Data Sheet

R9A02G011

ASSP (USB Power Delivery Controller)

R19DS0088EJ0130 Rev.1.30 Jan. 29, 2019

1. OVERVIEW

The R9A02G011 is a USB Power Delivery Controller that is based on the Universal Serial Bus (USB) Power Delivery Specification Revision 3.0 and USB Type-C[™] Cable and Connecter Specification Revision 1.3. The R9A02G011 performs negotiation for more current and/or higher voltages over the USB cable (VBUS) than are defined in the USB2.0, USB3.0 or BC1.2 specifications, and controls circuitry to select local power source or power sink. The R9A02G011 uses a 300kbps BMC modulated signal through the CC wire in the USB Type-C[™] cable. It comes in a small 32-pin QFN package and integrates several commonly required external components, making it ideally suited for applications with limited PCB space. In addition, the R9A02G011 incorporates Renesas' low-power technologies.

1.1 Features

- Compliant with USB Power Delivery Specification Revision 3.0 and USB Type-C[™] Cable and Connector Specification Revision 1.3.
 - Certified by USB Implementers Forum: TID= 1061007 (Silicon), 1020074 (E-marker)
 - _ Supports Programmable Power Supply
 - Supports IEC63002
 - Supports up to 260 bytes data transfer
 - Supports all USB Type-C[™] Connection State Diagrams for USB Type-C[™] port control
- Compliant with USB Power Delivery Specification Revision 2.0
 - Certified by USB Implementers Forum: TID=1000004 (Silicon), 1020073 (E-marker)
 - Supports alternate mode and electronically marked cables _
 - Supports Dual Role operation and Role Swap protocol
 - Supports Dead Battery operation
 - Single Power Supply with wide voltage range from 3.0 to 5.5V
- Integrated CC-PHY and CC-logic
- **On-chip Flash ROM**
- **On-chip Oscillator**
- On-chip Power-On-Reset (POR) circuit •
- Small Footprint
 - Small and low pin count package with simple pin assignment for PCB layout
 - Integration of many peripheral components
- Supports SMBus Master and Slave interfaces
- Suitable for Energy Star and EuP specifications for low-power PC peripheral systems.

1.2 **Applications**

AC Adapter, Power outlet, USB PD Hub, PC, Tablet, Smartphone, Docking Station, PC Peripheral Device (Monitor, Printer, Router, External HDD), Consumer Electronics (DTV, STB, Home Gateway), etc.

1.3 **Ordering Information**

Part Number	Package	Remark	
R9A02G011GNP#AC0	32-pin QFN (5 × 5 mm)	Lead-free product	
R19DS0088EJ0130 Rev.1.30	RENESAS	Page 1 of 19	

1.4 Block Diagram

Figure 1-1. R9A02G011 Block Diagram

Block Name	Description
Power Delivery CC-PHY & Logic	CC-PHY (Tx/Rx), CC-logic, and LDO used for CC-PHY
Power Delivery Logic	Power Delivery logic controller
System Controller	System CPU core (RL78)
Flash ROM	Internal Flash ROM
RAM	Internal SRAM
SMBus Slave	Interface signals to external SMBus Master.
SMBus Master	Interface signals to external SMBus Slave.
Port	Controls Port I/O signals
000	On-Chip Oscillator
POR	Internal Power-On-Reset circuit
Reset Controller	External reset signal (Optional)
ADC	AD Converter
LDO	Low Drop Out regulator integrated in this IC

1.5 Pin Configuration

• 32-pin QFN (5 × 5 mm)

Figure 1-2. Pin Configuration of R9A02G011 32-pin QFN (Top View)

2. PIN FUNCTION

This section describes each pin's function.

2.1 Power supply

Pin Name	Pin No.	I/O Type	Function
VDD	20	Power	Power supply (from 3.0V to 5.5V)
REGCTX	19	Power	Regulator capacitance for CC-PHY. Connecting regulator output stabilization capacitance for internal operation.
REGC	21	Power	Regulator capacitance. Connecting regulator output stabilization capacitance for internal operation.
GND	Die Pad	-	Ground

2.2 System Interface Pins

Pin Name	Pin No.	I/O Type	Function
RESETB	25	IN	Chip Reset Input (L active)

2.3 USB PD and Type-C[™] Port Pins

Pin Name	Pin No.	I/O Type	Function
RD1	15	I/O	Rd resistor 1, Analog pin from CC-PHY.
CC1	16	I/O	Configuration Channel 1, Analog pin from CC-PHY
CC2	17	I/O	Configuration Channel 2, Analog pin from CC-PHY
RD2	18	I/O	Rd resistor 2, Analog pin from CC-PHY

2.4 I/O Port Pins

Pin Name	Pin No.	I/O Type	During reset	After reset	Function
P16	1	I/O	Input	Input	Port 1, 2 bit I/O port.
P17	32	I/O	Input	Input	Port 1, 2 bit I/O port.

