THINKON.

www.onsemi.com

High Performance Isolated Drivers

PCS August - 2020

Public Information

Gate Driver Category Definition

Non-is	Non-isolated Junction Isolated							
Single - Channel	Multiple - Channel	High - Side	High/Low	Half-Bridge	Three-Phase	1-Channel	2-Channel	
Non-	isolated		Junct	ion Isolated		Galvanic	Isolated	
 Single or multiple cha Cheapest, simple sole applications where or needed 	annel ution for many nly a low-side driver is	 Normally needed in very high power/high voltage systems. Three options: Optical, Inductive, Capacitive 						
			Applicatior	າຣ				
AutomotiveIndustrial SystemsConsumer Devices		 Appliances Consumer Dev Auxiliary Autor Offline Power 	vices & Power To notive & Motors	ols Drives		 Automotive traction inverters Industrial Drive Server Rack Power Solar and Energy Storage 		
	_		Products	6				
FAN3111 FAN3100 FAN3181 FAN312x	FAN321x FAN322x	FAN73611	FAN8811 FAN7392 NCP51530 NCP5183	FAN7382 FAN73833 FAN73912 NCP5106B	FAN7382 FAN73833 FAN73912 NCP5106B	NCP5115x NCP5175x	NCP5156x	
2 10/20/2020 Public Information								

Isolated Drivers Part Release Plan

OPN	Description	Package	AEC	Datasheet	Sample Date	RTM	Collaterals (AN/DB)
NCP51561BxDW	2-Ch Isolated Driver MOS (4/8A)	SOIC-16WB	No	Now	Now	Q4-2020	Now
NCP51561DxDW	2-Ch Isolated Driver SIC (4/8A)	SOIC-16WB	No	Now	Now	Q4-2020	Now
NCP51560BxDW	2-Ch Isolated Driver MOS (2/4A)	SOIC-16WB	No	Now	On Demand	ТВС	Q3 2020
NCP51563BxDW	2-Ch Iso Driver MOS High Creepage (4/8A)	SOIC-14WB	No	Prelim July-2020	Q4-2020	Q1-2021	October 2020
NCV51561BxDW	NCP51561 MOS for Automotive	SOIC-16WB	Yes	Prelim July-2020	Q3 2020	Q1-2021	October 2020
NCV51561CxDW	NCP51561 SIC for Automotive	SOIC-16WB	Yes	Prelim July-2020	Q3 2020	Q1-2021	October 2020
NCP51566BxDW	High Perf 2-Ch Isolated Driver MOS (4/8A)	SOIC-16WB	No	Prelim July-2020	Q1-2021	Q2-2021	Q1-2021
NCP51567CxDW	High Perf 2-Ch Isolated Driver SIC (4/8A)	SOIC-14WB	No	Prelim Aug-2020	Q1-2021	Q2-2021	Q1-2021
NCP51752xDW	1-Ch Iso SiC Driver with int. Neg CP	SOIC-14WB	No	Now	Q2-2021	Q4-2021	Q1-2021
NCV51752xDW	NCP51752 for Automotive	SOIC-14WB	Yes	Prelim July-2020	Q2-2021	Q1-2022	Q1 2021
NCP51157xDW	High Perf 1-Ch Isolated Driver MOS (4/8 A)	SOIC-8WB	No	Prelim Aug -2020	Q1-2021	Q2-2021	Q1 2021
NCV51157xDW	High Perf 1-Ch Isolated Driver MOS (4/8 A)	SOIC-8WB	Yes	Prelim Aug-2020	Q2-2021	Q3-2021	Q2 2021
NCP51152xD	High Perf 1-Ch Isolated Driver MOS (4/8 A)	SOIC-8	No	Prelim Aug -2020	Q2-2021	Q3-2021	Q1 2021
NCV51152xD	High Perf 1-Ch Isolated Driver MOS (4/8 A)	SOIC-8	Yes	Prelim Aug-2020	Q2-2021	Q3-2021	Q2 2021
NCV51567CxDW	NCP51567 for Automotive	SOIC-14WB	Yes	Prelim Sept -2020	Q1-2021	Q3-2021	Q1 2021
NCP51755xDW	Full feature 1-Ch Iso SiC Driver (I2C/Neg CP/TS)	SOIC-20WB	No	Now	ТВС	ТВС	N/A
NCV51755xDW	NCP51755 for Automotive	SOIC-20WB	Yes	Prelim Sept-2020	ТВС	ТВС	N/A
NCV51568BxMN	High Perf 2-Ch Isolated Driver MOS (4/8A)	QFN16 5*5	No	Prelim Q4-2020	ТВС	ТВС	N/A

