

STPMIC1x and STPMIC25x Power management ICs

STPMICx comparison table and MPUs companions

STPMIC1x/25x are <u>highly integrated PMIC</u> aimed to support the complete STM32MP1x/2x MPUs family applications power management.

The STPMICs integrate advanced low power features controlled by a host processor via I²C and IO interface. The integrated regulators are designed to supply power to the application processor as well as to the external system peripherals such as: DDR, Flash memories and other system devices. The buck SMPS are optimized to provide an excellent transient response and output voltage precision for a wide range of operating conditions. Very high efficiency in full output load range is achieved thanks to low power (LPM) and high power (HPM) mode selection.

ST MPUs	PMIC companion chip	#DC/DC	#LDOs & #SW	REFDDR	Package [QFN]
STM32MP1x	<u>STPMIC1x</u>	4 Buck + 1 Boost	6 LDOs + 2 power SW	yes	5x6mm - 44L
STM32MP2x	STPMIC25	7 Buck Up to 2.5A	8 LDOs	yes	6,5x6,5mm - 56L

STPMIC1x overview

Highly integrated PMIC for microprocessor units

KEY APPLICATIONS

- Industrial [e.g. Controls, POS, M2M interfaces, predictive maintenance]
- Home Automation
- Networking
- Medical Monitoring

High level of integration – 14 power rails

- 4 Buck DC/DC converters
- 1 Boost DC/DC converter
- 6 LDOs
- 1 voltage reference
- 2 power switches
- Provides power to the microprocessor unit as well as to external peripherals such as USB, DDR, Flash memories and other external components

Application flexibility

- Large input voltage range: from 2.8 to 5.5 V.
- Compatible with 5 V wall adaptor, USB as well as Li-Ion/Li-Po batteries
- Full programmability via I2C

Package

• QFN 44L [5 x 6 x 0.8 mm]

STPMIC1x block diagram

Control	BUCK 1 [VDD – CORE]		LDO1 [Gen Purp]	
STATE MACHINE & RESET	0.725 to 1.5 V [1.5 A]		1.7 to 3.3 V/ 350 mA	
Dig IOs & Inter	BUCK 2 [V	DD – DDR]	LDO2 [SD / Gen Purp]	
I2C and registers	1.0 to 1.	5 V [1 A]	1.7 to 3.3 V/ 350 mA	
Start-up NVM prototyping and programming	BUCK 3 [VDD] 1.0 to 3.4 V [0.5 A]		LDO3 [Gen Purp / DDR-VTT] 1.7 to 3.3 V/100 mA – normal mode ±120 mA- Sink/Source 50 mA – bypass mode	
Power seq	BUCK 4 [Gen Purp]		LDO4 [USB-PHY]	
Prot ,auto turn-on,I2C add, lock	0.6 to 3.9 V [2 A]		3.3 V [50 mA]	
Reference & Monitoring	BOOST [VBUS]		LDO5 [Gen Purp/Flash mem]	
DDR V _{REF}	5.2 V [1.1 A]		1.7 to 3.9 V/ 350 mA	
POR, OCP, Short CP, TP, Watchdog	VBUSOTG_SW PWR_SW [0.5 A] [1.0 A]		LDO6 [Gen Purp/VDDA] 0.9 to 3.3 V/ 150 mA	