Pin Name	Pin No.	I/O Type	During reset	After reset	Function
P20	2	I/O	Input	Input	Port 2, 3 bit I/O port. It is also configurable as VBUSM or ANI8
P21	3	I/O	Input	Input	Port 2, 3 bit I/O port. It is also configurable as ANI9
P22	4	I/O	Input	Input	Port 2, 3 bit I/O port. It is also configurable as ANI10
P30	6	I/O	Input	Input	Port 3, 3 bit I/O port. It is also configurable as MSTSCL.
P31	5	I/O	Input	Input	Port 3, 3 bit I/O port. It is also configurable as MSTSDA
P32	11	I/O	Input	Input	Port 3, 3 bit I/O port. It is also configurable as INTP3
P40	7	I/O	Input	Input Pull-up	Port 4, 1 bit I/O port. It is also configurable as TOOL0
P50	13	I/O	Input	Input	Port 5, 2 bit I/O port. It is also configurable as INTP1
P51	14	I/O	Input	Input	Port 5, 2 bit I/O port. It is also configurable as INTP2
P60	9	I/O	Input	Input	Port 6, 3 bit I/O port. It is also configurable as SLVSCL
P61	8	I/O	Input	Input	Port 6, 3 bit I/O port. It is also configurable as SLVSDA
P62	10	I/O	Input	Input	Port 6, 3 bit I/O port. It is also configurable as SLVSALTB
P70	26	I/O	Input	Input	Port 7, 4 bit I/O port. It is also configurable as INTP4
P71	27	I/O	Input	Input	Port 7, 4 bit I/O port.
P72	28	I/O	Input	Input	Port 7, 4 bit I/O port.
P73	29	I/O	Input	Input	Port 7, 4 bit I/O port.
P80	12	I/O	Input	Input	Port 8, 3 bit I/O port. It is also configurable as INTP5
P81	30	I/O	Input	Input	Port 8, 3 bit I/O port. It is also configurable as INTP6
P82	31	I/O	Input	Input	Port 8, 3 bit I/O port. It is also configurable as INTP7
P121	22	IN	Input	Input	Port 12, 2 bit Input port. It is also configurable as SLVADDR0
P122	23	IN	Input	Input	Port 12, 2 bit Input port. It is also configurable as SLVADDR1
P137	24	IN	Input	Input	Port 13, 1 bit Input port. It is also configurable as MSTSALTB or INTP0.

2.5 Alternate Functions on I/O Port Pins

I/O ports support the following alternate functions.

Function Name	I/O	Function
ANI8 to ANI10	Input	Analog Input
MSTSCL	I/O	SMBus master clock input/output (open-drain) Note 1
MSTSDA	I/O	SMBus master data input/output (open-drain) Note 1
MSTSALTB	Input	SMBus master alert input Note 1
SLVSCL	I/O	SMBus slave clock input/output (open-drain) Note 2
SLVSDA	I/O	SMBus slave data input/output (open-drain) Note 2
SLVSALTB	Output	SMBus slave alert output (open-drain)
SLVADDR0	input	SMBus slave address bit [1] Note 2
SLVADDR1	input	SMBus slave address bit [2] Note 2
VBUSM	Input	VBUS voltage monitor input. The pin assignment is fixed to this function.
INTP0 to INTP7	Input	Interrupt detection input. The valid edge (rising edge, falling edge, or rising and falling edges) can be specified.
TOOL0	I/O	Data input/output for flash programming tool. The pin assignment is fixed to this function.

Note 1. The pin assignment is fixed to this function when SMBus Master is enabled.

Note 2. The pin assignment is fixed to this function when SMBus Slave is enabled.

