | $T_A = 25$ °C
$T_A = 85$ °C | - | 2.6 | 70 | | | I _{DPD} | Deep power down current | V _{DD} = 1.71 V to 1.89 V; CS
= V _{DD} . All other inputs
V _{SS} or V _{DD} | $T_A = 25$ °C
$T_A = 85$ °C | _ | 0.7 | -
15 | μΑ | | | | $\underline{V_{DD}} = 1.8 \text{ V to } 3.6 \text{ V};$ $\overline{CS} = V_{DD}. \text{ All other}$ inputs V_{SS} or V_{DD} | $T_A = 25$ °C
$T_A = 85$ °C | _ | 0.8 | -
16 | | | I _{HBN} | Hibernate mode current | $V_{DD} = 1.71 \text{ V to } 1.89 \text{ V; CS}$
= V_{DD} . All other inputs
V_{SS} or V_{DD} . | $T_A = 25$ °C
$T_A = 85$ °C | _ | 0.1 | 0.9 | μΑ | | | | $V_{DD} = 1.8 \text{ V to } 3.6 \text{ V};$ | T _A = 25°C | - | 0.1 | - | | | | | $\overline{CS} = V_{DD}$. All other inputs V_{SS} or V_{DD} . | T _A = 85°C | | | 1.6 | | | I _{LI} | Input leakage
current on I/O pins
except WP pin | $V_{SS} < V_{IN} < V_{DD}$ | | -1 | - | 1 | μА | | | Input leakage
current on WP pin | | | -100 | - | 1 | | | I _{LO} | Output leakage current | V _{SS} < V _{OUT} < V _{DD} | | -1 | - | 1 | | #### **Notes** Typical values are at 25°C, V_{DD} = V_{DD (typ)}. This parameter is guaranteed by characterization; not tested in production. ### Serial (SPI), 256K × 8, 40MHz, industrial DC electrical characteristics #### Over the **Operating range** #### Table 11 **DC electrical characteristics** (continued) | Parameter | Description | Test conditions | Min | Typ ^[2, 3] | Max | Unit | |------------------|---------------------|--|-----------------------|------------------------------|---------------------|------| | V _{IH} | Input HIGH voltage | _ | $0.7 \times V_{DD}$ | _ | $V_{DD} + 0.3$ | V | | V _{IL} | Input LOW voltage | _ | -0.3 | _ | $0.3 \times V_{DD}$ | | | V _{OH1} | Output HIGH voltage | $I_{OH} = -1 \text{ mA}, V_{DD} = 2.7 \text{ V}$ | 2.40 | 1 | _ | | | V _{OH2} | Output HIGH voltage | $I_{OH} = -100 \mu A$ | V _{DD} - 0.2 | - | _ | | | V_{OL1} | Output LOW voltage | $I_{OL} = 2 \text{ mA}, V_{DD} = 2.7 \text{ V}$ | - | - | 0.40 | | | V _{OL2} | Output LOW voltage | I _{OL} = 150 μA | ı | ı | 0.20 | | #### Notes Typical values are at 25°C, V_{DD} = V_{DD (typ)}. This parameter is guaranteed by characterization; not tested in production. Serial (SPI), 256K × 8, 40MHz, industrial Data retention and endurance ### 8 Data retention and endurance Table 12 Data retention and endurance | Parameter | Description | Test condition | Min | Max | Unit | |-----------------|----------------|----------------------------|------------------|-----|--------| | T _{DR} | Data retention | T _A = 85°C | 10 | - | Years | | | | T _A = 70°C | 141 | - | | | | | T _A = 60°C | 151 | - | | | | | T _A = 50°C | 160 | - | | | NV _C | Endurance | Over operating temperature | 10 ¹⁵ | - | Cycles | Serial (SPI), 256K × 8, 40MHz, industrial #### Capacitance 9 For all packages. Capacitance #### Table 13 Capacitance | Parameter ^[4] | Description | Test conditions | Max | Unit | |--------------------------|-----------------------------|--|-----|------| | Co | Output pin capacitance (SO) | $T_A = 25$ °C, $f = 1$ MHz, $V_{DD} = V_{DD(typ)}$ | 8 | рF | | C _I | Input pin capacitance | | 6 | | #### Note 4. This parameter is guaranteed by characterization; not tested in production. Serial (SPI), 256K × 8, 40MHz, industrial Thermal resistance ### 10 Thermal resistance Table 14 Thermal resistance | Parameter ^[5] | Description | Test conditions | 8-pin SOIC
package | 8-pin PDIP
package | 8-pin DFN
package | Unit | |--------------------------|--|--|-----------------------|-----------------------|----------------------|------| | Θ_{JA} | Thermal resistance (junction to ambient) | Test conditions follow standard | 44.9 | 63 | 36.8 | °C/W | | $\Theta_{\sf JC}$ | Thermal resistance (junction to case) | test methods and procedures for measuring thermal impedance, per EIA/JESD51. | 20.2 | 42.5 | 38.2 | | #### Note ^{5.} This parameter is guaranteed by characterization; not tested in production. Serial (SPI), 256K × 8, 40MHz, industrial AC test conditions ### 11 AC test conditions | Input pulse levels | 10% and 90% of V _{DD} | |--|--------------------------------| | Input rise and fall times | 3 ns | | Input and output timing reference levels | 0.5 × V _{DE} | | Output load capacitance | 30 pF | AC switching characteristics # 12 AC switching characteristics Over the **Operating range** Table 15 AC switching characteristics | Param | eters ^[6] | | 40 | MHz 50 l | | MHz | | |---------------------------------|-----------------------------------|---------------------------|-----|----------|-----|-----|------| | Parameter | Alt.
