THINK ON.

Introduction to LV/MV MOSFET Silicon AUTOMOTIVE POWER MODULE

www.onsemi.com

APM – Automotive Power Module Brand since 2008

Core Values of APM to Customer

The Automotive Power modules production has been in mass production since 2008 after releasing 1st Electrical Power Steering full bridge APM. Since after APM became the #1 leader in MOSFET Automotive Module Market. As of Now, ON semi has the broad portfolio in production from of APMs for various applications for 12V ICE, 48V MHEV and HV EV/BEV, and Expanding its solutions focusing on high power Applications.

Benefit: Thermal

ON APM design enabling better thermal performance of total Rth junction to Heat sink

A : Options of vertical structure selection and Internal Design defines Rth Per Power rating of application

B: By the usage of APM, enable thin layer of B for minimum Rth of of A+B

C/D : Customer's design per system requirements

ON,

1.5%

8.2%

33.2%

0.0105

0.0581

0.2363

0.7120

2.6%

14.0%

56.0%

Public Information

A5

BTIM

C Heat Sink

TOTAL

0.0113

0.0619

0.2468

0.4410

Mounting Guidance for APM

Warpage =>0 enable no void and spread out of TIM during mounting. APM enable thin layer of TIM for lowest thermal resistance

Benefit: Proven Reliability

Field proven experience

11 years life in the field

APM released in 2008 for Electrical Power Steering and has been leader in MOSFET Module for LV Auto

Fab+ Assmebly Total Solution

Minimized CTE mismatch in Transfer

Mold DBC technology enables long term thermal cycling

* CTE(Coefficient of thermal Expansion) mismatch?

Benefit: Electrical Performance

Deveopment for best fit for customer requirement in Electrical performance, supported by customized application support.

Integrating the snubber inside provide Enhanced EMI performance

With Snubber

Inside Module

APM Competitive landscape

Vs. Gel-filled Case Module

Feature	Case Module Gel-filled	ON's APM
Rth Junction to Heat Sink	Higher	Lower (by better flatness)
Package Warp Control	Worse (using Cu base)	Better
Reliability	Lower	Higher
Weight/Size	Higher	Lower

Vs. Gel-filled Case Module – System

Feature	System level Case Module Gel-filled	<u>ON's APM</u>
Rth Junction to Heat Sink	Higher	Lower
Reliability	Lower	Higher Thermal Stress Vibration Mechanical Shock, etc.
Testing	Limited for testing Individual Power Components	Full Test Coverage
Qualification	Limited to full validate or high cost	Full Rel. atudy with enough rel. Characterizations

Vs. Discrete Solution

Feature	<u>Discrete</u> Solution	<u>ON's APM</u>
Rth Junction to Heat Sink	Higher	Lower
Current Carrying Capacity/ Total Resistance	Limited	Better
EMI	Poor	Enhanced
System Weight/Size	Higher	Lower

Vs. Competitors in the Market

.Silicon Performance

.Proven Quality in the Field Application .Rich Portfolio of MOSFET & Module platform (World wide #1 Module suppler (volume)) .Application Support (Solution Provider)

KEY products of Today

Why?

- Compact Solution
- Higher Efficiency
- Thermal Performance

HV

www.onsemi.com

APM Generic Module Platform for 48V

Product Description

APM19, APM21, APM17M (One module tech, Same size APM variants) Evolved from mass production APM19 EPS

Covers all power applications in 48V systems:

- iSG/BSG (Integrated/Belt-driven Starter Generator)
- 48V to 12V DC-DC Converter
- 12V or 48V Auxiliaries load (motor drive)
- Battery Switch (relay replacement)

Advantages

High Power densigh

Lower system level cost (vs discretes) for High Power Application

Electrical Performance by Low Stray inductance & Snubber

Compact Space and Reduce Number of components 3 x APM17 replaces up to 36 X TOLL, D2PAK

Simplify power stage design allowing fast time to market for customers

APM17M for 3 phase and 6 phase Inverter

APM17M Platform •

APM17M for 48V Mild Hybrid Main inverter – In Development

Description

- High Power 48V Main Inverter solutions
- Flexible application both 3 phase and 6 phase motor system by 3 APMs
- Low junction-sink thermal resistance
- Highly integrated compact design
- Low electrical resistance
- Low stray Inductance
- Better EMI with snubber inside module.
- Electrical isolation over 3KV
- Easy and reliable installation
- High current handling
- Improved overall system reliability
- Temperature sensing
- Pb Free

Dual

¹/₂ Bridge

• Automotive qualified – AQG324

¹/₂ Bridge

- P0/P1-6kw, 12kw
- P2, P3, P4 ~ 24kw

ICE,48V MHEV – Standard APM19 Platform

Description

- Low junction-sink thermal resistance
- Highly integrated compact design
- Low electrical resistance
- Better EMI and electrical isolation
- Easy and reliable installation
- High current handling
- Improved overall system reliability
- Precise shunt current sensing
- Temperature sensing
- Automotive qualified

Application

	Transmiss ion Oil Pump	Electrical Power Steering	Intelligent Brake	DC DC converter
12V ICE	40V	40V	40V	
24V Bus/Truck	80V	80V		
48V MHEV	80V	80V	80V	80V