STPMIC1x versions

	Pre-prog [typ when STPN	rammed V _{IN} =5 V]	Pre-progr [typ w V _{IN} =ba	rammed vhen attery]	Not pre-pro [custom ap STPN	grammed plication]	Pre-prog [typ when STPN	prammed h V _{IN} =5 V]	Pre-prog [typ v V _{IN} =ba	rammed vhen attery]
	Default output Voltage [V]	Rank	Default output Voltage [V]	Rank	Default output Voltage [V]	Rank	Default output Voltage [V]	Rank	Default output Voltage [V]	Rank
LDO1	1.8	0	1.8	0	1.8	0	1.8	0	1.8	0
LDO2	1.8	0	2.9	2	1.8	0	1.8	0	1.8	0
LDO3	1.8	0	1.8	0	1.8	0	1.8	0	1.8	0
LDO4	3.3	3	3.3	3	3.3	0	3.3	3	3.3	3
LDO5	2.9	2	2.9	2	1.8	0	3.3	2	2.9	2
LDO6	1.0	0	1.0	0	1.0	0	1.0	0	1.0	0
REFDDR	0.55	0	0.55	0	0.55	0	0.55	0	0.55	0
BOOST	5.2	N/A	5.2	N/A	5.2	N/A	5.2	N/A	5.2	N/A
BUCK1	1.2	2	1.2	2	1.1	0	1.2	3	1.2	3
BUCK2	1.1	0	1.1	0	1.1	0	1.1	0	1.1	0
BUCK3	3.3	1	1.8	1	1.2	0	3.3	1	1.8	1
BUCK4	3.3	2	3.3	2	1.15	0	1.2	2	1.2	2

Rank= 0: rail not automatically turned ON Rank= 1: rail automatically turned ON after 7 ms Rank= 2: rail automatically turned ON after further 3 ms Rank= 3: rail automatically turned ON after further 3 ms

STPMIC1x | buck converters Main electrical characteristics

	BUCK 1	BUCK 2	BUCK 3	BUCK 4
Output Voltage	0.725 to 1.5 V	1 to 1.5 V	1 to 3.4 V	0.6 to 3.9 V
Output Voltage Steps	25 mV	50 mV	100 mV	25 mV [V _{OUT} from 0.6 to 1.3V] 50 mV [V _{OUT} from 1.3 to 1.5V] 100 mV [V _{OUT} from 1.5 to 3.9V]
Ι _{ΟυΤ}	1.5 A	1 A	0.5 A	2 A
100% DC	Y	Y	Y	Y
Control Method	Adaptive Constant ON-Time response , high accuracy [2 %]	[in HP mode] → 2 MHz in stead	dy state, FSW during transient al	lowing excellent
	Hysteretic [in LP mode]: low	Iq [5 - 20 uA], good transient res	sponse but lower accuracy [4 %]	

Boost converter for USB-VBUS Main electrical characteristics

O/P Voltage	V _{out} acc	Rated I _{out}	Bypass	Disch V _{out}	ОСР	OVP
5.2 V	± 3.5 %	1.1 A	Y	Y	Y	Y

LDOs / VREF Main electrical characteristics

- Input voltage: 2.8 V* to 5.5 V
- Output voltage / rated output current / default output voltage / usage:
 - LDO1: 1.7 to 3.3 V | 350 mA | OFF | General Purpose
 - LDO2: 1.7 to 3.3 V | 350 mA | OFF** or 2.9 V** | General Purpose [e.g. SD-card]
 - LDO3: 1.7 to 3.3 V | 120 mA | OFF
 - LDO4: 3.3 V | 50 mA | 3.3 V
 - LDO5: 1.7 to 3.9 V $\,$ | 350 mA | 2.9 V
 - LDO6: 0.9 to 3.3 V | 150 mA | OFF
 - VREF: VOUT2/2 | 5 mA | OFF
- I²C programming step: 100 mV
- Output voltage accuracy: +/- 2 %
- Programmable passive discharge resistor: inactive / active
- OCP fault flag

General Purpose [e.g. SD-card] DDR3 VTT or IpDDR2's VDD1 or General Purpose Dedicated for MPU USB PHY General Purpose [e.g. Flash memory / SD-CARD] General Purpose

| Dedicated for DDR reference voltage

STM32MP1x general purpose MPU Accelerating IoT and smart industry innovation

- Multicore Microprocessor running RTOS & Linux in parallel
- Suitable for industrial applications with 10-year longevity commitment
- Heterogeneous architecture [2 x Cortex-A7 + Cortex-M4 + GPU Cores]
- STM32Cube full ecosystem reuse on Arm Cortex-M4 core
 - Dual Cortex-A7 with free Linux Distribution: OpenSTLinux