Isolated Drivers Selection Guide

					Footures							-	Targ	et Applica	tions	-		
					reatures						Autor	notive			I	ndustrial 4	.0	
OPN	No. of channels	Isolation	Primary use	Differentia I Input	Split output	DESAT w/ FLT	Miller Clamp	Neg Charge Pump	12C	Traction	РТС	ОВС	HV DC-DC	UPS	Solar	Motor Control	Telecom	Server
NCP51561BxDW	2	5 kV	MOS	\checkmark											\checkmark	\checkmark		\checkmark
NCP51561DxDW	2	5 kV	SiC	\checkmark										\checkmark		\checkmark		
NCP51560BxDW	2	5 kV	MOS	\checkmark												\checkmark		\checkmark
NCP51563BxDW	2	5 kV	MOS	\checkmark										\checkmark	\checkmark	\checkmark		
NCV51561BxDW	2	5 kV	MOS	\checkmark								\checkmark	\checkmark					
NCV51561DxDW	2	5 kV	SiC	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark					
NCP/NCV51566BxDW	2	5 kV	MOS	\checkmark								\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
NCP51567CxDW	2	5 kV	SiC	\checkmark										\checkmark	\checkmark	\checkmark		\checkmark
NCP51752xDW	1	5 kV	SiC	\checkmark	\checkmark			\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NCV51752xDW	1	5 kV	SiC	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark					
NCP51157xDW	1	5 kV	MOS	\checkmark	Y/N									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NCV51157xDW	1	5 kV	MOS	\checkmark	Y/N					\checkmark	\checkmark	\checkmark						\checkmark
NCP51152xD	1	3.7 kV	MOS	\checkmark	Y/N									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NCV51152xD	1	3.7 kV	MOS	\checkmark	Y/N					\checkmark	\checkmark	\checkmark						\checkmark
NCV51567CxDW	2	5 kV	SiC	\checkmark	\checkmark					\checkmark								
NCP51755xDW	1	5 kV	SiC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark		
NCV51755xDW	1	5 kV	SiC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					
NCV51568BMN	2	2 kV	MOS	\checkmark													\checkmark	\checkmark

NCP/NCV51561 – 5 kV Isolated High Speed Dual MOS/SiC Drivers

Value Proposition

The NCP5156x are isolated dual-channel gate driver with up to 4-A/8-A source and sink peak current. It is designed for fast switching to drive power MOSFETs power switches. The NCP5156x offers short and matched propagation delays. Internal functional isolation between the two secondary-side drivers allows a working voltage of up to ~1,200 VDC. The NCP5156x offers other important protection functions such as independent under-voltage lockout for each drivers and disable function.

Unique Features

- Input side isolated from output drivers by 5-kVRMS isolation barrier
- 40ns Prop Delay & 15ns Delay Match
 >= 150 V/ns dV/dt Immunity
- Typical Source/Sink Current Capability
 NCP51560 : 2-A/4-A
 NCP51561 : 4-A/8-A

- Benefits
- Give reliable operation and safety
- Efficient switching
- High Robustness
- Driver to accommodate diff MOS load

Other Features

- Matched Propagation Delays : Max. 15 ns
- User Programmable Input Logic
 - Single or Dual-input modes via ANB
 - DISABLE or ENABLE mode
- User Programmable Dead-Time Control
- Different UVLO options: 5-V,8-V & 17-V

Market & Applications

- Isolated Converters in Offline AC-to-DC Power Supplies
- Motor Drive and DC-to-AC Solar Inverters
- HEV and EV On-Board chargers

Package Information

- SOIC-WB16
- OPN : NCV51561yzDWR2G

Typical Application Schematic

- y: UVLO level
- z: Enable/Disable

NCP5156x – Product Family Information

OPN	Description	Packado	Driving C	urrent [A]		ENABLE /
OFN	Description	Гаскауе	Source	Sink	0110	DISABLE
NCP51560AADWR2G					5 V	ENABLE
NCP51560ABDWR2G					5 V	DISABLE
NCP51560BADWR2G					8 V	ENABLE
NCP51560BBDWR2G	Low surrest dual isolated MOSEET driver	COLC 16 MD			8 V	DISABLE
NCP51560CADWR2G	Low current dual isolated MOSPET driver	SUIC-10 WD	2	4	13 V	ENABLE
NCP51560CBDWR2G					13 V	DISABLE
NCP51560DADWR2G					17 V	ENABLE
NCP51560DBDWR2G					17 V	DISABLE
NCP51561AADWR2G					5 V	ENABLE
NCP51561ABDWR2G					5 V	DISABLE
NCP51561BADWR2G					8 V	ENABLE
NCP51561BBDWR2G	High current dual is plated MOSEET driver	SOLC 16 WB		0	8 V	DISABLE
NCP51561CADWR2G	High current duar bolated MOSPET driver	301C-10 WD	4	0	13 V	ENABLE
NCP51561CBDWR2G					13 V	DISABLE
NCP51561DADWR2G					17 V	ENABLE
NCP51561DBDWR2G					17 V	DISABLE