parameter | Description | Min | Max | Min | Max | Unit | | f _{SCK} | - | SCK clock frequency | 0 | 40 | 0 | 50 | MHz | | t _{CH} | - | Clock HIGH time | 11 | - | 9 | _ | ns | | t _{CLZ} ^[7] | - | Clock LOW time | 11 | - | 9 | _ | | | t _{CLZ} ^[7] | - | Clock LOW to Output low-Z | 0 | - | 0 | _ | | | t _{CSS} | t _{CSU} | Chip select setup | 5 | - | 5 | _ | | | t _{CSH} | t _{CSH} | Chip select hold - mode 0 | 5 | - | 5 | _ | | | t _{CSH1} | t _{CSH1} | Chip select hold - mode 3 | 10 | - | 10 | _ | | | t _{HZCS} | t _{OD} ^[8, 9] | Output disable time | _ | 12 | - | 10 | | | t _{co} | t _{ODV} | Output data valid time | _ | 9 | - | 8 | | | t _{OH} | - | Output hold time | 1 | - | 1 | _ | | | t _{CS} | t _D | Deselect time | 40 | - | 40 | _ | | | t _{SD} | t _{SU} | Data setup time | 5 | - | 5 | _ | | | t _{HD} | t _H | Data hold time | 5 | - | 5 | _ | | | t _{WPS} | t _{WHSL} | WP setup time (w.r.t CS) | 20 | - | 20 | - | | | t _{WPH} | t _{SHWL} | WP hold time (w.r.t CS) | 20 | - | 20 | _ | | #### **Notes** - 6. Test conditions assume a signal transition time of 3 ns or less, timing reference levels of $0.5 \times V_{DD}$, input pulse levels of 10% to 90% of V_{DD} , and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance shown in **AC test conditions on page 28**. - 7. Guaranteed by design. - 8. t_{HZCS} is specified with a load capacitance of 5 pF. Transition is measured when the output enters a high-impedance state. - 9. This parameter is guaranteed by characterization; not tested in production. Figure 23 Synchronous data timing (mode0 and mode 3) ### Serial (SPI), 256K × 8, 40MHz, industrial AC switching characteristics Figure 24 Write protect timing during write status register (WRSR) operation Power cycle timing # 13 Power cycle timing Over the **Operating range** Table 16 Power cycle timing | Parameter ^[10] | | | | | | |-------------------------------------|-------------------|--|-------|----------------------|------| | Parameter | Alt.
