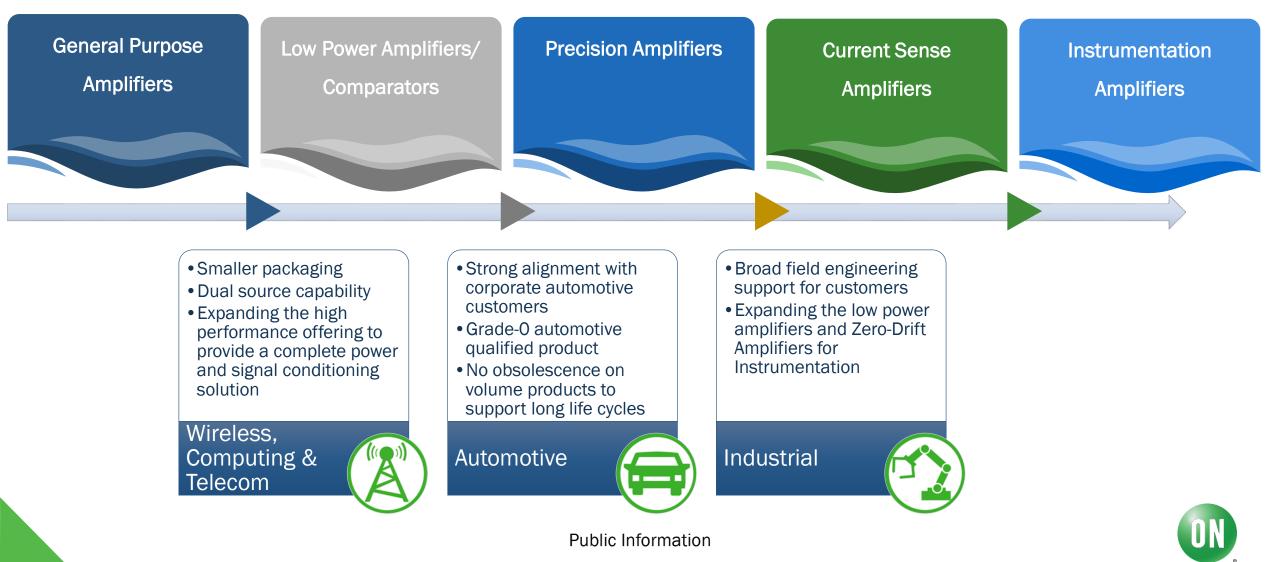
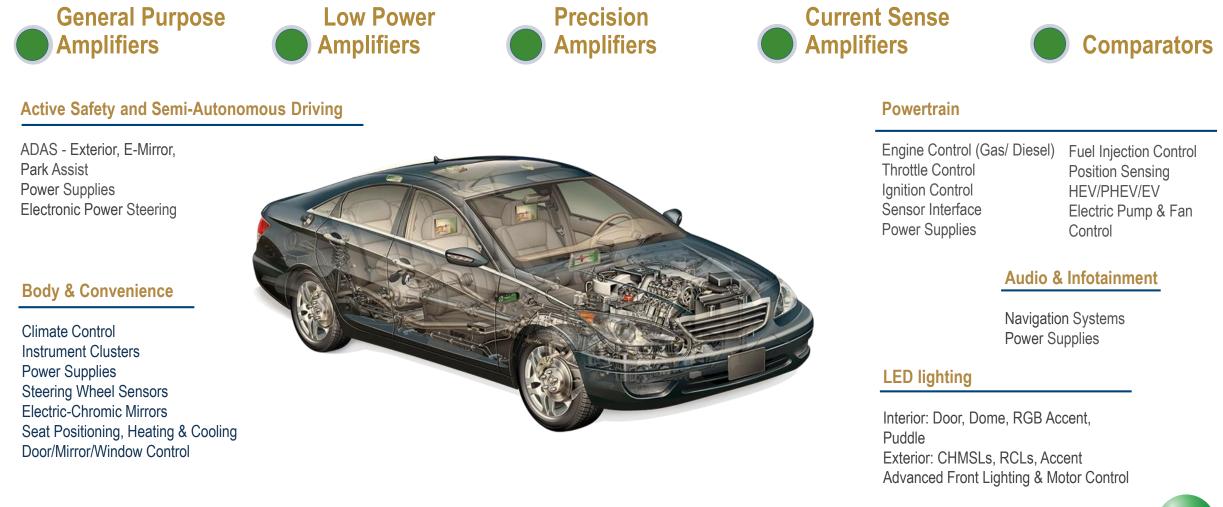
www.onsemi.com