OPN's	UVLO	EN/DIS	PACKAGE	SAMPLE
NCP51561AADWR2G	5 V	ENABLE	SOIC-16 WB	On demand
NCP51561BADWR2G	8 V	ENABLE	SOIC-16 WB	Now
NCP51561DADWR2G	17 V	ENABLE	SOIC-16 WB	Now
NCP51561ABDWR2G	5 V	DISABLE	SOIC-16 WB	On demand
NCP51561BBDWR2G	8 V	DISABLE	SOIC-16 WB	On demand
NCP51561DBDWR2G	17 V	DISABLE	SOIC-16 WB	On demand

NCP51561 – Pin Configuration

16 SOIC-WB

Pin No.	Pin Name	Description
1	INA	Logic Input for Channel A with internal pull-down resistor to GND
2	INB	Logic Input for Channel B with internal pull-down resistor to GND.
3.8	V	Input-side Supply Voltage.
5, 6	♥ DD	It is recommended to place a bypass capacitor from VDD to GND.
4	GND	Ground Input-side. (all signals on input-side are referenced to this pin)
	DISABLE	Logic Input High Disables Both Output Channels. Internal pull-down resistor
5	(ENABLE)	(Option (ENABLE): Logic Input High Enables Both Output Channels. Internal pull-up resistor)
		Input for programmable Dead-Time
		It provides the operating three kind of mode according to the DT pin voltage as below.
	D.T.	Mode-A : Cross-conduction both channel outputs is not allowed even though dead-time is less than maximum 20 ns when the DT pin is floating (Open).
0	DI	Mode-B: Dead-time is adjusting according to an external resistance (R _{DT}).
		t_{DT} (in ns) =10 × R_{DT} (in k Ω)
		Recommended dead-time resistor (R_{DT}) values are between 1 kW and 500 kW.
		MODE-C : Cross-conduction both channel outputs is allowed when the DT pin pulled to VDD.
		Logic Input for changing the input signal configuration with internal pull-down resistor to GND. The
		OUTA and OUTB as complementary outputs from one PWM input signal on the INA pin regardless
7	ANB	the INB signal when the ANB pin is high. The INB pin should be pulled down to GND (recommended)
		or floating (not recommended) when the ANB pin is high. The ANB pin should be kept low when the
		OUTA and OUTB are controlled individually by INA and INB pins. (along with DISABLE and DT pins).
9	VSSB	Ground for Channel B
10	OUTB	Output for Channel B
11	VCCP	Supply Voltage for Output Channel B.
11	VCCB	It is recommended to place a bypass capacitor from VCCB to VSSB.
12, 13	NC	No Connection; Keep pin floating
14	VSSA	Ground for Channel A
15	OUTA	Output of Channel A
16	NCCA	Supply Voltage for Output Channel A.
10	VLLA	It is recommended to place a bypass capacitor from VCCA to VSSA.

NCP51561 – Typical Application Schematic

• Case A : Dual Input Mode (ANB=GND)

• Case B : Single Input Mode (ANB=VDD)

(A) High and Low Side MOSFET Gate Drive

(B) High and Low Side MOSFET Gate Drive with PWM Controller

NCP51561 – OUTPUT Source/Sink Current

TELEDYNE LECROY Everywfereyoulook Measure P1:pkpk(C2) P2:ddelay(C4,C3) P3:fall(C2) P4:width(C2) P5:ddelay(C2,C3) P6:ddelay(C2,C4) value 4.52 A status Timebase 30.0 ps 10.0 ps/div Blop 3.34 A 500 kS 5.0 GS/s Edge Positive DC1M 1 00 Avdit -3 000 A ofs 1.00 V/dh

Peak Source: 4.5 A

Source Peak Current @ VCC=12V

9

Peak Sink: 9.1 A

Sink Peak Current @ VCC=12V

NCP51561 – Fast Propagation Delay Time

Propagation Delay Time

- a. Test Conditions : VDD= 5 V, VCCA=12V, and Cload = 0nF
- b. Test Results : Ton = 32 ns, and Toff = 32 ns

CH1: INA, and CH2: OUTA

Turn-off Delay Time

Turn-on Delay Time

Public Information

Summary of Propagation Delay

Measurement Results

Item	NCP51561	Compet 1	Compet 2	Compet 3
Turn-on propagation delay [ns]	32.5	23.6	23.8	42.0
Turn-off propagation delay [ns]	32.4	21.8	21.0	44.2
Delay matching [ns]	0.1	1.8	2.8	2.2

Specification in Datasheet

Item	NCP51561		C	Compet 1			ompet	2	Compet 3			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	max	Min	Тур	Max
Turn-on propagation [ns]	25	35	45	14	19	30		30	45	31	37	44
Turn-off propagation [ns]	25	35	45	14	19	30		30	45	31	37	44
Delay matching [ns]	-15		15			5						3

