High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator ## NCID9211 / NCIV9211 #### Description The NCID(V)9211 is a galvanically isolated full duplex, bi-directional, high-speed dual-channel digital isolator with output enable. This device supports isolated communications thereby allowing digital signals to communicate between systems without conducting ground loops or hazardous voltages. It utilizes ON Semiconductor patented galvanic off-chip capacitor isolation technology and optimized IC design to achieve high insulation and high noise immunity, characterized by high common mode rejection and power supply rejection specifications. The thick ceramic substrate yields capacitors with ~25 times the thickness of thin film on-chip capacitors and coreless transformers. The result is a combination of the electrical performance benefits that digital isolators offer with the safety reliability of a >0.5 mm insulator barrier similar to what has historically been offered by optocouplers. The device is housed in a 16-pin wide body small outline package. #### **Features** - Off-Chip Capacitive Isolation to Achieve Reliable High Voltage Insulation - ♦ DTI (Distance Through Insulation): \geq 0.5 mm - ♦ Maximum Working Insulation Voltage: 2000 V_{peak} - Full Duplex, Bi-directional Communication - 100 KV/µs Minimum Common Mode Rejection - High Speed: - ◆ 50 Mbit/s Data Rate (NRZ) - 25 ns Maximum Propagation Delay - 10 ns Maximum Pulse Width Distortion - 8 mm Creepage and Clearance Distance to Achieve Reliable High Voltage Insulation. - Specifications Guaranteed Over 2.5 V to 5.5 V Supply Voltage and -40°C to 125°C Extended Temperature Range - AEC-Q100 qualified: NCIV9211 (Pending) - Over Temperature Detection - Output Enable Function (Primary and Secondary Side) - Safety and Regulatory Approvals (Pending) - ◆ UL1577, 5000 V_{RMS} for 1 Minute - ◆ DIN VDE V 0884-11 #### **Typical Applications** • Isolated PWM Control - Industrial Fieldbus Communications - Microprocessor System Interface (SPI, I²C, etc.) - Programmable Logic Control - Isolated Data Acquisition System - Voltage Level Translator ## ON Semiconductor® www.onsemi.com SOIC16 W CASE 751EN #### MARKING DIAGRAM A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week 9211 = Specific Device Code ## ORDERING INFORMATION See detailed ordering and shipping information on page 10 of this data sheet ## **PIN CONFIGURATION** Figure 1. Pin and Channel Configuration ## **BLOCK DIAGRAM** Figure 2. Functional Block Diagram ## **PIN DEFINITIONS** | Pin No. | Name | Description | | |---------|------------------|------------------------------|--| | 1 | V_{DD1} | Power Supply, Primary Side | | | 2 | GND1 | Ground, Primary Side | | | 3 | NC | No Connect | | | 4 | EN1 | Enable, Primary Side | | | 5 | V _{OA} | Output, Channel A | | | 6 | V _{INB} | Input, Channel B | | | 7 | NC | No Connect | | | 8 | GND1 | Ground, Primary Side | | | 9 | GND2 | Ground, Secondary Side | | | 10 | NC | No Connect | | | 11 | V _{OB} | Output, Channel B | | | 12 | V _{INA} | Input, Channel A | | | 13 | EN2 | Enable, Secondary Side | | | 14 | NC | No Connect | | | 15 | GND2 | Ground, Secondary Side | | | 16 | V_{DD2} | Power Supply, Secondary Side | | #### TRUTH TABLE (Note 1) | | , , | | | | | |------------------|-----------------|------------------|---------------|-----------------------|--| | V _{INX} | EN _X | V _{DDI} | V_{DDO} | V _{OX} | Comment | | Н | H / NC | Power Up | Power Up | Н | Normal Operation | | L | H / NC | Power Up | Power Up | L | Normal Operation | | Х | L | Power Up | Power Up | Hi–Z | | | Х | H/NC | Power
Down | Power Up | L | Default low; V_{OX} return to normal operation when V_{DDI} change to Power Up | | Χ | H/NC | Power Up | Power