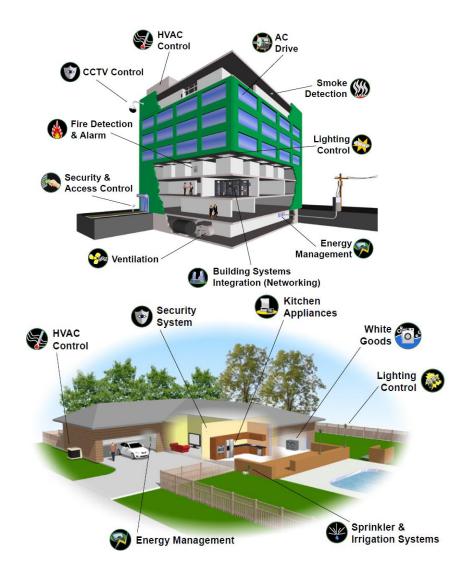

Op Amps, Current Sense Amps and Comparators

September 2020

UN.


Vision – Amplifiers

Building towards a leadership position in amplifiers by providing low power, high performance solutions for all power supply and sensor signal conditioning needs.


Automotive Applications

Strong and growing portfolio of products that provide low power, high performance solutions for all power supply and sensor signal conditioning needs for Automotive markets.

Industrial Applications

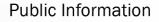
White Goods

- Washing Machine (Low Side Current Sense)
- Refrigerator (Low Side Current Sense & 12V Motor Driver)
- Dishwasher (Low Side Current Sense & 12V Motor Driver)
- Outside Air Conditioner (Low Side Current Sense)
- Air Purifier (Precision Signal Conditioning)
- Vacuum Cleaner (Low Side Current Sense)
- Water Heater (Various Signal Conditioning)

Building Automation

- Smoke Detector (Various Signal Conditioning)
- Flow Meter (Various Signal Conditioning)
- Thermostat Control (Various Signal Conditioning)
- Smart Meter (Low Side Current Sense)
- LED Lighting

Process Automation & Measurement


- AC Induction Motors (Low Side Current Sense)
- Brush DC Motors (Low Side Current Sense)
- Industrial Weigh Scales (Precision Signal Conditioning)
- Digital Multi-meter (Precision Signal Conditioning)

Medical

- Blood Glucose Meter (Precision Signal Conditioning)
- Blood Pressure Monitor (Precision Signal Conditioning)

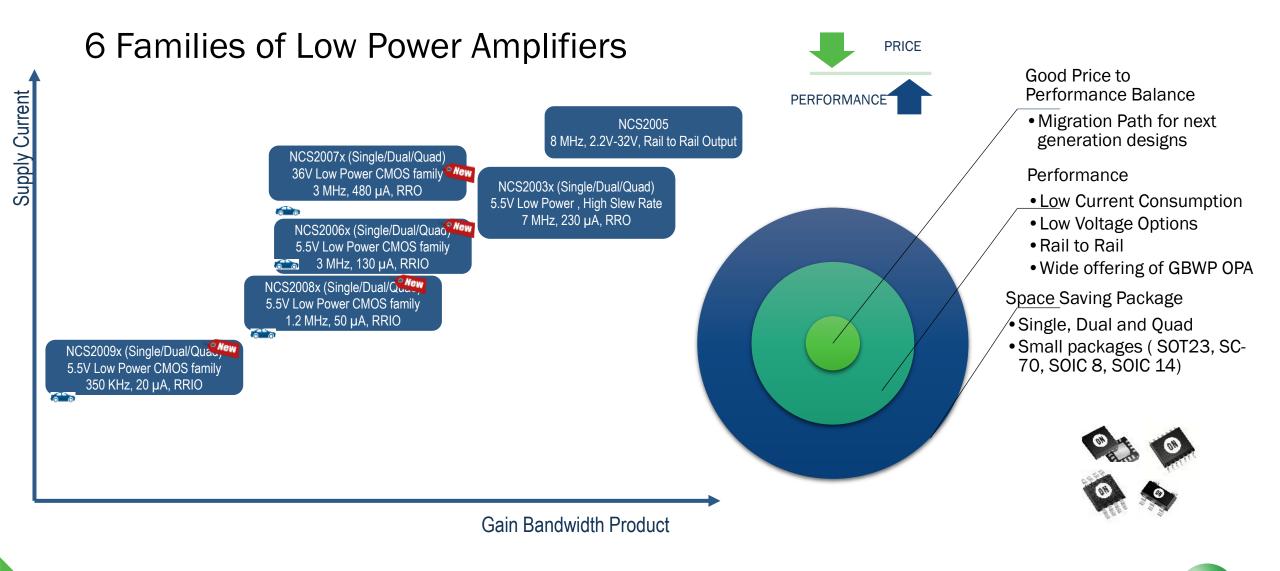
General Purpose Amplifiers

www.onsemi.com

Standard Op Amps

ON Semiconductor Industry Standard Op Amps With the Best Price to Performance Ratio