Note : NCP51561 Prelim DS stage as of now

NCP51561 – CMTI Performance

12

Public Information

NCP51561 – Printed Circuit Board

Picture of EVB

NCP/NCV5156x Competitive Landscape

De	vice	NCP51560	NCP51561	NCD57252	UCC21520	UCC21521	2EDS8165	2EDS8265	Si823x	Si827x	ADuM3223	Unit
Con	npany		ON		1	II	IF	FX	Silico	n Lab	ADI	
Absolute Max.	VDD	5.5	5.5	22	20	20	3.7 ⁽¹⁾	3.7 ⁽¹⁾	6	6	7	V
Voltage	VCC	33	33	36	30	30	22	22	25	25	20	v
	VDD	2.8	2.8	max. 3	2.7	2.7	2.85	2.85	2.3	2.2		
UVI O Threshold	VDD	2.7	2.7	min. 2.4	2.5	2.5	2.7	2.7	2.22	2.1		V
UVLO Intesnoid	VCC	8.7	8.7	13	8.7	8.5	8	8	8.6	8.3	6.9	v
	100	8.2	8.2	12	8.2	8	7	7	8.1	7.8	6.2	
Input Logic	V _{INH}	1.4/1.7/2.0	1.4/1.7/2.0	1.8/ /	1.8	1.8	2	2	2	2	0.7 * V _{DD}	V
Threshold	VINL	0.8/1.1/1.4	0.8/1.1/1.4	/ /1.5	1	1	1.2	1.2	0.8	0.8	0.3 * V _{DD}	•
INA,INB, DIS	VIN	V _{DD} + 0.3	V _{DD} + 0.3	V _{DD} + 0.3	V _{DD} + 0.3	V _{DD} + 0.3	Max. 17	Max. 17			V _{DD} +0.5	V
Voltage	Transient ⁽⁷⁾	Min -5	Min -5	Min -5	Min -5	Min -5	Min -5	Min -5				•
Driving Current	Source	2	4	8	4	4	1	4		1.8	4	Δ
	Sink	4	8	8	6	6	2	8		4	4	А
Turn-on propagati	on delay	30/40/55	30/40/55	40/ 60 / 90	14 / 19 / 30	/ 19 / 30	31 / 37 /44	31 / 37 /44	/ 30 / 45	20/30/60	35/43/54	ns
Turn-off propagati	on delay	30/40/55	30/40/55	40/ 60 / 90	14 / 19 / 30	/ 19 / 30	31 / 37 /44	31 / 37 /44	/ 30 / 45	20/30/60	35/43/54	ns
Propagation Delay	matching	Max. 15	Max. 15	Max. 20	Max. 5	Max. 5	Max. 3	Max. 3	Max. 5.6	Max. 8	Max. 12	ns
Pulse Width Distor	rtion (T _{PM})	Max. 15	Max. 15	Max. 20	Max. 5	Max. 5						ns
	Min. DT	10	10	20					0.4	0.4		ns
Dead-Time	DT ⁽⁸⁾	160/200/240	160/200/240	160/200/240	160/200/240	160/200/240	/ 115 /	/ 115 /	730/900/1170	150/210/260		ns
	DI	$R_{DT} = 200 k\Omega$	$R_{DT} = 200 k\Omega$	$R_{DT} = 200 k\Omega$	$R_{DT} = 20k\Omega$	$R_{DT} = 20k\Omega$	$R_{DT} = 62k\Omega$	$R_{DT} = 62k\Omega$	$R_{DT} = 100 k\Omega$	$R_{DT} = 100 k\Omega$		
Minimum Input Pu	lse Width	Max. 30	Max. 30	Max. 30	Max. 20	Max. 20	Тур. 18	Тур. 18				ns
Common mode Tr	ansient	Min. 100	Min. 100	Min. 100	Min. 100	Min. 100	Min. 150	Min. 150	Min. 20	Min. 150	Max. 100	V/ns
Device Start-up Ti	ime								Max. 40	Тур. 16		us
ESD	HBM ⁽⁹⁾		2000		±4	000	20	000				v
	CDM ⁽⁹⁾		500		±1:	500	5	00				
		 With SLDO in 	active (NC or conn	ected to VDD								
		Input signa	d (INA, INB, DISA	BLE) pins transient	for 50 ns							
		Dead-time Set	ting									
		NCP5176x :	t _{DT} =10 ×R _{DT} whe	re R_{DT} is $k\Omega$ and t_D	_T is ns. (Same as T	I product)						
		UCC2152x : 1	$t_{DT} = 10 \times R_{DT}$ whe	re R_{DT} is k Ω and t_{D}	or is ns							
Note		2EDS8165: H	$R_{\rm DT} = (t_{\rm DT} - 3) / 1.$	8 where R_{DT} is $k\Omega$	and t _{DT} is ns							
		Si823x : 1	$DT = 10 \times R_{DT}$									
		Si827x : 1	$DT = 2.02 \times R_{DT} +$	7.77 (for 10 ~ 200	ns version)							
		ADuM3223: 1	No dead-time contr	ol function								
		7. ESD Human Bo	ody Model tested p	er ANSI/ESDA/JEI	DEC JS-001-2012							
		ESD Charged Dev	ice Model tested pe	er JESD22-C101.								

