

Wireless Charging System 1 kW
| Datasheet

1000W 24 V \& 48 V Wireless Charging System

Features

- No part wear
- Low maintenance
- Wide input range 85-265 V_{AC}
- Natural cooling - no fans mean reliable and silent operation
- Efficiency over 90% in typical conditions
- CAN bus for charge control and status
- Optional stand-alone charging using battery profiles
- Small and lightweight onboard unit
- Optimised for automated charging

Fig. 1: Naming of system components ${ }^{1}$

AC input	C 14
Connector type	1 -phase, $120 \mathrm{~V}_{\mathrm{AC}}$ or $230 \mathrm{~V}_{\mathrm{AC}}$
Nominal AC Input voltage	$85 \mathrm{~V}_{\mathrm{AC}}$ to $265 \mathrm{~V}_{\mathrm{AC}}$
AC input voltage range ${ }^{2}$	$50 / 60 \mathrm{~Hz}$
AC Input nominal frequency	47 Hz to 63 Hz
AC input frequency range	13 A
Maximum AC input current	$92 \%(24 \mathrm{~V}$ version), $93 \%(48 \mathrm{~V}$ version)
Maximum efficiency	>0.95
Minimum power factor at 100% load	
Maximum inrush current ${ }^{3}$	$<65 \mathrm{~A}$ and for $<10 \mathrm{msec}$
Touch current ${ }^{4}$	$<3.5 \mathrm{~mA}$
Standby power consumption ${ }^{5}$	$<4 \mathrm{~W}$

[^0]| DC output | | |
| :---: | :---: | :---: |
| Voltage (nominal) | 24 V | 48 V |
| Voltage range | 12 V DC to $30 \mathrm{~V}_{\mathrm{DC}}$ | $24 \mathrm{~V} \mathrm{VC}^{\text {to }} 60 \mathrm{~V}_{\text {DC }}$ |
| Voltage accuracy | ± 0.5 \% | |
| Maximum current | 41.7 A | 20.8 A |
| Ripple voltage ${ }^{1,2}$ | <1.5 V | |
| Load current accuracy | $\begin{gathered} \pm 2 \% \text { between } 8 \mathrm{~A} \\ \quad \text { and } 41.7 \mathrm{~A} \\ \pm 5 \% \text { between } 4 \mathrm{~A} \\ \text { and } 8 \mathrm{~A} \end{gathered}$ | ```\pm2% between 4 A and 20.8 A \pm5% between 2 A and 4 A``` |
| Rise time (typical) | < 5 s (0-100\% load) | |
| Ripple current | | |
| High frequency > 1 kHz | $<4 \mathrm{~A}$ | |
| Low frequency < 360 Hz | $<6 \mathrm{~A}$ | |
| Maximum output power | 1000 W | |
| Cable specification | | |
| Cable length | 500 mm | |
| Design of cable end | Terminated with insulated M10 ring terminal. | |
| Battery draw when not charging | $<70 \mathrm{~mA}$ | $<40 \mathrm{~mA}$ |
| Battery draw in Sleep mode | $<2 \mathrm{~mA}$ | |

Fig. 2: 24 V output operating area

[^1]

Fig. 3: 48 V output operating area

Functions	Sleep: Reduce current draw from the battery when not charging Enable: start and stop charging when using profile mode
Cable length	100 mm
Design of cable end	Molex MX150 series, P/N: 33471-3301
CAN bus connector	
Functions	Connection to smart rechargeable batteries, machine systems and development GUI application.
CAN bus specification	ISO 11898-1 \& ISO 11898-2 (CAN 2.0A) ID Bits 11; Bit rate variable up to $1 \mathrm{Mbit} / \mathrm{sec}$
Isolation to main DC output	$500 \mathrm{~V}_{\mathrm{AC}}$ or $707 \mathrm{~V}_{\mathrm{DC}}$
Cable length	100 mm
Design of cable end	Molex MX150 series P/N: 33471-0201
Temperature sensor	
Functions	Connection to battery (-VE) terminal to establish battery temperature. Gives optimal charging when used with a temperature compensated profile.
Sensor	NTC embedded into ring terminal.
Cable length	500 mm
Design of cable end	Terminated with non-insulated, M10 ring terminal.