General Pu	irpose	Compara	tors											Volume
Device	Ch.	Min.V _s (V)	Max.V _s (V)	l _Q (mA)	t _{RESP (H-L)} (µs)	Max. V _{os} (mV)	Output Ty	rpe	Package	(S)	Manufacturi		Ifacturing	
LM2903	2	2	36	0.4	1.5	15	Open Colle	ctor	SO-8, MIC	708			More than 1B Units per Year	
LM293	2	2	36	0.4	1.3	9	Open Colle	ctor	SO-8, MIC	R08				
LM393	2	2	36	0.4	1.3	9	Open Colle	ctor So	D-8, MICR08	, PDIP-8				
LM239/339	4	3	36	0.8	1.3	5	General Pu	irpose Op-	Amps					
LM2901 TS391,	4	3	36	0.8	1.3	7	Device	Ch.	Min.V _s (V)	Max.V _s (V)	l _o /Ch. (mA)	GBW (MHz)	Max. V _{os} (mV)	Package(s)
TL331	1	2	36	0.5	0.35	9	NCV952	2	2.7	26	0.75	3.5	8	TSSOP-8
LM211	1	5	30	1.2	0.2	0.7	MC3320x	1,2,4	1.8	12	0.9	2.2	6	SO-8, MICRO8, SO-14, TSSOP- 14
LM311	1	5	30	1.2	0.2	0.2	LM321	1	3	32	0.75	1	9	S0T-23-5
							LM224	4	3	32	1.2	1	5	SO-14, TSSOP-14
							LM258	2	3	32	0.75	1	5	SO-8, MICRO-8
							LM2902/V	4	3	32	1.2	1	7	SO-14, TSSOP-14
		Lie	նի Ոս	ality	,		LM2904/V	2	3	32	0.75	1	7	SO-8, MICRO-8
		3111	sii Qu	lancy			LM324,A	4	3	32	1.2	1	3	SO-14, TSSOP-14
		Man	ufac	turin	ø		LM358, A	2	3	32	0.75	1	7	SO-8, MICRO-8
	High Quality Manufacturing							1	1.8	10	1.0	1	9	S0T-23-5
		Indus	try leading	ppb rates			LM301A	1	3	18	1.2	1	7.5	S0-8
							LM201A	1	3	18	1.2	1	2	SO-8



www.onsemi.com

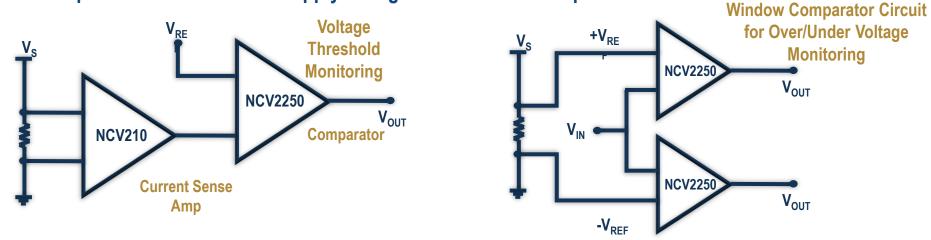
Low Power Amplifier & Comparators

Low Power Op Amp (Less than 1mA current consumption)

www.onsemi.com/opamps

Low Power Products

Parameter	NCS(V)20091/2	NCS(V)20081/2	NCS(V)20061/2	NCS(V)20071/2/4					
Operating Temperature Range (°C)	-40 to +125	-40 to +125	-40 to +125	-40 to +125					
Supply Current (µA)	29	50	140	405					
GBWP (MHz)	0.35	1.2	3	3					
Offset Voltage (max.)	4mV	ЗmV	3mV	4mV					
Slew rate (V/µs)	0.15	0.5	1.5	2.8					
Rail-to-Rail Swing	Input /Output	Input /Output	Input /Output	Out					
Operating Voltage Range (V)	1.8 -5.5	1.8 -5.5	1.8 -5.5	2.7 - 36V					
Input Bias Current (pA)	1	1	1	5					
Packages	Dua	gle – SC70, TSOP-5, UDFN I – Micro8, TSSOP-8, SOIC .4, SOP-14, TSSOP-14 (in	-8	Single: TSOP-5, SOT553-5 Dual: Micro8, SOIC-8, TSSOP-8 Quad: SOIC-14, TSSOP-14					
	NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable								
Ideal Applications		er Circuits, Buffering, Sens sion Amplifier like the <u>NCS</u>		Amplification, ain stage precision amplification					