3. ELECTRICAL SPECIFICATIONS

This chapter describes the following electrical specifications.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	Vss		–0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{\rm Note\ 1}$	V
	VIREGCTX	REGCTX	-0.3 to +2.8	V
Input voltage	Vı	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82, P121, P122, P137, RESETB	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vaii	ANI8 to ANI10	-0.3 to Vdd +0.3 Note 2	V
	V _{AI2}	CC1, CC2, RD1, RD2	-0.5 to +6.5	V

Absolute Maximum Ratings (1/2)

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

2. Must be 6.5 V or lower.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P16, P17, P20 to P22, P30 to	-40	mA
		Total of all pins	P32, P40, P50, P51, P60 to P62, P70 to 73, P80 to P82	-170	mA
Output current, low	low loli F	Per pin	bin P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to 73, P80 to P82	40	mA
		Total of all pins		170	mA
Operating ambient	TA	In normal operation	In normal operation mode		°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (2/2)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	C	MIN.	TYP.	MAX.	Unit	
High-speed on-chip oscillator clock frequency Notes 1	fін				24		MHz
High-speed on-chip		–20 to +85 °C	$3.0~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
oscillator clock frequency		–40 to –20 °C	$3.0~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
accuracy		+85 to +105 °C	$3.0~V \le V_{\text{DD}} \le 5.5~V$	-2		+2	%

Notes 1. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}) (1/3)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P16, P17, P20 to P22, P30 to P32, P50, P51, P60 to P62, P70 to P73, P80 to P82	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
	PE		TTL input buffer $3.3 \ V \leq V_{\text{DD}} < 4.0 \ V$	2.0		Vdd	V
			TTL input buffer $3.0~V \leq V_{\text{DD}} < 3.3~V$	1.5		Vdd	V
	VIH2	P40, P121, P122, P137, RESETB		0.8 Vdd		Vdd	V
Input voltage, low	VIL1	P16, P17, P20 to P22, P30 to P32, P50, P51, P60 to P62, P70 to P73,	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
		P80 to P82	TTL input buffer 3.3 V \leq VDD $<$ 4.0 V	0		0.5	V
			TTL input buffer $3.0~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL2	P40, P121, P122, P137, RESETB		0		0.2 Vdd	V

Caution The maximum value of all pins is VDD, even in the N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	V _{DD} – 0.5			V
Output voltage, low	Vol1	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82	$3.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}) (2/3)$

Caution All pins do not output high level in N-ch open-drain mode.

Items	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іцні	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82, P137, RESETB	Vi = Vdd			1	μA
	Ilih2	P121, P122	$V_I = V_{DD}$, In input port			1	μA
Input leakage current, low	ILIL1	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82, P137, RESETB	Vi = Vss			-1	μA
	Ilil2	P121, P122	VI = Vss, In input port			-1	μA
On-chip pull-up resistance	Ru	P16, P17, P20 to P22, P30 to P32, P40, P50, P51, P60 to P62, P70 to P73, P80 to P82	VI = Vss, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}) (3/3)$

3.4 AC Characteristics

(TA = -40 to +105°C, 3.0 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RESETB low-level width	trsl		10			μs

AC Timing Test Points

RESETB Input Timing

3.5 Peripheral Functions Characteristics

3.5.1 SMBus Interface

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Condition	100	kHz	400	kHz	1 N	1Hz	Units
			Cla	ass	Cla	ass	Cla	ass	
			MIN	MAX	MIN	MAX	MIN	MAX	
SMBus operating frequency	FSMB		10	100	10	400	10	1000	kHz
Bus free time between stop and start condition	TBUF		4.7		1.3		0.5		μs
Hold time after (Repeated) start condition. After this period, the first clock is generated.	T _{HD:STA}		4.0		0.6		0.26		μs
Repeated start condition setup time	T _{SU:STA}		4.7		0.6		0.26		μs
Stop condition setup time	T _{SU:STO}		4.0		0.6		0.26		μs
Data hold time	Thd:dat		0		0		0		ns
Data setup time	T _{SU:DAT}		250		100		50		ns
Clock low period	TLOW		4.7		1.3		0.5		μs
Clock high period	Тнідн		4.0	50	0.6	50	0.26	50	μs
Cumulative clock low extend time (slave device)	TLOW:SEXT			25		25		25	ms
Cumulative clock low extend time (master device)	TLOW:MEXT			10		10		10	ms
Clock/Data fall time	T _F			300		300		120	ns
Clock/Data rise time	T _R			1000		300		120	ns
Noise spike suppression time	T _{spike}				0	50	0	50	ns
Operational time after power-on reset	TPOR			500		500		500	ms

Figure 3-1. SMBus Signal Timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

(TA = -40 to +105°C, 3.0 V ≤ VDD ≤ 5.5 V, VSS = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = VSS)

Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
Resolution	Res			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$3.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$		1.2	±7.0	LSB
Analog input voltage	VAIN	ANI8 to ANI10		0		VDD	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3.6.2 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.59	V
	Vpdr	Power supply fall time	1.42	1.50	1.58	V
Minimum pulse width	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.3 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range.