Down | Undetermined (Note 2) | V_{OX} return to normal operation when V_{DDO} change to Power Up | V_{INX} = Input signal of a given channel (A or B). EN_X = Enable pin for primary or secondary side (1 or 2). V_{OX} = Output signal of a given channel (A or B). V_{DDI} = Input-side V_{DD}. V_{DDO} = Output-side V_{DD}. X = Irrelevant. H = High level. L = Low level. NC = No Connection. The outputs are in undetermined state when V_{DDO} < V_{UVLO}. #### **SAFETY AND INSULATION RATINGS** As per DIN VDE V 0884–11, this digital isolator is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings must be ensured by means of protective circuits. | Symbol | Parameter | | | Тур. | Max. | Units | |-----------------------|---|-------------------------|-----------------|-----------|------|-------------------| | | Installation Classifications per DIN VDE 0110/1.89 Table 1 | < 150 V _{RMS} | | I–IV | | | | | Rated Mains Voltage | < 300 V _{RMS} | | I–IV | | | | | | < 450 V _{RMS} | | I–IV | | | | | | < 600 V _{RMS} | | I–IV | | | | | | < 1000 V _{RMS} | | I–III | | | | | Climatic Classification | | | 40/100/21 | | | | | Pollution Degree (DIN VDE 0110/1.89) | | | 2 | | | | CTI | Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1) | | 600 | | | | | V_{PR} | Input–to–Output Test Voltage, Method b, V_{IORM} x 1.875 = V_{PR} , 100% Production Test with t_m = 1 s, Partial Discharge < 5 pC | | | | | V _{peak} | | | Input–to–Output Test Voltage, Method a, V_{IORM} x 1.6 = V_{PR} , Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC | | | | | V _{peak} | | V _{IORM} | Maximum Working Insulation Voltage | | 2000 | | | V _{peak} | | V _{IOTM} | Highest Allowable Over Voltage | | 8000 | | | V_{peak} | | | External Creepage | | 8.0 | | | mm | | | External Clearance | | 8.0 | | | mm | | | Insulation Thickness | | 0.50 | | | mm | | T _{Case} | Safety Limit Values – Maximum Values in Failure;
Case Temperature | | 150 | | | °C | | P _{S,INPUT} | Safety Limit Values – Maximum Values in Failure;
Input Power | | 100 | | | mW | | P _{S,OUTPUT} | Safety Limit Values – Maximum Values in Failure;
Output Power | | 600 | | | mW | | R _{IO} | Insulation Resistance at TS, V _{IO} = 500 V | | 10 ⁹ | | | Ω | ## **ABSOLUTE MAXIMUM RATINGS** ($T_A = 25$ °C unless otherwise specified) | Symbol | Parameter | Value | Units | |------------------|---|---------------|-------| | T _{STG} | Storage Temperature | -55 to +150 | °C | | T _{OPR} | Operating Temperature | -40 to +125 | °C | | T _J | Junction Temperature | -40 to +150 | °C | | T _{SOL} | Lead Solder Temperature (Refer to Reflow Temperature Profile) | 260 for 10sec | °C | | V _{DD} | Supply Voltage (V _{DDx}) | -0.5 to 6 | V | | V | Voltage (V _{INx} , V _{Ox} , ENx) | -0.5 to 6 | V | | I _O | Average Output Current | 15 | mA | | PD | Power Dissipation | 210 | mW | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min. | Max. | Unit | |---------------------|---------------------------------------|------------------------|------------------------|------| | T _A | Ambient Operating Temperature | -40 | +125 | °C | | $V_{DD1} V_{DD2}$ | Supply Voltage (Notes 3, 4) | 2.5 | 5.5 | V | | V _{INH} | High Level Input Voltage | 0.7 x V _{DDI} | V_{DDI} | V | | V _{INL} | Low Level Input Voltage | 0 | 0.3 x V _{DDI} | V | | V _{UVLO+} | Supply Voltage UVLO Rising Threshold | 2.2 | | V | | V _{UVLO} _ | Supply Voltage UVLO Falling Threshold | 2.0 | | V | | UVLO _{HYS} | Supply Voltage UVLO Hysteresis | 0.1 | | V | | I _{OH} | High Level Output Current | -2 | - | mA | | I _{OL} | Low Level Output Current | _ | 2 | mA | | DR | Signaling Rate | 0 | 50 | Mbps | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. - 