www.onsemi.com/opamps

Comparators

ON Semiconductor comparator portfolio provides for solutions with low power consumptions and fast response times. Often times amplifiers are combined with comparators to monitor the supply voltage rails or sensor outputs.

Device	Channels	Vs Min (V)	Vs Max (V)	ICC Typ (mA)	tres Typ (ns)	VOS Max (mV)	Temp Range (C)	Package Type
TL331V	1	2	36	0.5	400	9	-40 to 125	TSOP5
NCV2901	4	3	36	1	1300	7	-40 to 150	SOIC14, TSSOP14
NCV2903	2	2	36	0.7	1500	7	-40 to 125	SOIC8, Micro8
NCV2200	1	0.85	6	0.01	1100	5	-40 to 125	SOT235, SC705
NCV2250/2 New	1	1.8	5.5	0.15	50	6	-40 to 125	SOT235, SC705
NCV2393	2	2.7	16	0.006	1000	14	-40 to 125	SOIC8
NCV331	1	2.7	5	0.06	800	9	-40 to 125	TSOP5

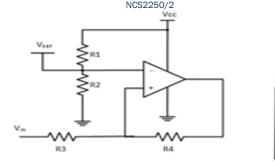
Value Proposition

The NCS(V)2250/52 series of low voltage comparators feature fast response time and common mode input voltage range extending beyond the rails. These single channel devices are available with complementary push-pull output in the NCS2250 or with open drain output in the NCS2252. These single channel comparators are available in space saving SOT23-5 and SC70-5 packages. Automotive qualified devices are also available, denoted by the NCV prefix.

Unique Features

- Low Propagation delay: 50ns
- Supply Voltage: 1.8V to 5.5V
- Supply Current: 150 µA Typical at 5 V Supply
- Temperature Range: -40 to +125C

Benefits


- Fast response time and power consumption are generally trade-offs. The NCS2250/52 provides a lower current consumption and is optimized for low voltage operation
- Common-Mode Voltage range extends to 200mV beyond rails providing a wider dynamic range of operation

Market & Applications

- Smart Phone, Cell Phones
- Automotive
- Lighting
- Windowed Comparators
- Portable and battery-powered systems
- Power supplies

- Voltage Threshold Detector
- Zero-crossing Detectors
- High-speed Sampling Circuits
- Logic Level Shifting / Translation
- Clock and Data Signal Restoration

Typical Application diagram

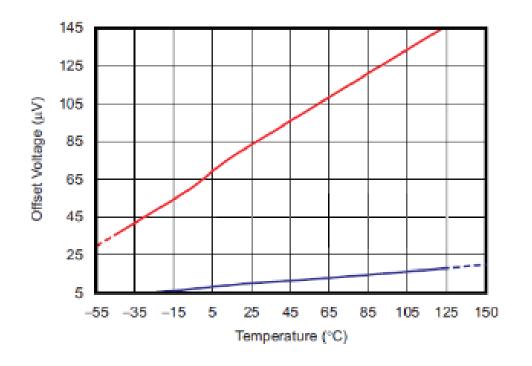
Packages/ Pin Outs

	5 VDD
IN+ 3	4 IN-
	1

Automotive	Output	OPN	Package
	Push-Pull	NCS2250SQ2T2G	SC-88A (SC70-5)
No	Fusii-Fuii	NCS2250SN2T1G	TSOP-5 (SOT23-5)
NO	Open Drain	NCS2252SQ2T2G	SC-88A (SC70-5)
	Open Drain	NCS2252SN2T1G	TSOP-5 (SOT23-5)
	Push-Pull	NCV2250SQ2T2G	SC-88A (SC70-5)
Yes	Fusii-Fuii	NCV2250SN2T1G	TSOP-5 (SOT23-5)
res	Open Drain	NCV2252SQ2T2G	SC-88A (SC70-5)
	Open Drain	NCV2252SN2T1G	TSOP-5 (SOT23-5)