3.6.4 **CC-PHY characteristics**

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CC Current Source (Default)	180u		64	80	96	μA
CC Current Source (1.5A)	l180u		166	180	194	μA
CC Current Source (3A)	I330u		304	330	356	μA
Transmitter Output Impedance	zDriver		33		75	Ω
Transmitter Rise Time	tRISE_TX		300			ns
Transmitter Fall Time	tFALL_TX		300			ns
Receiver Input Impedance	zBMCRX		1			MΩ

3.7 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
System clock frequency	fськ	$3.0~V \leq V \text{DD} \leq 5.5~V$		1		24	MHz
Number of code flash rewrites Notes 1,2,3	Cerwr	Retained for 20 years	$T_A = 85^{\circ}C^{\text{Notes 4}}$	1,000			Times

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2. When using flash memory programmer and Renesas Electronics self-programming library.

3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

4. This temperature is the average value at which data are retained.

3.8 Pin Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System Interface Pin capacitance	C _{SYS}				5	pF
I/O Port Pin capacitance	CIO				5	pF

3.9 Power Consumption

$(T_{A} = 25^{\circ}C.$	$V_{DD} = 3.3 V$	$V_{\rm SS} = 0 V$
(1 - 20 0)	VDD - 0.0 V	, • 33 - 0 • <i>j</i>

Parameter	Conditions		TYP.	Unit
Operating current as Source role	Sink attached.	No PD Communication.	3.2	mA
		PD Communication.	4.1	mA
Operating current as Sink role	Source attached.	No PD Communication.	2.7	mA
		PD Communication.	3.6	mA
Supply current in sleep mode	Unplugged. SMBus, WAKEUP/INTP and CC enabled for wakeup. Source role.		205	μA
Supply current in deep sleep mode	Unplugged. SMBus and WAKEUP/INTP enabled for wakeup.		2.8	μA

$(T_A = 25^{\circ}C, V_{DD} = 5.0 V, V_{SS} = 0 V)$

Parameter	Conditions		TYP.	Unit
Operating current as Source role	Sink attached.	No PD Communication.	3.9	mA
		PD Communication.	4.8	mA
Operating current as Sink role	Source attached.	No PD Communication.	3.4	mA
		PD Communication.	4.3	mA
Supply current in sleep mode	Unplugged. SMBus, WAKEUP/INTP and CC enabled for wakeup. Source role.		230	μA
Supply current in deep sleep mode	Unplugged. SMBus and WAKEUP/INTP enabled for wakeup.		3.2	μΑ

4. PACKAGE DRAWINGS

32-PIN QFN (5 x 5 mm)

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HVQFN32-5x5-0.50	PVQN0032KG-A	T32K8-50-BAP	0.07

E2

_

_

3.60

Rev.	Date	Description	
		Page	Summary
1.0	Nov. 25, 2016	-	First Edition issued
1.01	Feb. 17, 2017	3	Updated Figure 1-2
		5	Updated section 2.4
		6	Updated section 2.5
1.02	Oct. 24, 2017	1	Updated section 1, section 1.1
		-	Corrected writing errors
1.10	Jan. 29, 2018	1	Updated section 1, section 1.1, section 1.3
		3	Updated section 1.5
		15	Updated section 3.6.2
		18	Updated section 3.9
		19	Updated section 4
1.20	Mar. 27, 2018	1	Updated section 1.1
1.30	Jan. 29, 2019	4-6	Updated section 2.4, section 2.6

SuperFlash(R) is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

NOTE) This product uses SuperFlash(R) technology licensed from Silicon Storage Technology, inc.

All trademarks and registered trademarks are the property of their respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
 you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for velucating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Ind Tel: +91-80-67208700, Fax: +91-80-67208777 Indiranagar, Bangalore 560 038, India Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338