3. During power up or down, ensure that both the input and output supply voltages reach the proper recommended operating voltages to avoid any momentary instability at the output state. - 4. For reliable operation at recommended operating conditions, V_{DD} supply pins require at least a pair of external bypass capacitors, placed within 2 mm from V_{DD} pins 1 and 16 and GND pins 2 and 15. Recommended values are 0.1 μF and 1 μF. #### **ISOLATION CHARACTERISTICS** Apply over all recommended conditions. All typical values are measured at $T_A = 25$ °C. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------|--------------------------------|---|------|------------------|------|------------------| | V _{ISO} | Input–Output Isolation Voltage | $T_A = 25^{\circ}\text{C}$, Relative Humidity < 50%,
t = 1.0 minute, $I_{I-O} \le 10~\mu\text{A}$, 50 Hz (Notes 5, 6, 7) | 5000 | | | V _{RMS} | | R _{ISO} | Isolation Resistance | V _{I-O} = 500 V (Note 5) | | 10 ¹¹ | | | | C _{ISO} | Isolation Capacitance | V _{I-O} = 0 V, Frequency = 1.0 MHz (Note 5) | | 1 | | pF | - 5. Device is considered a two-terminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together. - 6. 5,000 V_{RMS} for 1-minute duration is equivalent to 6,000 V_{RMS} for 1-second duration. - 7. The input-output isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an input-output continuous voltage rating. For the continuous working voltage rating, refer to equipment-level safety specification or DIN VDE V 0884-11 Safety and Insulation Ratings Table on page 3. ## **ELECTRICAL CHARACTERISTICS** Apply over all recommended conditions, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, $V_{DD1} = V_{DD2} = 2.5$ V to 5.5 V, unless otherwise specified. All typical values are measured at $T_A = 25^{\circ}C$. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | Figure | |-----------------------|------------------------------------|--|------------------------|------------------------|------------------------|-------|--------| | V _{OH} | High Level Output Voltage | $I_{OH} = -4 \text{ mA}$ | V _{DDO} – 0.4 | V _{DDO} – 0.1 | | V | 7 | | V _{OL} | Low Level Output Voltage | I _{OL} = 4 mA | | 0.11 | 0.4 | V | 8 | | V_{INT+} | Rising Input Voltage Threshold | | | | 0.7 x V _{DDI} | V | | | V_{INT-} | Falling Input Voltage Threshold | | 0.1 x V _{DDI} | | | V | | | | | | | | | | | | V _{INT(HYS)} | Input Threshold Voltage Hysteresis | | 0.1 x V _{DDI} | 0.2 x V _{DDI} | | V | | | I _{INH} | High Level Input Current | $V_{IH} = V_{DDI}$ | | | 1 | μΑ | | | I _{INL} | Low Level Input Current | V _{IL} = 0 V | -1 | | | μΑ | | | CMTI | Common Mode Transient Immunity | $V_{I} = V_{DDI} \text{ or } 0 \text{ V}, V_{CM} = 1500 \text{ V}$ | 100 | 150 | | kV/μs | 12 | | C _{IN} | Input Capacitance | $V_{IN} = V_{DDI}/2 + 0.4 \text{ x sin } (2\pi \text{ft}),$
f=1MHz, V_{DD} =5 V | | 2 | | pF | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ## SUPPLY CURRENT CHARACTERISTICS Apply over all recommended conditions, $T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified. All typical values are measured at $T_A = 25^{\circ}C$. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | Figure | |------------------|-------------------|--|------|------|------|-------|--------| | I _{DD1} | DC Supply Current | V _{DD} = 5 V, EN = 0 V / 5 V, V _{IN} = 0 V | | 4.5 | 6.3 | mA | | | I _{DD2} | Input Low | | | 5.0 |] | | | | I _{DD1} | | $V_{DD} = 3.3 \text{ V}, \text{ EN} = 0 \text{ V} / 3.3 \text{ V}, V_{IN} = 0 \text{ V}$ | | 4.4 | 6.1 | | | | I _{DD2} | | | | 4.9 | | | | | I _{DD1} |] | $V_{DD} = 2.5 \text{ V}, \text{ EN} = 0 \text{ V} / 2.5 \text{ V}, V_{IN} = 0 \text{ V}$ | | 4.3 | 6 | | | | I _{DD2} | | | | 4.8 | | | | | I _{DD1} | DC Supply Current | $V_{DD} = 5 \text{ V}, \text{ EN} = 0 \text{ V} / 5 \text{ V}, V_{IN} = 5 \text{ V}$ | | 11.8 | 14.5 | mA | | | I _{DD2} | Input High | | | 12.1 |] | | | | I _{DD1} | 7 | $V_{DD} = 3.3 \text{ V}, \text{ EN} = 0 \text{ V} / 3.3 \text{ V}, V_{IN} = 3.3 \text{ V}$ | | 11.7 | 14.3 | | | | I _{DD2} |] | | | 11.9 |] | | | | I _{DD1} | 1 | $V_{DD} = 2.5 \text{ V}, \text{ EN} = 0 \text{ V} / 2.5 \text{ V}, V_{IN} = 2.5 \text{ V}$ | | 11.6 | 14.3 | | | | I _{DD2} | 1 | | | 11.8 | 1 | | | | I _{DD1} | AC Supply Current | V _{DD} = 5 V, EN = 5 V, C _L = 15 pF | | 8.3 | 10.5 | mA | 3,4 | | I _{DD2} | 1 Mbps | V _{IN} = 5 V Square Wave | | 8.7 |] | | | | I _{DD1} | 7 | $V_{DD} = 3.3 \text{ V}, \text{ EN} = 3.3 \text{ V}, C_L = 15 \text{ pF}$ | | 8.1 | 10.3 | | | | I _{DD2} | 7 | V _{IN} = 3.3 V Square Wave | | 8.5 |] | | | | I _{DD1} | 7 | $V_{DD} = 2.5 \text{ V}, \text{ EN} = 2.5 \text{ V}, C_L = 15 \text{ pF}$ | | 8.0 | 10.1 | | | | I _{DD2} | 1 | V _{IN} = 2.5 V Square Wave | | 8.4 | 1 | | | | I _{DD1} | AC Supply Current | $V_{DD} = 5 \text{ V, EN} = 5 \text{ V, C}_{L} = 15 \text{ pF}$ | | 9.9 | 12 | mA | | | I _{DD2} | 10 Mbps | V _{IN} = 5 V Square Wave | | 10.2 |] | | | | I _{DD1} | 1 | V _{DD} = 3.3 V, EN = 3.3 V, C _L = 15 pF | | 8.9 | 11 | | | | I _{DD2} | 1 | V _{IN} = 3.3 V Square Wave | | 9.3 | 1 | | | | I _{DD1} | 1 | V _{DD} = 2.5 V, EN = 2.5 V, C _L = 15 pF | | 8.6 | 10.5 | 1 | | | I _{DD2} | 1 | V _{IN} = 2.5 V Square Wave | | 9.0 | 1 | | | | I _{DD1} | AC Supply Current | V _{DD} = 5 V, EN = 5 V, C _L = 15 pF | | 14.8 | 17.5 | mA | | | I _{DD2} | 50 Mbps | V _{IN} = 5 V Square Wave | | 15.2 | 1 | | | | I _{DD1} | 1 | V _{DD} = 3.3 V, EN = 3.3 V, C _L = 15 pF | | 12.1 | 14.3 | 1 | | | I _{DD2} | 1 | V _{IN} = 3.3 V Square Wave | | 12.6 | 1 | | | | I _{DD1} | 1 | V _{DD} = 2.5 V, EN = 2.5 V, C _L = 15 pF | | 11.1 | 13 | 1 | | | I _{DD2} | 1 | V _{IN} = 2.5 V Square Wave | | 11.6 | 1 | | | #### **SWITCHING CHARACTERISTICS** Apply over all recommended conditions, $T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified. All typical values are measured at $T_A = 25^{\circ}C$. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | Figure | |----------------------|---|---|----------|------|------|-------|--------| | t _{PHL} | Propagation Delay | $V_{DD} = EN = 5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 17.0 | 25 | ns | 6,9 | | | to Logic Low Output (Note 8) | V_{DD} = EN = 3.3 V, V_{IN} Square Wave, C_L = 15 pF | | 18.3 | 1 | | | | | (14010-0) | $V_{DD} = EN = 2.5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 20.0 | 1 | | | | t _{PLH} | Propagation Delay | $V_{DD} = EN = 5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 13.0 | 25 | ns | 1 | | | to Logic High Output (Note 9) | $V_{DD} = EN = 3.3 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 14.5 | 1 | | | | | (14010-0) | V_{DD} = EN = 2.5 V, V_{IN} Square Wave, C_L = 15 pF | | 16.0 | | | | | PWD | Pulse Width Distor- | V _{DD} = EN = 5 V, V _{IN} Square Wave, C _L = 15 pF | | 3.6 | 10 | ns | 1 | | | tion t _{PHL} – t _{PLH}
(Note 10) | $V_{DD} = EN = 3.3 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | 5 pF 3.8 | 8 | | | | | | | V_{DD} = EN = 2.5 V, V_{IN} Square Wave, C_L = 15 pF | | 3.8 | 1 | | | | t _{PSK(PP)} | Propagation Delay | V _{DD} = EN = 5 V, V _{IN} Square Wave, C _L = 15 pF | -10 | | 10 | ns | 1 | | | Skew (Part to Part)