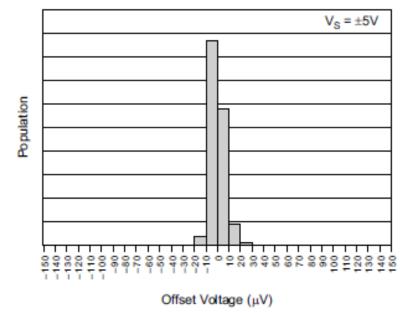
http://www.onsemi.com/NCV2250

Precision Amplifiers



www.onsemi.com

Precision Architectures – Low Input Offset Voltage


Zero-Drift Architecture

- Internally calibrates the offsets through a feedback loop to provide low error at the output
- Enables offsets as low as 10uV at lower speeds

Voltage Offset E-Trim

- Low Offset voltage through internal memory
- Accommodates for offset induced due to package stress by trimming after package

OFFSET VOLTAGE PRODUCTION DISTRIBUTION

C

High Precision Op Amps

10

Product	#	VS Min (V)	VS Max (V)	lq Typ (mA)	VOS Max (mV)	GBW Typ (MHz)	SR Typ (V/µs)	ΔVOS/ΔT (μV/C)	Temperature Range (°C)	Package Type
NCS2325	2	1.8	5.5	0.021	0.05	0.27	0.1	14	-40 to 125	Micro8™ SOIC-8
NCS2333	2	1.8	5.5	0.017 0.021	0.03	0.27	0.1	0.04	-40 to 125	Micro8™ SOIC-8 UDFN-8
NCS4325	4	1.8	5.5	0.021	0.05	0.27	0.1	14	-40 to 125	SOIC-14
NCS325	1	1.8	5.5	0.021	0.05	0.35	0.16	14	-40 to 125	S0T-23-5
<u>NCS/V333A</u>	1	1.8	5.5	0.021 0.028	0.01 0.03	0.35	0.1	0.03	-40 to 125	SC-70-5 SOT-23-5
NCS/V4333	4	1.8	5.5	0.021	0.01 0.03	0.35	0.015 0.15	0.095	-40 to 125	SOIC-14
<u>NCS/V2187x</u>	1/ 2/ 4	1.8	5.5	40	45	0.35	0.1	0.4	-40 to 125	TSOP-5, SC705, UDFN8, Micro8, SOIC-14
NCS21911/2	1	4	36	0.475	0.025	2	1.6	0.02	-40 to 125	SOT-23-5, Micro8™ SOIC-8
0 NCS20166	1	3	5.5	1.2	1.05	10	0.5	5	-40 to 125	SOT-23-5

Available: NCS(V)20166

Value Proposition

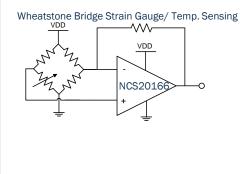
 The NCS(V)20166 is a single Op Amp featuring low initial input offset voltage at 10 MHz and operates over a wide supply range from 3V to 5.5V., making them ideal for portable and low power applications. The single channel devices are offered in SOT23-5 (TSOP-5). All versions are specified for operation from -40° C to $+125^{\circ}$ C.

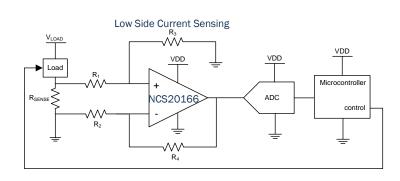
Unique Features

Gain Bandwidth: 10 MHz typ.

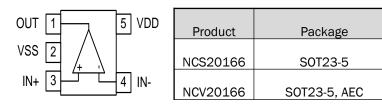
- Supply Voltage: 3V to 5.5 V
- Input Offset Voltage: Typ 50 Max 550 µV
- Supply Current/ Channel: 1.25mA (Max)
- Rail-to-Rail Input and Output

Benefits


- Input offset voltage (Vos) is the error at input of the amplifier. It drifts over both time and temperature, unless calibrated in the op amp.
- The NCS20166 offer a low initial offset voltage which makes a good cost to performance ratio for the applications that need the additional accuracy over the general purpose amplifiers


Market & Applications

- Industrial Automation
- Medical
- Networking and Telecom


- Wide GBWP amplifiers offer significant advantage for applications where the microcontroller would need faster slewing Op Amp. Typically, when the systems depend on feedback from the sensor, the rest of the signal chain consumes current while waiting on response from the Op Amp.
- NCS20166 offers a slew rate of 6V/ µs which contributes to faster signal response, and could translate to saving the overall power consumption for system
 - Sensors
 - Power Supplies
 - Automotive

Typical Application diagram

Packages/ Pin Outs

 NCV Prefix for Automotive and Other Applications **Requiring Unique Site and Control Change** Requirements; AEC-Q100 Qualified and PPAP Capable

Available Now: NCS(V)21911/2. In Dev: NCS21914 (Quad)

Value Proposition

The NCS(V)21911 high precision op amp features low input offset voltage and low offset drift over time and temperature. This low quiescent current, low noise amplifier has rail-to-rail output swing within 15 mV of the rails. This device operate over a wide supply range from 4V to 36V. It is single channel device, that is offered in space saving packages. All versions are specified for operation from -40°C to +125°C.