NCP/NCV51563 – Isolated Dual MOS/SiC Drivers with 3.3mm creepage

Value Proposition

The NCP5156x are isolated dual-channel gate driver with up to 4-A/8-A source and sink peak current. It is designed for fast switching to drive power MOSFETs power switches. The NCP5156x offers short and matched propagation delays. Internal functional isolation between the two secondary-side drivers allows a working voltage of up to ~1,200 VDC. The NCP5156x offers other important protection functions such as independent under-voltage lockout for each drivers and disable function.

Unique Features

- Input side isolated from output drivers by 5-kVRMS isolation barrier
- Increased Channel-to-Channel Spacing
- 40ns Prop Delay & 15ns Delay Match
- >= 100 V/ns dV/dt Immunity
- Typical Source/Sink Current Capability of 4-A/8-A

Benefits

- Give reliable operation and safety
- 3.3 mm for higher functional isolation
- Efficient switching
- High Robustness
- Strong Driver to optimize losses

Other Features

- Matched Propagation Delays : Max. 15 ns
- User Programmable Input Logic
 - Single or Dual-input modes via ANB
 - DISABLE or ENABLE mode
- User Programmable Dead-Time Control
- Different UVLO options: 5-V,8-V & 17-V

Market & Applications

- Isolated Converters in Offline AC-to-DC Power Supplies
- Motor Drive and DC-to-AC Solar Inverters
- HEV and EV On-Board chargers

Typical Application Schematic

Higher creepage distance between channel offers better immunity in polluted environments

> Sampling Q4-20 P2P with UCC21530

- SOIC-WB14 with high DTI
- OPN : NCP51563BzDWR2G
- y: UVLO level
- z: Enable/Disable

NCP51566 – 5 kV Isolated High Performance Dual MOS/SiC Drivers

Value Proposition

The NCP51566 is isolated dual-channel gate driver with up to 4-A/8-A source and sink peak current. It is designed for fast switching to drive power MOSFETs power switches. The NCP51566 offers short and matched propagation delays. Internal functional isolation between the two secondary-side drivers allows a working voltage of up to ~1,200 VDC. The NCP51566 offers other important protection functions such as independent under-voltage lockout for each drivers and enable function.

Unique Features

- Input side isolated from output drivers by 5-kVRMS isolation barrier
- Max. 45 ns Prop Delay & 5 ns Delay Match
- >= 200 V/ns dV/dt Immunity
- < 5 ns part-to- part Skew</p>

- **Benefits**
- Give reliable operation and safety
- Efficient switching
- •
- High Robustness
- Easier design

Other Features

- Typical Source/Sink Current Capability up to 4-A/8-A
- Programmable Input Logic
- Single or Dual-input modes via ANB
- ENABLE mode
- User Programmable Dead-Time Control
- Different UVLO options: 5-V,8-V & 17-V

Market & Applications

- Isolated Converters in Offline AC-to-DC Power Supplies
- Motor Drive and DC-to-AC Solar Inverters
- HEV and EV On-Board chargers

Typical Application Schematic

Decemeters	Cumulant	N	CP515	66	N	CP515	61
Parameters	Symbol	Min	Тур	Max	Min	Тур	Max
Power Supply Voltage – Input side	V _{DD}	3		5	3		5
Power Supply Voltage – Driver side	V _{CC}	9.5		30	9.5		30
Logic Input Voltage at pins INA, INB, ANB and DISABLE	VIN	GND		18	GND		18
Common Mode Transient Immunity	CMTI	150		200	100		120
Turn-On Propagation Delay from INx to OUTx	t _{PDON}	25	35	45	30	40	55
Turn-Off Propagation Delay from INx to OUTx	t _{PDOFF}	25	35	45	30	40	55
Pulse Width Distortion (t _{PDON} – t _{PDOFF})	t _{PWD}			5			15
Mismatching between Channels	t _{DM}			5			15
Turn-On Rise Time	t _R		7			7	
Turn-Off Fall Time	t _F		5			5	
Enable to OUTx Delay	T _{EABLE,OUT}		60			60	
Minimum Pulse Width Filtering Time	t _{PW}	10		30	10		30

Sampling Q1-21

- SOIC-WB16 with high DTI
- OPN : NCV5156yzDWR2G
- y: UVLO level
- z: Enable/Disable

NCP51157 – 5 kV Isolated High Performance MOS/SiC Drivers

Value Proposition

The NCP51157 is isolated 1-channel gate driver with up to 4-A/8-A source and sink peak current. It is designed for very fast switching to drive power MOSFETs power switches. The NCP51157 offers short and matched propagation delays. Internal functional isolation between the two secondary-side drivers allows a working voltage of up to ~1,200 VDC. It offers other important protection functions such as under-voltage lockout for each drivers and enable function.