(Note 11) | V_{DD} = EN = 3.3 V, V_{IN} Square Wave, C_L = 15 pF | | | | | | | | | V_{DD} = EN = 2.5 V, V_{IN} Square Wave, C_L = 15 pF | | | | | | | t _R | Output Rise Time | $V_{DD} = EN = 5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 1.1 | n | ns | 1 | | | (10% to 90%) | V_{DD} = EN = 3.3 V, V_{IN} Square Wave, C_L = 15 pF | | 1.5 | 1 | | | | | | $V_{DD} = EN = 2.5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 2.2 |] | | | | t _F | Output Fall Time | $V_{DD} = EN = 5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 1.1 | | ns | 1 | | | (90% to 10%) | V_{DD} = EN = 3.3 V, V_{IN} Square Wave, C_L = 15 pF | | 1.4 | 1 | | | | | | $V_{DD} = EN = 2.5 \text{ V}, V_{IN} \text{ Square Wave, } C_L = 15 \text{ pF}$ | | 3.0 | 1 | | | | t _{PZL} | High Impedance to | $V_{DD} = 5 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 8.1 | 25 | ns | 10 | | | Logic Low Output
Delay (Note 12) | $V_{DD} = 3.3 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 9.7 | 1 | | | | | | $V_{DD} = 2.5 \text{ V, R}_{L} = 1 \text{ k}\Omega$ | | 12.0 | 1 | | | | t _{PLZ} | Logic Low to High | $V_{DD} = 5 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 10.4 | 25 | ns | 1 | | | Impedance Output
Delay (Note 13) | $V_{DD} = 3.3 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 12.2 | 1 | | | | | | $V_{DD} = 2.5 \text{ V, R}_{L} = 1 \text{ k}\Omega$ | | 16.5 | 1 | | | | t _{PZH} | High Impedance to | $V_{DD} = 5 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 0.54 | 1 | μs | 11 | | | Logic High Output
Delay (Note 14) | $V_{DD} = 3.3 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 0.51 | 1 | | | | | | $V_{DD} = 2.5 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 0.50 | | | | | t _{PHZ} | Logic High to High | $V_{DD} = 5 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 11.0 | 25 | ns |] | | | Impedance Output
Delay (Note 15) | $V_{DD} = 3.3 \text{ V}, R_L = 1 \text{ k}\Omega$ | | 12.3 | 1 | | | | | | $V_{DD} = 2.5 \text{ V, R}_{L} = 1 \text{ k}\Omega$ | | 14.0 | 1 | | | - 8. Propagation delay tpHL is measured from the 50% level of the falling edge of the input pulse to the 50% level of the falling edge of the Vo signal. - 9. Propagation delay to the rising edge of the input pulse to the 50% level of the rising edge of the input pulse to the 50% level of the rising edge of the VO signal. - 10. PWD is defined as | t_{PHL} t_{PLH} | for any given device. - 11. Part-to-part propagation delay skew is the difference between the measured propagation delay times of a specified channel of any two parts at identical operating conditions and equal load. - 12. Enable delay tpzL is measured from the 50% level of the rising edge of the EN pulse to the 50% of the falling edge of the VO signal as it switches from high impedance state to low state. - 13. Disable delay t_{PLZ} is measured from the 50% level of the falling edge of the EN pulse to 0.5 V level of the rising edge of the V_O signal as it switches from low state to high impedance state. - 14. Enable delay t_{PZH} is measured from the 50% level of the rising edge of the EN pulse to the 50% of the rising edge of the VO signal as it switches from high impedance state to high state. - 15. Disable delay t_{PHZ} is measured from the 50% level of the falling edge of the EN pulse to V_{OH} 0.5 V level of the falling edge of the V_O signal as it switches from high state to high impedance state. #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 3. Supply Current vs. Data Rate (No Load) Figure 5. Supply Voltage UVLO Threshold vs. Ambient Temperature Figure 7. High Level Output Voltage vs. Current Figure 4. Supply Current vs. Data Rate (Load = 15 pF) Figure 6. Propagation Delay vs. Ambient Temperature Figure 8. Low Level Output Voltage vs. Current ## **TEST CIRCUITS** Figure 9. V_{IN} to V_{O} Propagation Delay Test Circuit and Waveform Figure 10. EN to Logic Low Vo Propagation Delay Test Circuit