Unique Features

- Gain Bandwidth: 2 MHz typical •
- Input Offset Voltage: 40 µV max
- Offset Drift Over Temp: 0.085 µV/°C max •
- Unity Gain Stable

Benefits

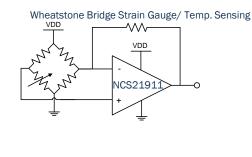
Input offset voltage (Vos) is the error at input of the amplifier. It drifts over both time and temperature, unless calibrated in the op amp.

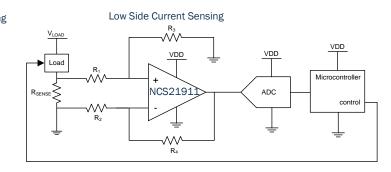
 The NCS2191x's zero drift architecture calibrates the Vos to provide a low error over time and temperature to address for the application sensitive to the drift

Op amps have varying amounts of EMI susceptibility. Semiconductor junctions can pick up and rectify EMI signals, creating an EMI-induced voltage offset at the output, adding another component to the total error. Input pins are the most sensitive to EMI.

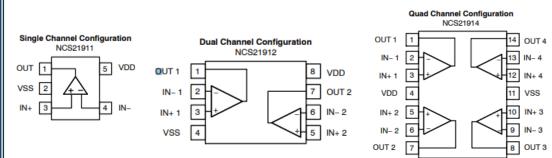
Quiescent Current: 600 µA max

Supply Voltage: 4 V to 36 V


Rail-to-Rail Output


Integrated EMI filters

٠


 The NCS2191x integrates low-pass filters to decrease its sensitivity to EMI.


Typical Application diagram

Packages/ Pin Outs

Market & Applications

- Industrial Automation
- Medical
- Networking and Telecom

Availabe: NCS(V)21871/2/4

Value Proposition

This family of single, dual and quad zero-drift amplifier is provides high accuracy performance due to the continuous calibration of the input offset voltage over time and temperature. Their performance and features are comparable, if not better to all the competitors.

Unique Features

- Gain-Bandwidth Product: 270 to 350 kHz
- Low Supply Current/ Channel: 17 μA (typ., at 3.3V)
- Low Offset Voltage: 45 µV max
- Low Offset Drift: 0.4 µV/°C max
- Wide Supply Range: 1.8V to 5.5 V
- Wide Temperature Range: -40°C to +125°C
- AEC- Q100 Qualified (NCV333A) are available

Benefits

Offset error is inherent to all amplifiers. This error tends to increase with time and • temperature. Op amps amplify both the signal and the error. Among the various architectures employed to lower the offset, Zero-Drift is one such, which provides exceptionally low offset and drift, resulting in high accuracy sensor measurements and amplification, especially when the input of the op amp is a small signal.

Market & Applications

- Thermal Management Circuits
- Transducer Applications
- Current Sensing in Motor Control, Lighting etc.
- Power Supplies
- Battery Powered/ Portable Applications
- Electronic Scales, Wheatstone Bridges
- Instrumentation in Medical and Industrial

- Automotive
- Telecom
- Industrial
- Computing
- Medical

Typical Application diagram

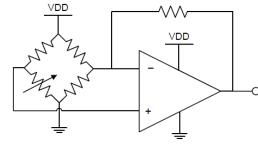
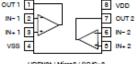


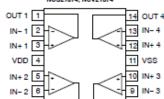
Figure 18. Bridge Circuit Amplification

Packages/ Pin Outs

UDFN8 MSOP-8 MU SUFFIX DM SUFEX CASE 517AV CASE 8464-0



SOIC-8 SOIC-14 D SUFFD D SUFFIX CASE 751

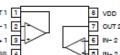

> FCT SUFFD CASE 971BE

CASE 751A

can be floated or connected to VSS

Public Information

OUT 1

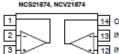

VSS 2

5 VDD

IDENR4 Micro8 / SOIC-8

*The exposed pad of the UDFN8 package

OUT 2 7


5 VDD

ОЛ

Single Channel Configuratio

VSS 2

NCS21871, NCV21871

(3 **(C1)**

(A3)