Unique Features	Benefits
 Input side isolated from output drivers by 5-kVRMS isolation barrier 	 Give relia
 Max. 45 ns Prop Delay & 5 ns Delay Match >= 200 V/ns dV/dt Immunity < 5 ns part-to- part Skew 	 Efficient : High Rot Easier de
 Vdd up to 20V 	 Can worl Digital Cc
Other Features	

- Typical Source/Sink Current Capability up to 4-A/8-A
- Programmable Input Logic
- Split Outputs for easier control
- Enable/IN+
- Different UVLO options: 5-V.8-V & 17-V

Market & Applications

- Isolated Converters in Offline AC-to-DC Power Supplies
- Motor Drive and DC-to-AC Solar Inverters
- HEV and EV On-Board chargers

- able operation and safety
- switching
- bustness
- esign
- k with both Analog and ontrollers

Typical Application Schematic

Sampling Q1-21

- SOIC-8 WB with high DTI
- x: UVLO level
- OPN: NCV51157xDWR2G

NCP51157 Competitive Landscape (1)

				ON			TI		
P	aramter	Symbol		NCP5115	ix	l	JCC5350S	В	Unit
			Min	Тур	Max	Min	Тур	Max	
ABSOLUTE MAXIMUM RATINGS									
Power Supply Voltage – Input side	VDD to GND	V _{DD}	-0.3		5.5	-0.3		18	V
Power Supply Voltage – Driver side	VCC – VEE	Vcc	-0.3		33	-0.3		30	V
Driver Output Voltage			V _{EE} - 0.3		V _{CC} +0.3	V _{EE} -0.3		V _{CC} +0.3	V
(OUT-VEE)	Transient for 200ns		V _{EE} - 2		V _{CC} +0.3				V
Input Signal Voltages			GND - 0.3		20	GND - 5		V _{DD} +0.3	V
(IN+, and IN-)	Transient for 50ns		GND - 5		20				V
RECOMMENDED OPERATING CONDI	TIONS								
Power Supply Voltage – Input side		V _{DD}	3		5	3		15	V
Power Supply Voltage – Driver side		Vcc	9.5		30	9.5		33	V
Logic Input Voltage at pins IN+, and IN-		V _{IN}	GND		18				V
Common Mode Transient Immunity		CMTI	150		200 (TBC)	100	120		kV/us
ELECTRICAL SPECIFICATIONS									
PRIMARY POWER SUPPLY SECTION	(VDD)								
VDD Quiescent Current	V _{IN+} = Low, V _{IN-} = Low	laura a		710	900		1670	2400	uA
VDD Quiescent Guirent	V _{IN+} =High, V _{IN-} =Low	QVDD		9.5					mA
V _{DD} Operating Current	f _{IN} =500 kHz, C _{LOAD} = 100 pF	I _{VDD}		6	8				mA
VDD Supply Under-Voltage Positive-Going Three	eshold	V _{DDUV+}	2.7	2.8	2.9		2.60	2.8	V
VDD Supply Under-Voltage Negative-Going The	reshold	V _{DDUV-}	2.6	2.7	2.8	2.4	2.5		V
VDD Supply Under-Voltage Lockout Hysteresis	S	VDDHYS		0.1			0.1		V
SECONDARY POWER SUPPLY SECTI	ON								
V Quiescent Current	VINA= VINB = 0 V, per ch	leves.		300			1100	1800	uA
V _{CC} Quiescent Current VINA= VINB =5 V, per ch		IQVCC		360					uA
V _{CC} Operating Current	flN=500 kHz, current per ch, C _{LOAD} = 100 pF	lvcc		2.2			2		mA
		I							

NCP51157 Competitive Landscape (2)