parameter | Description | Min | Max | Unit | | t _{PU} | | Power-up V _{DD(min)} to first access (CS LOW) | 450 | - | μs | | t _{VR} ^[11] | | V _{DD} power-up ramp rate | 50 | - | μs/V | | t _{VF} ^[11, 12] | | V _{DD} power-down ramp rate | 100 | - | | | t _{ENTDPD} ^[13] | t
_{PD} | CS HIGH to enter deep power-down (CS HIGH to deep power-down mode current) | - | 3 | μs | | t _{CSDPD} | | CS pulse width to wake up from deep power-down mode | 0.015 | $4 \times 1/f_{SCK}$ | | | t _{EXTDPD} | t _{RPD} | CS low to exit deep-power-down (CS low to ready for access) | _ | 10 | | | t _{ENTHIB} ^[14] | | CS HIGH to enter hibernate (CS HIGH to enter hibernate mode current) | _ | 3 | | | t _{EXTHIB} | t _{REC} | CS low to exit hibernate (CS low to ready for access) | _ | 450 | | #### **Notes** - 10. Test conditions assume a signal transition time of 3 ns or less, timing reference levels of $0.5 \times V_{DD}$, input pulse levels of 10% to 90% of V_{DD} , and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance shown in **AC test conditions on page 28**. - 11. Slope measured at any point on the V_{DD} waveform. - 12. This parameter is guaranteed by characterization; not tested in production. - 13. Guaranteed by design. Refer to Figure 20 for Deep Power Down mode timing. - 14. Guaranteed by design. Refer to Figure 22 for Hibernate mode timing. Figure 25 Power cycle timing Serial (SPI), 256K × 8, 40MHz, industrial Ordering information # 14 Ordering information Table 17 Ordering information | Ordering code | Device ID | Package diagram | Package type | Operating range | |-------------------|-------------------|-----------------|-------------------|-----------------| | CY15V102QN-50SXI | 7F7F7F7F7F7C22A04 | 001-85261 | 8-pin SOIC (EIAJ) | Industrial | | CY15V102QN-50PZXI | 7F7F7F7F7F7C22A04 | 51-85075 | 8-pin PDIP | Industrial | | CY15V102QN-50LHXI | 7F7F7F7F7F7C22A04 | 001-85579 | 8-lead DFN | Industrial | | CY15B102QN-50SXI | 7F7F7F7F7F7C22A00 | 001-85261 | 8-pin SOIC (EIAJ) | Industrial | | CY15B102QN-50PZXI | 7F7F7F7F7F7C22A00 | 51-85075 | 8-pin PDIP | Industrial | | CY15B102QN-50LHXI | 7F7F7F7F7F7C22A00 | 001-85579 | 8-lead DFN | Industrial | All these parts are Pb-free. Contact your local CYPRESS™ sales representative for availability of these parts. ### 14.1 Ordering code definitions Package diagrams #### **Package diagrams 15** Figure 26 8-pin DFN (5 mm × 6 mm × 0.75 mm) package outline, 001-85579 #### Serial (SPI), 256K × 8, 40MHz, industrial Package diagrams Figure 27 8-pin SOIC (208 Mils) package outline, 001-85261 Serial (SPI), 256K × 8, 40MHz, industrial Package diagrams Figure 28 8-pin PDIP (300 Mils) package outline, 51-85075 Serial (SPI), 256K × 8, 40MHz, industrial infineon Acronyms # 16 Acronyms Table 18 Acronyms used in this document | Acronym | Description | |---------|---| | СРНА | clock phase | | CPOL | clock polarity | | DFN | dual flat no-lead | | EEPROM | Electrically Erasable Programmable Read-Only Memory | | EIA | electronic industries alliance | | F-RAM | ferroelectric random access memory | | I/O | input/output | | JEDEC | Joint Electron Devices Engineering Council | | JESD | JEDEC standards | | LSb | least significant bit | | MSb | most significant bit | | PDIP | plastic dual In-line package | | RoHS | Restriction of Hazardous Substances | | SOIC | small outline integrated circuit | | SPI | serial peripheral interface | Serial (SPI), 256K × 8, 40MHz, industrial Document conventions ### **17** Document conventions ### 17.1 Units of measure #### Table 19 Units of measure | Symbol | Unit of Measure | |--------|-----------------| | °C | degree Celsius | | Hz | hertz | | kHz | kilohertz | | kΩ | kilohm | | Mbit | megabit | | MHz | megahertz | | μΑ | microampere | | μF | microfarad | | μs | microsecond | | mA | milliampere | | ms | millisecond | | ns | nanosecond | | Ω | ohm | | % | percent | | pF | picofarad | | V | volt | | W | watt | Serial (SPI), 256K × 8, 40MHz, industrial Revision history # **Revision history** | Document version | Date of release | Description of changes | |------------------|-----------------|---| | *B | 2020-03-19 | Release to web. | | *C | | Migrated to Infineon template. Updated package drawing spec from 51-85075 *D to *E. | #### **Trademarks** All referenced product or service names and trademarks are the property of their respective owners. Edition 2022-01-24 Published by Infineon Technologies AG 81726 Munich, Germany © 2022 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Go to www.infineon.com/support Document reference 002-26764 Rev. *C #### IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). #### WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.