(B2)

ECP5 (Top View

(A1)

OUT

VSS

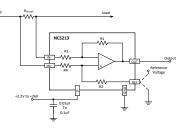
VDD

Current Sensing Solutions

www.onsemi.com

Current Sensing Amplifiers

Operational Amplifiers	Difference Amplifiers	Instrumentation Amplifiers	Current Sense Amplifiers
		$-INO$ R_{1} R_{2} R_{3} R_{4} R_{5} R_{3} R_{4} R_{4} R_{4} R_{4} R_{4} R_{4} R_{4} R_{4} R_{5} R_{4} R_{4} R_{5}	
Low Side Current Sensing	High/ Low Side Sensing	Low Side Current Sensing	High/ Low Side Current Sensing
$V_{CM} = 0$	V _{CM} > Vs	0< V _{CM} <vs< td=""><td>V_{CM} > Vs</td></vs<>	V _{CM} > Vs
- Low Cost - External resistor matching is a big concern	 Limited to gain of 1 Old Technology CMV dependent on Vs 	- High CMRR - High Performance - CMV dependent on Vs	- Wide Variety of Gain Options - CMV independent of Supply



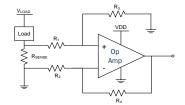
Current Sense Amplifiers (Integrated Resistors)

Monitoring the current consumption provide critical information that can assist in the safety and diagnostic functions in a system. ON Semiconductors offers current sense amplifiers that integrate external resistors to offer a higher accuracy, smaller solution, in addition to the cost effective stand alone Op Amps.

Current Sensing Amplifier with Int. Gain Setting Resistors

Zero Drift Current Sense Amplifiers (Integrated and Precision performance)											
Device	Ch.	Min.V _s (V)	Max.V _s (V)	Input CM Range (V)	BW (KHz)	Max. V _{os} (µV)	V _{os} Drift (µV/ºC)	Gain Error (%)	CMRR (dB)	Package(s)	Features
NCS(V)21xR ^{NEW}	1	2.2	26	2.2 to 26	25- 90	as low as 35	0.5	1	105	SC70, UQFN	Low V _{os} and drift over time and temp.
NCS199AxR*NEW	1	2.2	26	2.2 to 26	40-90	150	0.5	1.5	100	SC70, UQFN	Low V _{OS} and drift over time and temp.

Targeting Direct p2p Replacement of TI's INA210/211/213/214/199 Product



Amplifiers for Low Side Current Sensing (external resistors)

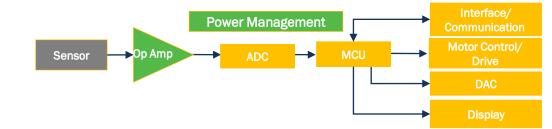
Monitoring the current consumption provide critical information that can assist in the safety and diagnostic functions in a system. ON Semiconductors offers current sense amplifiers that integrate external resistors to offer a higher accuracy, smaller solution, in addition to the cost effective stand alone Op Amps.

Current Sensing with Ext. Gain Setting Resistors

Low Voltage Current Sensing using Zero Drift Op-Amps (High Precision)

Device	Ch.	Min.V _s (V)	Max.V _s (V)	l _q /Ch (μΑ)	GBW (KHz)	Max. V _{os} (µV)	V _{os} Drift (µV/ºC)	CMRR (dB)	е _{р-р} (µVpp)	Package(s)	Features
NCS(V)333A NCS(V)2333/ ^{NEW} NCS(V)4333 ^{NEW}	1,2,4	1.8	5.5	21	350	10	0.03	120	1	SOT-23-5, SC70-5, DFN8, MICRO-8, SO-8, SO-14	Low V _{OS}
NCS(V)21911/2/4	1,2*,4*	4	36	475	2000	25	0.02	130	22	SOT-23-5	Higher GBW, Low Vos

Low Voltage Current Sensing Solutions (Cost Effective)