Paramter			ON NCP5115x			П		Unit	
		Symbol				UCC5350SB			
		-	Min	Тур	Max	Min	Тур	Max	
VCC UVLO THRESHOLD (8-V UVLO Versio	n)								
VCC Supply Under-Voltage Positive-Going		V _{CCUV+}	8.3	8.7	9.2		8.7	9.4	V
VCC Supply Under-Voltage Negative-Going		V _{CCUV+}	7.8	8.2	8.7	7.3	8		V
Under-Voltage Lockout Hysteresis		V _{CCHYS}		0.5			0.7		V
LOGIC INPUT SECTION (IN+, and IN-)									
High Level Input Voltage		V _{INH}	1.4	1.7	2.0		0.55*VDD	0.7*VDD	V
Low Level Input Voltage		V _{INL}	0.8	1.1	1.4	0.3*VDD	0.45*VDD		V
Input Logic Hysteresis		VINHYS		0.6			0.1*VDD		V
Negative Transient referenced to GND	For 50 ns pulse	V _{INA} , V _{INB}	-5						V
High Level Logic Input Bias Current	IN+ = VDD	I _{IN+}	20	25	33		40	240	uA
Low Level Logic Input Bias Current	IN- = GND	I _{IN-}	-33	-25	-20	-240	-40		uA
	IN- = GND - 5 V					-310	-80		uA
GATE DRIVE SECTION for 4-A/8-A									
OUTA and OUTB Source Peak Current	V_{IN+} = High, V_{IN-} = Low, PW ≤ 5 us	I _{OUT+}		4		5	10		Α
OUTA and OUTB Sink Peak Current	V_{IN+} = Low, V_{IN-} = High, PW ≤ 5 us	IOUT-		8		5	10		А
DYNAMIC ELECTRICAL CHARACTERISTIC	S						•		
Turn-On Propagation Delay from INx to OUTx	0 V <-> 5 V, 1V/ns Slew Rate	t _{PDON}		35	TBD		65	100	ns
Turn-Off Propagation Delay from INx to OUTx	C _{LOAD} =1.8 nF	t _{PDOFF}		35	TBD		65	100	ns
Pulse Width Distortion (tPDON - tPDOFF)		t _{PWD}			5			20	ns
Mismatching between Channels	INA=INB , f _{IN} = 100 kHz	t _{DM}			TBD			25	ns
Turn-On Rise Time	CLOAD=1 nF	t _R		10			10	25	ns
Turn-Off Fall Time	10% to 90%/90% to 10%	t _F		10			10	22	ns
Minimum Pulse Width Filtering Time	C _{LOAD} =0 nF,	t _{PW}	10		30			20	ns

NCP51152 – 3.7 kV Isolated High Performance MOS/SiC Drivers

Value Proposition

The NCP51152 is isolated 1-channel gate driver with up to 4-A/8-A source and sink peak current. It is designed for very fast switching to drive power MOSFETs power switches. The NCP51152 offers short and matched propagation delays. Internal functional isolation between the two secondary-side drivers allows a working voltage of up to ~1,200 VDC. It offers other important protection functions such as under-voltage lockout for each drivers and enable function.

Unique Features	Benefits
 Input side isolated from output drivers by 3.7-kVRMS isolation barrier 	 Give reliable
• Max. 45 ns Prop Delay & 5 ns Delay	 Efficient swi
Match	High Robus
 >= 200 V/ns dV/dt Immunity 	 Easier designation
< 5 ns part-to- part Skew	
 Vdd up to 20V 	Can work w
	Digital Contr
Other Features	
 Typical Source/Sink Current Capability up 	o to 4-A/8-A

- Programmable Input Logic
- Split Outputs for easier control
- Enable/IN+
- Different UVLO options: 5-V.8-V & 17-V

Market & Applications

- Isolated Converters in Offline AC-to-DC Power Supplies
- Motor Drive and DC-to-AC Solar Inverters
- HEV and EV On-Board chargers

- e operation and safety
- itching
- stness
- gn
- ith both Analog and rollers

Typical Application Schematic

- SOIC-8 NB for space saving
- x: UVLO level
- OPN: NCV51152xDR2G

NCP/NCV51752 – Isolated Gate Driver with Internal Chg Pump

Value Proposition

The NCP/V51752 driver is designed to primarily drive SiC MOSFET transistors. For the lowest possible conduction losses, the driver is capable to deliver the maximum allowable gate voltage to the SiC MOSFET device. For improved reliability, dV/dt immunity and even faster turnoff, the NCP/NCV51752 can utilize its on-board charge pump to generate a user selectable negative voltage rail.

Unique Features

- Input side isolated from output drivers by 5-kVRMS isolation barrier
- On-board regulated negative charge pump (options for -3V,-4V,-5V)
- Vdd up to 20V

Benefits

- Give reliable operation and safety
- Simplified BOM and no need for extra isolated DC/DC
- Can work with both Analog and Digital Controllers

Typical Application Schematic

Other Features

- High peak output current 4A/-8A
- Split sink/source outputs for easier dV/dt control
- Extended positive voltage rating for efficient SiC MOSFET operation during the conduction period
- Different UVLO options: 5-V,8-V,13-V & 17-V
- With or Without Dead-Time

Market & Applications

- Industrial Inverters, Motor drives
- High Performance PFC, AC/DC & DC/DC Converters
- HEV and EV Traction inverters

- SOIC-16 WB
- OPN : NCP51752xDWR2G NCV51752xDWR2G

NCP/NCV51755 – Isolated Full Features SiC MOSFET Gate Driver

Value Proposition

The NCP/V51755 driver is designed to primarily drive SiC MOSFET transistors. For the lowest possible conduction losses, the driver is capable to deliver the maximum allowable gate voltage to the SiC MOSFET device. For improved reliability, dV/dt immunity and even faster turnoff, the NCV51755 can utilize its on-board charge pump to generate a user selectable negative voltage rail.