[^2]| Methods and Limits ${ }^{1}$ | |
| :---: | :---: |
| Standard | Test level Acceptance criteria |
| Conducted and radiated emissions
 CISPR11 EN 55011
 FCC CFR47 Part 15.B | Class A Limits ${ }^{2}$ |
| Line harmonics EN / IEC 61000-3-2 | Class A (<16 A per phase) |
| Electrostatic discharge (ESD)
 EN / IEC 61000-4-2 | EN 61000-4-2, ± 4 kV Performance Criteria B Contact / $\pm 8 \mathrm{kV}$ air |
| Radiated immunity
 EN / IEC 61000-4-3 | $\begin{aligned} & 10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz} \text { to Performance Criteria A } \\ & 1,000 \mathrm{MHz}) \\ & 3 \mathrm{~V} / \mathrm{m}(1,000 \mathrm{MHz} \text { to } \\ & 6,000 \mathrm{MHz}) \end{aligned}$ |
| Electrical fast transient EN / IEC 61000-4-4 | $\pm 2 \mathrm{kV}$ Performance Criteria B |
| Surge immunity EN / IEC 61000-4-5 | $\begin{aligned} & \pm 2 \mathrm{kV} \text { (asymmetrical) Performance Criteria B } \\ & \pm 1 \mathrm{kV} \text { (symmetrical) } \end{aligned}$ |
| Conducted immunity EN / IEC 61000-4-6 | 10 Vrms ($^{2} 150 \mathrm{kHz}$ to 80 Performance Criteria A MHz) |
| Ecological characteristics | |
| WEEE (Waste Electrical and Electronic Equipment Directive) | 2012/19/EU |
| RoHS (Restriction of Hazardous Substances Directive) | 2011/65/EU, 2015/EU/863 |
| REACH | 1907/2006/EC |
| Mechanical design | |
| Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$) | |
| WPB | $280 \times 192 \times 60 \mathrm{~mm}$ |
| WPP and WSP | $\varnothing 160 \times 19 \mathrm{~mm}$ |
| WSB | $168 \times 82 \times 28 \mathrm{~mm}$ |
| Weight (typical) | |
| WPU | 5.4 kg |
| WSU | 1.5 kg |
| Cooling | |
| WPU | Natural convection |
| WSU | Contact |
| Pad orientation | Vertical ${ }^{3}$ |
| Pad air gap range | 0 to 20 mm |
| Pad misalignment range | 0 to 20 mm |
| Status LEDs | On WPB: AC present, Charging, Fault |

Status LEDs

	AC present	Charging	Fault
	Off	Off	Off
No input	On	Off	Off
Ready	On	Flash	Off
Charging	On	On	Off
Charge complete ${ }^{1}$	On	Off	Flash
Fault			

1 Profile mode only

Dimension Drawings

Fig. 4: WPU dimensions (mm)

Fig. 5: WSU dimensions (mm)

Product Model Name

Model	Power	Output
EOE14010738	WPU 1 kW US	$24 / 48 \mathrm{~V}$
EOE14010739	WPU 1 kW EU	$24 / 48 \mathrm{~V}$
EOE14010740	WSU 1 kW	24 V
EOE14010803	WSU 1 kW	48 V
EOE99000823	1 kW Dev Kit	N / A

[^3]
A nelta

Smarter. Greener. Together.

Delta Energy Systems (Germany) GmbH

Tscheulinstrasse 21, 79331 Teningen
E-mail: IEV.sales@deltaww.com

[^0]: WPB $=$ primary box, WPP $=$ primary pad, WSB $=$ onboard electronics, WSP $=$ onboard pad
 When input voltage is liss than

 5 When WSU And WPU are not paired

[^1]: 1 For output voltage $>19 \mathrm{~V}(24 \mathrm{~V}$ version $)$ and $>38 \mathrm{~V}(48 \mathrm{~V}$ version
 2 Resistor $\& 100 \mathrm{mF}$ capacitor load

[^2]: Outuut power derated to stop WSB case temperature exceeding $90^{\circ} \mathrm{C}$ at higher ambient temperatures. Performance at high ambient 2 dependant on WS

[^3]: 2 Additionale elternal request
 Additional exteral cable fittering may be required depending on installation environmen during charging
 If mounted horizontally the user must take full responsibility of o ensure there are no meta