Package Details

Schematic

ICE,48V MHEV - APM19 Platform Proliferation Plan

Option1	AL203 Substrate				
Option2	40V 80V				
Option3	Die Options				

DBC Options	Standard Substrate					
BV Options		40V	8	80V Die Combination		
Die Options	1.45mΩ 0.8(K/W)	1.2mΩ 1(K/W)	3.1mΩ 1(K/W)	2.1mΩ 0.8(K/W)	3.1 / 2.1mΩ 1.0 / 0.8(K/W)	
OPN	FTCO3V455A1 NXV04V120DB1		NXV08V080DB1	NXV08V110DB1	FTCO3V85A1	
Release Plan	Released Released		Released	Released	Released	
Samples Availability	Available	Available	Available	Available	Available	

* Common : All APM19 have 1 NTC, 1 Shunt & R-C Snubber btw B+ & GND

ICE,48V MHEV – Standard APM21 Platform – In development

Description

- 2 shunts for current sensing for EPS application
- High Power 48V Motor Inverter solutions
- Low junction-sink thermal resistance
- Highly integrated compact design
- Low electrical resistance
- Better EMI and electrical isolation
- Easy and reliable installation
- High current handling
- Improved overall system reliability
- Temperature sensing
- Automotive qualified

Application

	~ 1kw	5~7kw	5~7kw	12kw
	EPS	48V E-	48V E-	48V BSG
	(2 Shunts	Comp/E-	Super	6 Phase
	EPS)	Boost	Charger	(APM * 2)
12V ICE	40V	40V	40V	
48V	80V	80V /	80V /	80V /
MHEV		100V	100V	100V

Package : 44 mm × 29 mm × 5.0 mm

Package Details

Public Information

Schematic – 2 Shunts EPS

Schematic 2 – 48V High Power

ICE,48V MHEV - APM21 Platform Proliferation Plan

Option1	AL203 Substrate	Low Rth Substrate		
Option2	80V	100V		
Option3	Die Options			
Option4	Shunt or No shunt			
Option5	Lead Options (Std or Customized)			

* Release Plan can be adjusted per customer's request

DBC Options			Standard Substrat	Low Th	nermal resistance Su	bstrate		
BV Options	40V	80)V	100V	100V / 80V	80V	100V	150V
Eq. Discrete / Rdson max. / Rthjc typ.	FDBL9406 1.2mΩ 1(K/W)	FDBL86366 3.0mΩ 1(K/W)	FDBL86360 1.3mΩ 0.6(K/W)	FDBL86062 2.0mΩ 0.7(K/W)	FDBL86063/86361 2.6 / 1.4mΩ 0.8 / 0.7(K/W)	FDBL86360 1.3mΩ 0.22(K/W)	FDBL86062 2.0mΩ 0.32(K/W)	4.0mΩ 0.22(K/W)
Shunt Options	2 Shunts (BVN-0.5mohm)	2 Shunts (BVN-0.5mohm)	1 Shunt (BVN-0.5mohm)	1 Shunt (BVN-0.5mohm)	No Shunt	No Shunt	No Shunt	1 Shunt (BVN-0.5mohm)
OPN	NXV04V130DB1	NXV08V081DB1	NXV08V170DB1	NXV10V125DB1	NXV09D100DT1	NXV08V230S(X)T1	NXV10V160S(X)T1	NXV15V100S(X)B1
Release Plan	TBD Per customer's demand	TBD Per customer's demand	2021 2H	2021 2H	2021 2H	2021 2H	2021 2H	2022 1H
Samples Availability	TBD Per customer's demand	TBD Per customer's demand	Available	Available	Available	Available	Available	Available

* Customer sample available in 1~3 Months after order

ICE,48V MHEV – APM11 Platform

Description

- High flexibility for system design
- Low junction to sink thermal resistance
- Better EMI and electrical isolation
- Easy and reliable installation
- Improved overall system reliability
- Temperature sensing Optional
- Current sensing Optional
- Automotive qualified AQG324

Application

- 12V Back-to-back Battery Switch
- 48V Back-to-back Battery Switch
- 48V DC/DC Secondary Rectifier
- 48V n-Phase motor inverter by using x N APM11s

Package : 28 × 22.8 × 5.0 mm

DATE 26 APR 2017

Package Details

Schematic 1 – Single Phase Motor Inverter

Schematic 2 – SR / Battery Switch

APM11 Platform Proliferation in Development

Topology	Single Phase	hase Half Bridge Back-to-Back Switch		
BV Options	BV Options 40V 80V		40V	80V
Die Options	0.9mΩ 0.8(K/W)	1.4mΩ 0.7(K/W)	0.3mΩ 0.38(K/W)	0.8mΩ 0.38(K/W)
Current Sensor Options	Hall IC	1 Shunt (BVT-0.3mohm)	No Shunt	No Shunt
OPN	SXV04A080DC3	NXV08A170DB1	NXV04B300DZ1	NXV08B260DZ1
Release Plan	Released	eleased 2021 2H P		Per customer's demand
Samples Availability	Available	Available	Available	Available

* Customer sample available in $1 \sim 3$ Months after order