STPMIC1 and STM32MP1

The All-In-One power management solution for STM32MP1 microprocessors

- Optimized power consumption
- BOM saving
- Smaller PCB footprint than discrete solution

STPMIC1 and STM32MP1

life.augmented

STPMIC1 IC vs. Discrete solutions Optimized features

	STPMIC1	Discrete solution
Monitor all power rails and provide OCP, OVP, OTP features	\checkmark	×
Power-up / Power-down sequence	\checkmark	×
Voltage accuracy / settling time needed by STM32MP1 series	\checkmark	Need an accurate component selection
Overall solution footprint (*)	\checkmark	×
BOM	\checkmark	×

* STPMIC1 PCB footprint ~300mm^2

Discrete solution ~ 750mm^2 | 5*DC/DC~600mm^2 | 6*LDO~150mm^2

End-markets

Home Automation Industrial Control **POS Terminals**

Networking

Medical Monitoring

STPMIC1x for mass market

A comprehensive set of tool for validating the design on your own

Minimum longevity commitment of 10 years

STPMIC1x takeaways

STPMIC1x & STM32MP1x	Optimized companion PMIC for ST's STM32MP1 heterogeneous multicore microprocessors family
Best PMIC for MPU pick	Satisfies the complex power demands of highly-integrated application-processor based systems
Controls & protections beyond just	Provides power-rail monitoring and protection, handles
delivering power	power-up/down sequencing, and meets accuracy
	and settling-time specifications
Optimized application footprint	Saves board space and BOM cost vs discrete solution

From STPMIC1x to STPMIC25

STPMIC1x \rightarrow 25

×	
STPMIC1	

12 RAILS:

- 5 DC-DC
- 6 LDO
- 1 Vref DDR

- Higher Output Power Capability
- Improved o/p voltage Ripple/Noise
- Improved Transient Performances
- Increased DC/DC Efficiency
- Increased Output Rails number
- Increased Safety Management

STPMIC STPMIC25: highly integrated PMIC for STM32MP2x

Easy-to-use perfect companion to facilitate complex application design

KEY APPLICATIONS

- Industrial [e.g. Controls, POS, M2M interfaces, predictive maintenance]
- Factory Automation / Home Automation
- Networking
- Healthcare Monitoring

High Integration enabling cost effective solutions

- 7 Buck DC/DC converters
- 7 LDOs fixed and adjustable
- 1 LDO for DDR memory
 - 1 voltage reference
- 3 power control pins for Power control management
- Provides power to the microprocessor unit as well as to external peripherals such as DDR, Flash memories and others

Application flexibility thanks to the scalable electrical characteristics

- Large input voltage range: from 2.8 to 5.5 V
- Compatible with 5 V wall adaptor, USB as well as Li-Ion/Li-Po batteries
- Full programmability via I²C

Small package for space constraint applications

QFN 56L, 6.5x6.5 mm

life.auamented

7 adjustable step-down (Buck) converters

- 2 MHz with adaptive COT
- LP and HP Mode
- Dynamic Voltage Scaling
- Output discharge programmable (slow and fast)
- Programmable OCP protection with advanced safety management

5 adjustable LDOs

- Softstart circuit
- Output discharge programmable (slow and fast)
- Programmable OCP protection with advanced safety management

2 fixed LDOs

- 3.3V for USB PHY
- 1.8V fixed for VDDA

1 LDO for DDR memory

- DDR3/DDR4 termination with sink/source capability
- Bypass mode for lpDDR

1 Reference voltage for DDR memory

NVM

- STPMIC25A/B versions with different voltages & rank
- · Output voltage rails fully customizable according to specific ranks
- Customizable safety management

Thank you

© STMicroelectronics - All rights reserved. The STMicroelectronics corporate logo is a registered trademark of the STMicroelectronics group of companies. All other names are the property of their respective owners.