Device	Ch.	Min.V _s (V)	Max.V _S (V)	l _ϱ /Ch. (μΑ)	GBW (MHz)	Max. V _{os} (mV)	V _{os} Drift (µV/⁰C)	I _B (nA)	CMRR (dB)	Rail to Rail	Package(s)	Features
NCS(V)2009x NEW	1,2	1.8	5.5	20	0.35	4	1	0.001	80	I/O	SOT23-5. SC-70-5, UDFN-6, MICRO-8, TSSOP-8, SO-8,	Low I _Q &V _{OS}
NCS(V)2008x NEW	1,2	1.8	5.5	50	1.2	4	1	0.001	80	I/O	SOT23-5. SC-70-5, UDFN-6, MICRO-8, TSSOP-8, SO-8,	Low I _Q &V _{OS}
NCS(V)2006x NEW	1,2	1.8	5.5	140	3	4	1	0.001	80	I/O	SOT23-5. SC-70-5, UDFN-6, MICRO-8, TSSOP-8, SO-8,	Low I _Q &V _{OS}
NCS(V)2003x NEW	1,2,4	1.7	5.5	275	7	5	2	0.001	80	Output	SOT23-5, SOT553, SOT23-5, SOT553, Micro-8, SOIC-8, TSSOP-8,	Fast Slew Rate, Low V _{S &} I _B
NCS(V)2007x ^{NEW}	1,2,4	2.7	36	400	3	4	2	0.005	110	Output	SOT-553, TSOP-5, Micro8, SO-8, TSSOP-8,	Wide V _S range

* NCS21912/4 Samples Available

Expanding the Portfolio with New Op Amps

Addressing signal conditioning needs in wide variety of applications

UDLow Power Op Amps

P/N	Product Description
NCS2005	1.3mA , 8.5MHz, RRIO , 6mV Max V _{IO} , V _S =2.2V – 32V
NCS2006x	140μA , 3MHz, RRIO, 3mV Max V ₁₀ , V _s =1.8V – 5.5V
NCS2007x	400μA, 3MHz, RRO, 3mV Max V ₁₀ , V _s =2.7V – 36V
NCS2008x	50μA , 1MHz, RRIO, 3mV Max V ₁₀ , V _s =1.8V – 5.5V
NCS2009x	20μA , 350KHz, RRIO, 3mV Max V _{IO} , V _S =1.8V – 5.5V
LM7301	600μA, 4MHz, RRIO, 6mV Max V ₁₀ , V _s =1.8V – 32V
NCV952	750μA, 3.5MHz, RRIO, 8mV Max V _{IO} , V _S =2.7V – 26V

High Slew Rate Op-Amps

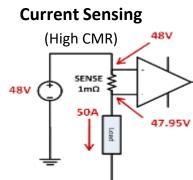
P/N	Product Description
NCS2003x	8.5V/μs SR, 7MHz, RRO, 20nV/rtHz Noise, V _s =1.8V – 5.5V
NCS20166 ^{NEW}	6V/μs SR, 10MHz, RRO, 10nV/rtHz Noise, V _s =3V – 5.5V

Input⁻ square

wave

Low Power Comparators

P/N	Product Description
NCS3402	18μs tPHL, 0.47μA Icc, Open Drain, Dual, V _s =2.5V – 16V
TS391	0.35µs tPHL, 0.5mA Icc, Open Drain, Single, V _s =2V – 36V
TS393	0.8μs tPHL, 9μA Icc, Open Drain, Dual, V _s =2.7V – 16V
NCS2202A	0.5μs tPHL, 9μA Icc, Open Drain, Single, RRIO, V _S =0.85V – 6V
NCS2250	74ns tPHL , 80μA Icc, Push Pull, Single, RRIO, V _s =1.8V – 5.5V


Precision/Zero Drift Op-Amps

P/N	Product Description
NCS2187x ^{NEW}	45μV Max V_{IO}, 0.4μV/°C , 270-350 kHz, RRIO, V _S =1.8V – 5.5V
NCSx333	30μV Max V₁₀, 0.070μV/°C , 350 kHz, RRIO, V _s =1.8V – 5.5V
NCS21911 ^{NEW}	25μV Max V ₁₀ , 0.085μV/°C, 2 MHz, RRO, V _s =4.0V – 36V

Current Sense Amplifiers with Wide CMV

P/N	Product Description
NCS21xR ^{NEW}	V_{CMR} = -0.3V to 26V, Gain Error = 1.0%, 140dB CMRR, 35 μ V V _{IO}
NCS199AxR ^{NEW}	V _{CMR} = -0.3V to 26V, Gain Error = 1.5%, 120dB CMRR, 150μV V _{IO}

High Side

Advantages

- Detects load shorts
- No ground path resistance

Disadvantages

• More expensive than low side sensing (primarily due to high voltage process)

Thank You