Unique Features

- Input side isolated from output drivers by 5-kVRMS isolation barrier
- On-board regulated negative charge pump
- I2C to program driver parameters & Bi-directional communication
- Active Clamp

Benefits

- Give reliable operation and safety
- Simplified BOM and no need for extra DC/DC
- UVLO/DESAT/DRIVE/TSD, ...
- Fault reporting from driver to µCtrl
- For single ended/low freq SiC & IGBT

Other Features

- High peak output current 6A
- Split sink/source outputs for easier dV/dt control
- Extended positive voltage rating for efficient SiC MOSFET operation during the conduction period
- Thermal shutdown function and Temp Sense via NTC
- DESAT detection for short circuit protection

Market & Applications

- Industrial Inverters, Motor drives
- High Performance PFC, AC/DC & DC/DC Converters
- HEV and EV Traction inverters

SOIC-20 WB

 OPN : NCP51755DWR2G NCV51755DWR2G

Isolated Gate Drivers Value Proposition

Performance:

- 30% faster propagation delay and CMTI up to 150V/ns
- New GI structure with CMTI up to 200V/ns and tighter spec in 2021
- Integrated Negative Charge Pump & Fast fault detection

Reliability & Robustness:

- DESAT, Adj UVLO, TSD, Neg. Ch. Pump, I2C , FLT, Enable
- Embedded Vstress and IPT
- Low pulse-width distortion, Low part-part variation in delay times

Cost/Convenience:

- Simplified BOM due to high integration
- Elimination of buffers for most applications
- Dedicated features for each power switch type

Thank you – Stay Tuned

PCS Gate Driver Product Line Managers

Marc Barboni (<u>marc.barboni@onsemi.com</u>) Steve Yoo (<u>steve.yoo@onsemi.com</u>) for Asia region

Appendix D

Galvanic Isolated Techniques

Optical	Transformer	Capacitor	RF
 ADVANTAGES: Mature Technology (Oldest) Have improved over decades Have decreased LED aging over time Physical Barrier utilizing Dielectric Material Used by Top Companies like ON Semi, Avago and others No Turn ON/OFF spurries accillations 	 ADVANTAGES: No LED to wear out Used by many suppliers Consistent propagation delay vs. temperature Lowest current consumption Generally higher CMR than optical isolators Lower part-to-part skew than optical 	 ADVANTAGES: Physical barrier utilizing dielectric insulating material No LED to wear out Total immunity to magnetic fields Used by Texas Instruments & SiLabs 	 ADVANTAGES: Requires less input power than optoisolator technologies Lower propagation delay than optoisolators Total immunity to magnetic fields No LED to wear out
 DISADVANTAGES Relatively Large Drive Current for Primary LED side Unable to implement 'Exclusive OR' shoot through feature Relatively large variation in propagation delay with temperature change 	 DISADVANTAGES Some sensitivity to magnetic fields Possible oscillations going into Saturation and Desaturation modes 	DISADVANTAGES • Higher current consumption than transformer isolation	 DISADVANTAGES Higher current consumption than magnetic isolation Carrier frequency limits pulse position accuracy

Public Information

Isolation Technology Comparison

Attribute		OptoCoupler	On-chip Magnetic	On-chip Capacitive	Off-chip Capacitive	
Isolation		Epoxy/gel	SiO ₂ or equivalent	SiO ₂ or equivalent	Ceramic Substrate	
Signal coupling		Light (LED +diode)	Magnetic field	Electric field	Electric field	
Speed		Slow	Fast	Fast	Fast	
Distance Through Insulation (DTI)		>0.5 mm	~20 microns	~20 microns	>0.38 mm and >0.5 mm option	
CMTI		~25 kV/us	High CM impedance, trade-off between spacing and CMTI	Low CM impedance, trade- off between current and CMTI	100 V/ns minimum	
EMI EMC	Susceptibility	Non-issue – too slow	Design techniques	Signal level dependent	CMTI, SNR	
	Radiation	Non-issue (light transmission)	Design techniques	Signal level dependent	Adjustable carrier Differential signaling	
Temperature		Up to 110°C	Wide range (150 °C)	Wide range (150 °C)	Wide range (150 °C)	
Standards		UL1577, IEC60747-5- 5, C-UL, CQC etc	UL1577, VDE0884-11	UL1577, VDE0884-11	UL1577 (c prote VD 34-	
					Ruce	