and Waveform Figure 11. EN to Logic High Vo Propagation Delay Test Circuit and Waveform Figure 12. Common Mode Transient Immunity Test Circuit ## **APPLICATIONS INFORMATION** #### **Theory of Operation** NCID(V)9211 is a dual-channel digital isolator that enables bi-directional communication between two isolated circuits. It uses off-chip ceramic capacitors that serve both as the isolation barrier and as the medium of transmission for signal switching using on-off keying (OOK) technique, illustrated in the single channel operational block diagram in Figure 13. At the transmitter side, the V_{IN} input logic state is modulated with a high frequency carrier signal. The resulting signal is amplified and transmitted to the isolation barrier. The receiver side detects the barrier signal and demodulates it using an envelope detection technique. The output signal determines the V_O output logic state when the output enable control EN is at high. When EN is at low, output V_O is at high impedance state. V_O is at default state low when the power supply at the transmitter side is turned off or the input V_{IN} is disconnected. Figure 13. Operational Block Diagram of Single Channel Figure 14. On-Off Keying Modulation Signals Figure 15. NCID(V)9211 Operational Block Diagram #### **Layout Recommendation** Layout of the digital circuits relies on good suppression of unwanted noise and electromagnetic interference. It is recommended to use 4-layer FR4 PCB, with ground plane below the components, power plane below the ground plane, signal lines and power fill on top, and signal lines and ground fill at the bottom. The alternating polarities of the layers creates interplane capacitances that aids the bypass capacitors required for reliable operation at digital switching rates. In the layout with digital isolators, it is required that the isolated circuits have separate ground and power planes. The section below the device should be clear with no power, ground or signal traces. Maintain a gap equal to or greater than the specified minimum creepage clearance of the device package. Figure 16. 4-Layer PCB for Digital Isolator For NCID(V)9211, it is highly advised to connect at least a pair of low ESR supply bypass capacitors, placed within 2mm from the power supply pins 1 and 16 and ground pins 2 and 15. Recommended values are 1 μF and 0.1 μF , respectively. Place them between the V_{DD} pins of the device and the via to the power planes, with the higher frequency, lower value capacitor closer to the device pins. Directly connect the device ground pins 1, 8, 9 and 15 by via to their corresponding ground planes. Figure 17. Placement of Bypass Capacitors ## **Over Temperature Detection** NCID(V)9211 has a built–in Over Temperature Detection (OTD) feature that protects the IC from thermal damage. The output pins will automatically switch to default state when the ambient temperature exceeds the maximum junction temperature at threshold of approximately 160°C. The device will return to normal operation when the temperature decreases approximately 20°C below the OTD threshold. ## **ORDERING INFORMATION** | Part Number | Grade | Package | Shipping [†] | |----------------------|------------|----------|-------------------------| | NCID9211 | Industrial | SOIC16 W | 50 Units / Tube | | NCID9211R2 | Industrial | SOIC16 W | 750 Units / Tape & Reel | | NCIV9211 (pending) | Automotive | SOIC16 W | 50 Units / Tube | | NCIV9211R2 (pending) | Automotive | SOIC16 W | 750 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ## **PACKAGE DIMENSIONS** ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and ho #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative