
Getting started with PSoC™ 6 MCU on
ModusToolbox™ software

About this document
Scope and purpose

This application note introduces the PSoC™ 6 MCU, a dual-core programmable system-on-chip with Arm®
Cortex®‑M4 and Cortex®-M0+ processors. This application note helps you explore the PSoC™ 6 MCU architecture
and development tools and shows you how to create your first application using ModusToolbox™ software. This
application note also guides you to more resources available online to accelerate your learning about PSoC™ 6
MCU.
Intended audience

This document is intended for the users who are new to PSoC™ 6 MCU and ModusToolbox™ software.
Associated part family

All PSoC™ 6 MCU devices
Software version

ModusToolbox™ software 3.0 or above
More code examples? We heard you.

To access an ever-growing list of PSoC™ code examples using ModusToolbox™, please visit the GitHub site. You
can also explore the PSoC™ video library.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3

2 Development ecosystem .6
2.1 PSoC™ resources . 6
2.2 Firmware/application development .6
2.2.1 Installing the ModusToolbox™ tools package . 7
2.2.2 Choosing an IDE . 7
2.2.3 ModusToolbox™ software . 7
2.2.4 ModusToolbox™ applications . 10
2.2.5 PSoC™ 6 software resources .13
2.2.5.1 Configurators . 13
2.2.5.2 Library management for PSoC™ 6 MCU . 14
2.2.5.3 Software development for PSoC™ 6 MCU . 14
2.2.6 ModusToolbox™ help . 15
2.3 Support for other IDEs . 16
2.4 FreeRTOS support with ModusToolbox™ . 16
2.5 Programming/debugging using Eclipse IDE . 17
2.6 PSoC™ 6 MCU development kits . 18

AN228571

Application Note Please read the sections "Important notice" and "Warnings" at the end of this document 002-28571 Rev. *G
www.infineon.com 2022-09-12

http://www.cypress.com/products/32-bit-arm-cortex-m4-psoc-6
http://www.infineon.com/modustoolbox
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://media.infineon.com/search/psoc
https://www.infineon.com

3 Device features . 19

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software 21
4.1 Prerequisites . 21
4.1.1 Hardware .21
4.1.2 Software . 21
4.2 Using these instructions . 21
4.3 About the design . 22
4.4 Part 1: Create a new application . 22
4.5 Part 2: View and modify the design configuration .25
4.5.1 Opening the Device Configurator .27
4.5.2 Add retarget-io middleware . 28
4.5.3 Configuration of UART, timer peripherals, pins, and system clocks .29
4.6 Part 3: Write firmware . 30
4.7 Part 4: Build the application .37
4.8 Part 5: Program the device . 37
4.9 Part 6: Test your design . 40

5 Summary . 43

References .44

Glossary . 45

Revision history .46

Disclaimer . 47

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Table of contents

Application Note 2 002-28571 Rev. *G
2022-09-12

1 Introduction
PSoC™ 6 MCU is an ultra-low-power PSoC™ device with a dual-core architecture tailored for smart homes, IoT
gateways, etc. The PSoC™ 6 MCU is a programmable embedded system-on-chip that integrates the following
features on a single chip:
• Single-core microcontroller: Arm® Cortex®-M4 (CM4); or dual-core microcontroller: Arm® Cortex®-M4 (CM4)

and Cortex®-M0+ (CM0+)
• Programmable analog and digital peripherals
• Up to 2 MB of flash and 1 MB of SRAM
• Fourth-generation CAPSENSE™ technology
• PSoC™ 6 MCU is suitable for a variety of power-sensitive applications such as:

- Smart home sensors and controllers
- Smart home appliances
- Gaming controllers
- Sports, smart phone, and virtual reality (VR) accessories
- Industrial sensor nodes
- Industrial logic controllers
- Advanced remote controllers
- Wearables

The ModusToolbox™ software environment supports PSoC™ 6 MCU application development with a set of
tools for configuring the device, setting up peripherals, and complementing your projects with world-class
middleware. See the Infineon GitHub repos for BSPs (Board Support Packages) for all kits, libraries for popular
functionality like CAPSENSE™ and emWin, and a comprehensive array of example applications to get you
started.
Figure 1 illustrates an application-level block diagram for a real-world use case using PSoC™ 6 MCU.

Figure 1 Application-level block diagram using PSoC™ 6 MCU

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application Note 3 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software
https://github.com/Infineon/modustoolbox-software
https://github.com/Infineon?q=mtb-example-psoc6%20NOT%20Deprecated

PSoC™ 6 MCU is a highly capable and flexible solution. For example, the real-world use case in Figure 1 takes
advantage of these features:
• A buck converter for ultra-low-power operation
• An analog front end (AFE) within the device to condition and measure sensor outputs such as ambient light

sensor
• Serial Communication Blocks (SCBs) to interface with multiple digital sensors such as motion sensors
• CAPSENSE™ technology for reliable touch and proximity sensing
• Programmable Digital logic (Smart I/O) and peripherals (Timer Counter PWM or TCPWM) to drive the

display and LEDs respectively
• SDIO interface to a Wi-Fi/Bluetooth® device to provide IoT cloud connectivity
• Product security features managed by CM0+ core and application features executed by CM4 core
There are four product lines in PSoC™ 6 which cater to different application needs. Table 1 provides overview of
different product lines:

Table 1 PSoC™ 6 MCU product lines

Product line Security
firmware

Device
series

Details Applications

Programmable No CY8C61x Single core: 150-MHz Arm® Cortex®-M4 IoT gateways,
smart home, home
appliances, HMI,
audio processing,
and industrial
concentrators

Performance No CY8C62x Dual-core architecture: 150-MHz Arm®

Cortex®-M4 and 100-MHz Cortex®-M0+

Connectivity No CY8C63x Dual-core architecture: 150-MHz Arm®

Cortex®-M4 and 100-MHz Cortex®-M0+
Bluetooth® low energy (LE) 5.0 radio with 2-
Mbps data throughput

Wearables, portable
medical, industrial IoT,
and smart home

Security “Secure
Boot”

CYB064x 150-MHz Arm® Cortex®-M4 for the user
application
Hardware isolated, 100-MHz Arm® Cortex®-
M0+ with privileged access to memory and
peripherals for security functions
Bluetooth® LE 5.0 radio with 2-Mbps data
throughput
Arm® Platform Security Architecture
Certifications- PSA L1, FIPS 140-2

AWS
Standard
“Secure”

CYS064x 150-MHz Arm® Cortex®-M4 for the user
application
Hardware isolated, 100-MHz Arm® Cortex®-
M0+ with privileged access to memory and
peripherals for security functions
Arm® Platform Security Architecture
Certifications- PSA L2

IoT gateways,
smart home, home
appliances, HMI,
audio processing,
and industrial
concentrators

Note that not all the features available in all the devices in a product line. See the device datasheets for more
details.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application Note 4 002-28571 Rev. *G
2022-09-12

https://documentation.infineon.com/html/psoc6/bnm1651211483724.html

This application note introduces you to the capabilities of the PSoC™ 6 MCU, gives an overview of the
development ecosystem, and gets you started with a simple ‘Hello World’ application wherein you learn to
use the PSoC™ 6 MCU. We will show you how to create the application from an empty starter application, but
the completed design is available as a code example for ModusToolbox™ on GitHub.
For hardware design considerations, see AN218241 – PSoC™ 6 MCU hardware design considerations.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application Note 5 002-28571 Rev. *G
2022-09-12

https://github.com/Infineon/mtb-example-psoc6-hello-world
http://www.infineon.com/an218241

2 Development ecosystem

2.1 PSoC™ resources
A wealth of data available here helps you to select the right PSoC™ MCU and quickly and effectively integrate
it into your design. For a comprehensive list of PSoC™ 6 MCU resources, see How to design with PSoC™ 6 MCU -
KBA223067. The following is an abbreviated list of resources for PSoC™ 6 MCU.
• Overview: PSoC™ portfolio
• PSoC™ 6 MCU webpage
• Product selectors: PSoC™ 6 MCU
• Datasheets describe and provide electrical specifications for each device family.
• Application notes and Code examples cover a broad range of topics, from basic to advanced level. You can

also browse our collection of code examples.
• Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in each

device family.
• PSoC™ 6 MCU programming specification provides the information necessary to program the nonvolatile

memory of PSoC™ 6 MCU devices.
• CAPSENSE™design guides: Learn how to design capacitive touch-sensing applications with PSoC™ devices.
• Development tools: Many low-cost kits and shield boards are available for evaluation, design, and

development of different applications using PSoC™ 6 MCUs.
• Training videos: Video training on our products and tools, including a dedicated series on PSoC™ 6 MCUs.
• Technical Support: PSoC™ 6 community forum, Knowledge base articles.

2.2 Firmware/application development
There are two development platforms that you can use for application development with PSoC™ 6 MCU:
• ModusToolbox™: This software includes configuration tools, low-level drivers, middleware libraries and

other packages that enable you to create MCU and wireless applications. All tools run on Windows,
macOS and Linux. ModusToolbox™ includes an Eclipse IDE, which provides an integrated flow with all the
ModusToolbox™ tools. Other IDEs such as Visual Studio Code, IAR Embedded Workbench and Arm® MDK
(µVision®) are also supported.
ModusToolbox™ software supports stand-alone device and middleware configurators. Use the
configurators to set the configuration of different blocks in the device and generate code that can be
used in firmware development. The software supports all PSoC™ 6 MCUs. It is recommended that you use
ModusToolbox™ software for all application development for PSoC™ 6 MCUs. See the ModusToolbox™ tools
package user guide for more information.
Libraries and enablement software are available at the GitHub site.
Software resources available at GitHub support one or more of the target ecosystems:

- MCU and Bluetooth® SoC ecosystem – a full-featured platform for PSoC™ 6 MCU, Bluetooth®, and
Bluetooth® low energy application development.

- Connectivity ecosystem – a set of libraries providing core functionality of Wi-Fi including connectivity,
security, firmware upgrade support, and application layer protocols for applications.

- Amazon FreeRTOS ecosystem – extends the FreeRTOS kernel with software libraries that make it easy
to securely connect small, low-power Infineon devices to most cloud services.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 6 002-28571 Rev. *G
2022-09-12

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14644
https://community.cypress.com/docs/DOC-14644
http://www.cypress.com/psoc
http://www.cypress.com/psoc6
http://www.cypress.com/search/psg/114026
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/psoc6an
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
http://www.cypress.com/psoc6trm
http://www.cypress.com/documentation/programming-specifications/psoc-6-programming-specifications
http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
https://www.cypress.com/microcontrollers-mcus-kits
http://www.cypress.com/training
https://media.infineon.com/search/psoc
https://community.cypress.com/community/product-forums/MCU/psoc-6
https://community.cypress.com/t5/Knowledge-Base-Articles/tkb-p/KnowledgeBaseArticles/label-name/mcu%20%26%20psoc%3A%20psoc%206
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/ModusToolboxUserGuide
https://github.com/infineon

ModusToolbox™ tools and resources can also be used on the command line. See the build system chapter
in theModusToolbox™ tools package user guide for detailed documentation.

• PSoC™ Creator: A proprietary IDE that runs on Windows only. It supports a subset of PSoC™ 6 MCUs, as well
as other PSoC™ families such as PSoC™ 3, PSoC™ 4, and PSoC™ 5LP. See AN221774 - Getting started with
PSoC™ 6 on PSoC™ Creator for more information.

2.2.1 Installing the ModusToolbox™ tools package
Refer to the ModusToolbox™ tools package installation guide for details.

2.2.2 Choosing an IDE
ModusToolbox™ software, the latest-generation toolset, is supported across Windows, Linux, and macOS
platforms. ModusToolbox™ software supports 3rd-party IDEs, including the Eclipse IDE, Visual Studio Code,
Arm® MDK (µVision), and IAR Embedded Workbench. The tools package includes an implementation for
the Eclipse IDE for your convenience. The tools support all PSoC™ 6 MCUs. The associated BSP and library
configurators also work on all three host operating systems.

ModusToolbox™

Eclipse IDE Arm® MDK
µvision

Visual Studio
Code

IAR
Embedded
Workbench

Command
Line

Interface

Figure 2 ModusToolbox™ environment

Certain features of the PSoC™ 6 MCU, such as UDBs (Universal Digital Blocks) and USB are not supported in
ModusToolbox™ version 2.x and earlier. Newer versions of ModusToolbox™ support the USB host feature and
improve the user experience with true multi-core debug support.
It is recommended to use ModusToolbox™ if you want to build an IoT application using IoT devices, or if you are
using a PSoC™ 6 MCU not supported in PSoC™ Creator.
PSoC™ Creator is the long-standing proprietary tool that runs on Windows only. This mature IDE includes a
graphical editor that supports schematic based design entry with the help of Components. PSoC™ Creator
supports all PSoC™ 3, PSoC™ 4, and PSoC™ 5LP devices, and a subset of PSoC™ 6 MCU devices.
Choose PSoC™ Creator if you are inclined towards using a graphical editor for design entry and code generation,
and if the PSoC™ MCU that you are planning to use is supported by the IDE or if you are intending to use the
UDBs on the PSoC™ MCU.

2.2.3 ModusToolbox™ software
ModusToolbox™ software is a set of tools and software that enables an immersive development experience
for creating converged MCU and wireless systems and enables you to integrate our devices into your existing

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 7 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/ModusToolboxUserGuide
http://www.infineon.com/an221774
http://www.infineon.com/an221774
https://www.Infineon.com/ModusToolboxInstallguide

development methodology. These include configuration tools, low-level drivers, libraries, and operating system
support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.
Figure 3 shows a high-level view of what is available as part of ModusToolbox™ software. For a more in-depth
overview of the ModusToolbox™ software, see ModusToolbox™ tools package user guide.

Project
Creator

Library
Manager

Eclipse and
partner IDEs

Configurators
and Tuners

Git and Make
build system

Code Examples

Voice / Audio

Human-Machine
Interface

Machine Learning

Graphics

Wi-Fi

Connectivity

Bluetooth®

Security

PSoC
MCU

XMC™
MCU

USB
Controllers

AIROC™
Connectivity

Processor

AIROC
Bluetooth®

ToolsApplications

Middleware

BSPs

Reference Designs

Figure 3 ModusToolbox™ software

The ModusToolbox™ tools package installer includes the design configurators and tools, and the build system
infrastructure.
The build system infrastructure includes the new project creation wizard that can be run independent of the
Eclipse IDE, the make infrastructure, and other tools. This means you choose your compiler, IDE, RTOS, and
ecosystem without compromising usability or access to our industry-leading CAPSENSE™ (Human-Machine
Interface), AIROC™ Wi-Fi and Bluetooth®, security, and various other features.
One part of the ModusToolbox™ ecosystem is run-time software that helps you rapidly develop Wi-Fi and
Bluetooth® applications using connectivity combo devices, such as AIROC™ CYW43012 and CYW43439 (among
others), with the PSoC™ 6 MCU. See the ModusToolbox™ run-time software reference guide for details.
Design configurators are the tools that help you create the configurable code for your BSP/Middleware. Jump to
Configurators to know more about it.
Figure 4 shows a run-time software diagram to showcase some of the application capabilities of Infineon
devices using ModusToolbox™ software.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 8 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/ModusToolboxRuntimeSoftwareReferenceGuide

Core Connectivity Wi-Fi Bluetooth® Graphics Voice/Audio1HMI Security

Peripheral Driver Library (PDL)

MCUBoot Wi-Fi Manufacturing
Tools

Bluetooth® Manufacturing
Tools Code Examples

AWS IoT C SDK Azure IoT C SDK

OTA

MQTT HTTP

Secure Sockets

LwIP

Mbed TLS

Wi-Fi Host Driver (WHD)

FreeRTOS Kernel

Hardware Abstraction Layer (HAL)

PSA API

Wi-Fi
Connection

Manager
(WCM)

Low Power
Assistant

(LPA) AIROC™
Bluetooth®

Stack

Filesystem

LittleFS

emFile

Emulated
EEPROM

Embedded
Wizard

SEGGER
emWin

USB MSD
Class

USB CDC
Class

USB HID
Class

USB Audio
Class

USB Device
Framework

CAPSENSE™

Secure
Processing

Environment

TF-M

MCUBoot

Cryptography

PDL/HAL

Secure
Storage

Attestation

Figure 4 ModusToolbox™ run-time software diagram

All the application-level development flows depend on the provided low-level resources. These include:
• Board support packages (BSP) – A BSP is the layer of firmware containing board-specific drivers and other

functions. The BSP is a set of libraries that provide APIs to initialize the board and provide access to board
level peripherals. It includes low-level resources such as peripheral driver library (PDL) for PSoC™ 6 MCU
and has macros for board peripherals. It uses the HAL to configure the board. Custom BSPs can be created
to enable support for end-application boards. See BSP Assistant to create your BSP.

• Hardware abstraction layer (HAL) – The hardware abstraction layer (HAL) provides a high-level interface
to configure and use hardware blocks on MCUs. It is a generic interface that can be used across multiple
product families. The focus on ease-of-use and portability means the HAL does not expose all the low-level
peripheral functionality. The HAL wraps the lower level drivers (like PSoC™ 6 PDL) and provides a high-level
interface to the MCU. The interface is abstracted to work on any MCU. This helps you write application
firmware independent of the target MCU.
The HAL can be combined with platform-specific libraries (such as PSoC™ 6 PDL) within a single
application. You can leverage the HAL's simpler and more generic interface for most of an application,
even if one portion requires lower-level control.

• PSoC™ 6 peripheral driver library (PDL) – The PDL integrates device header files, start-up code, and
peripheral drivers into a single package. The PDL supports the PSoC™ 6 MCU family. The drivers abstract
the hardware functions into a set of easy-to-use APIs. These are fully documented in the PDL API Reference.
The PDL reduces the need to understand register usage and bit structures, thus easing software
development for the extensive set of peripherals in the PSoC™ 6 MCU series. You configure the driver
for your application, and then use API calls to initialize and use the peripheral.

• Middleware (MW) – Extensive middleware libraries that provides specific capabilities to an application. The
available middleware spans across connectivity (OTA, Bluetooth®, AWS IoT, Bluetooth® LE, Secure Sockets)
to PSoC™ 6 MCU-specific functionality (CAPSENSE™, USB, device firmware upgrade (DFU), emWin). All the
middleware is delivered as libraries via GitHub repositories.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 9 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/an235297
https://github.com/Infineon/mtb-hal-cat1
https://github.com/Infineon/mtb-pdl-cat1
https://github.com/Infineon/modustoolbox-software#libraries

2.2.4 ModusToolbox™ applications
With the release of ModusToolbox™ v3.x, multi-core support is introduced, which has altered the folder
structure slightly from the previous version of ModusToolbox™.
ModusToolbox™ has two types of applications:
• Single-core application
• Multi-core application

Application/
Project

Application

Project-2 [CM4]

Project-1 [CM0+]

Project-3 [...]

Single-core application Multi-core application

...
Combined

Figure 5 Application types

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 10 002-28571 Rev. *G
2022-09-12

The following shows the new folder structure for an example single-core application:

Figure 6 Folder structure for single-core applications

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 11 002-28571 Rev. *G
2022-09-12

The following shows the new folder structure for an example multi-core application:

Figure 7 Folder Structure for multi-core applications

The new flow using ModusToolbox™ versions 3.x can support multiple projects in an application. For multi-core
applications, there are multiple projects, but only one project per core. The applications have app-owned BSPs,
meaning the BSP will be common to all projects inside a multi-core application.
Going further, section 4 of this document describes creating a new single-core application using
ModusToolbox™ software.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 12 002-28571 Rev. *G
2022-09-12

2.2.5 PSoC™ 6 software resources
The software for PSoC™ 6 MCUs includes configurators, drivers, libraries, middleware, as well as various utilities,
makefiles, and scripts. It also includes relevant drivers, middleware, and examples for use with IoT devices and
connectivity solutions. You may use any or all tools in any environment you prefer.

2.2.5.1 Configurators
ModusToolbox™ software provides graphical applications called configurators that make it easier to configure a
hardware block. For example, instead of having to search through all the documentation to configure a serial
communication block as a UART with a desired configuration, open the appropriate configurator and set the
baud rate, parity, and stop bits. Upon saving the hardware configuration, the tool generates the "C" code to
initialize the hardware with the desired configuration.
There are two types of configurators: BSP configurators that configure items that are specific to the MCU
hardware and library configurators that configure options for middleware libraries.
Configurators are independent of each other, but they can be used together to provide flexible configuration
options. They can be used stand alone, in conjunction with other tools, or within a complete IDE. Configurators
are used for:
• Setting options and generating code to configure drivers
• Setting up connections such as pins and clocks for a peripheral
• Setting options and generating code to configure middleware
For PSoC™ 6 MCU applications, the available configurators include:
• Device configurator: Set up the system (platform) functions, pins, and the basic peripherals (e.g., UART,

Timer, PWM).
• CAPSENSE™ configurator and tuner: Configure CAPSENSE™ and generate the required code and tune

CAPSENSE™ applications.
• LIN configurator: Configure LIN middleware and generate the required configuration.
• ML configurator: To fit the pre-trained model of choice to the target device with a set of optimization

parameters (Only available as a part of separate pack)
• USB configurator: Configure USB settings and generate the required code.
• QSPI configurator: Configure external memory and generate the required code.
• Smart I/O configurator: Configure Smart I/O pins.
• Bluetooth® configurator: Configure the Bluetooth® settings.
• EZ-PD™ configurator: Configure parameters and select the features of the PD Stack middleware.
• Secure policy configurator: Open, create or change policy configuration files for the “Secure” MCU

devices.
• SegLCD configurator: Configure and generate the required structures for SegLCD driver.
Each of the above configurators create their own files (e.g.: design.cycapsense for CAPSENSE™). BSP
configurator files (e.g. design.modus or design.cycapsense) are provided as part of the BSP with default
configurations while library configurators (e.g. design.cybt) are provided by the application. When an
application is created based on Infineon BSP, the application makes use of BSP configurator files from the
Infineon BSP repo. You can customize/create all the configurator files as per your application requirement
using ModusToolbox™ software. See BSP Assistant to create your custom BSP. See ModusToolbox™ help for more
details..

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 13 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/an235297

2.2.5.2 Library management for PSoC™ 6 MCU
The application can have shared/local libraries for the projects. If needed, different projects can use different
versions of the same library. The shared libraries are downloaded under the mtb_shared directory. The
application should use the deps folder to add library dependencies. The deps folder contains files with the .mtb
file extension, which is used by ModusToolbox™ to download its git repository. These libraries are direct
dependencies of the ModusToolbox™ project.
The Library Manager helps to add/remove/update the libraries of your projects. It also identifies whether the
particular library has a direct dependency on any other library using the manifest repository available on
GitHub and fetches all the dependencies of that particular library. These dependency libraries are indirect
dependencies of the ModusToolbox™ project. These dependencies can be seen under the libs folder. For more
information, see the Library Manager user guide located at <install_dir> /ModusToolbox/tools_<version>/
library-manager/docs/library-manager.pdf.

2.2.5.3 Software development for PSoC™ 6 MCU
The ModusToolbox™ ecosystem provides significant source code and tools to enable software development for
PSoC™ 6 MCUs. You use tools to:
• Specify how you want to configure the hardware
• Generate code for that purpose, which you use in your firmware
• Include various middleware libraries for additional functionality, like Bluetooth® LE connectivity or

FreeRTOS
This source code makes it easier to develop the firmware for supported devices. It helps you quickly customize
and build firmware without the need to understand the register set.
In the ModusToolbox™ environment, you use configurators to configure either the device, or a middleware
library, like the Bluetooth® LE stack or CAPSENSE™. The BSP configurator files are used to configure device
peripherals, pins, and memory using peripheral driver library code. The middleware is delivered as separate
libraries for each feature/function such that it can be used across multiple platforms. For example, abstraction-
rtos, lwip, usb, etc.
Firmware developers who wish to work at the register level should refer to the driver source code from the PDL.
The PDL includes all the device-specific header files and startup code you need for your project. It also serves
as a reference for each driver. Because the PDL is provided as source code, you can see how it accesses the
hardware at the register level.
Some devices do not support particular peripherals. The PDL is a superset of all the drivers for any supported
device. This superset design means:
• All API elements needed to initialize, configure, and use a peripheral are available.
• The PDL is useful across various PSoC™ 6 MCUs, regardless of available peripherals.
• The PDL includes error checking to ensure that the targeted peripheral is present on the selected device.
This enables the code to maintain compatibility across members of the PSoC™ 6 MCU family, as long as the
peripherals are available. A device header file specifies the peripherals that are available for a device. If you
write code that attempts to use an unsupported peripheral, you will get an error at compile time. Before writing
code to use a peripheral, consult the datasheet for the particular device to confirm support for that peripheral.
As Figure 8 shows, with the ModusToolbox™ software, you can:
1. Choose a BSP (Project Creator).
2. Create a new application based on a list of starter applications, filtered by the BSPs that each

application supports (Project Creator).
3. Add BSP or middleware libraries (Library Manager).
4. Develop your application firmware using the HAL or PDL for PSoC™ 6 MCU (IDE of choice or command

line).

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 14 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/#!documents/document-group-myInfineon-44

Figure 8 ModusToolbox™ resources and middleware

2.2.6 ModusToolbox™ help
The ModusToolbox™ ecosystem provides documentation and training. One way to access it is launching the
Eclipse IDE for ModusToolbox™ software and navigating to the following Help menu items:
Choose Help > ModusToolbox™ General Documentation:
• ModusToolbox™ Documentation Index: Provides brief descriptions and links to various types of

documentation included as part the ModusToolbox™ software.
• ModusToolbox™ Installation Guide: Provides instructions for installing the ModusToolbox™ software.
• ModusToolbox™ User Guide: This guide primarily covers the ModusToolbox™ aspects of building,

programming and debugging applications. It also covers various aspects of the tools installed along with
the IDE.

• ModusToolbox™ Training Class Material: Links to the training material available at https://github.com/
Infineon/training-modustoolbox.

• Release Notes
For documentation on Eclipse IDE for ModusToolbox™, choose Help > Eclipse IDE for ModusToolbox™ General
Documentation:
• Quick Start Guide: Provides you the basics for using Eclipse IDE for ModusToolbox™

• User Guide: Provides descriptions about creating applications as well as building, programming, and
debugging them using Eclipse IDE

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 15 002-28571 Rev. *G
2022-09-12

https://github.com/Infineon/training-modustoolbox
https://github.com/Infineon/training-modustoolbox

• Eclipse IDE for ModusToolbox™ Help: Provides description on how to create new applications, update
application code, change middleware settings, and program/debug applications

• Eclipse IDE Survival Guide

2.3 Support for other IDEs
You can develop firmware for PSoC™ 6 MCUs using your favorite IDE such as IAR Embedded Workbench, Keil
µVision 5 or Visual Studio Code.
ModusToolbox™ configurators are stand-alone tools that can be used to set up and configure PSoC™ 6 MCU
resources and other middleware components without using the Eclipse IDE. The Device Configurator and
middleware configurators use the design.x files within the application workspace. You can then point to the
generated source code and continue developing firmware in your IDE.
If there is a change in the device configuration, edit the design.x files using the configurators and regenerate
the code. It is recommended that you generate resource configurations using the configuration tools provided
with ModusToolbox™ software.
See ModusToolbox™ tools package user guide for details.

2.4 FreeRTOS support with ModusToolbox™

Adding native FreeRTOS support to a ModusToolbox™ application project is like adding any middleware library.
You can include the FreeRTOS middleware in your application by using the Library Manager. If using the Eclipse
IDE, select the application project and click the Library Manager link in the Quick Panel. Click Add Library and
select freertos from the Core dialog, as Figure 9 shows.
The .mtb file pointing to the FreeRTOS middleware is added to the application project's deps directory. The
middleware content is also downloaded and placed inside the corresponding folder called freertos. The
default location is in the shared asset repo named mtb_shared. To continue working with FreeRTOS follow the
steps in the Quick Start section of FreeRTOS documentation.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 16 002-28571 Rev. *G
2022-09-12

https://www.iar.com/iar-embedded-workbench/
https://www2.keil.com/mdk5
https://www2.keil.com/mdk5
https://code.visualstudio.com/
https://www.infineon.com/ModusToolboxUserGuide
https://github.com/Infineon/freertos/blob/master/README.md

Figure 9 Import FreeRTOS middleware in ModusToolbox™ application

2.5 Programming/debugging using Eclipse IDE
All PSoC™ 6 Kits have a KitProg3 onboard programmer/debugger. It supports Cortex® Microcontroller Software
Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3 user guide for details.
The Eclipse IDE requires KitProg3 and uses the OpenOCD protocol for debugging PSoC™ 6 MCU applications. It
also supports GDB debugging using industry standard probes like the Segger J-Link.

Note: The PSoC™ 6 Wi-Fi-Bluetooth® pioneer kit (CY8CKIT-062-WiFi-BT) and PSoC™ 6 Bluetooth® LE
pioneer kit (CY8CKIT-062-BLE) have the KitProg2 onboard programmer/debugger firmware pre-
installed. To work with ModusToolbox™, upgrade the firmware to KitProg3 using the fw-loader

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 17 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853
http://openocd.org/
https://www.segger.com/products/debug-probes/j-link/
http://www.infineon.com/cy8ckit-062-wifi-bt
http://www.infineon.com/cy8ckit-062-ble
http://www.infineon.com/cy8ckit-062-ble

command-line tool included in the ModusToolbox™ software. Refer to the PSoC™ 6 Programming/
Debugging - KitProg Firmware Loader section in the Eclipse IDE for ModusToolbox™ user guide for
more details.

For more information on debugging firmware on PSoC™ devices with ModusToolbox™, refer to the Program and
Debug section in the Eclipse IDE for ModusToolbox™ user guide.

2.6 PSoC™ 6 MCU development kits

Table 2 Development kits

Product line Development kits

Performance PSoC™ 6 WiFi-Bluetooth® pioneer kit (CY8CKIT-062-WiFi-BT)
PSoC™ 6 Wi-Fi Bluetooth® prototyping kit (CY8CPROTO-062-4343W)
PSoC™ 62S2 Wi-Fi Bluetooth® pioneer kit (CY8CKIT-062S2-43012)
PSoC™ 62S3 Wi-Fi Bluetooth® prototyping kit (CY8CPROTO-062S3-4343W)
PSoC™ 62S1 Wi-Fi Bluetooth® pioneer kit (CYW9P62S1-43438EVB-01)
PSoC™ 62S1 Wi-Fi Bluetooth® pioneer kit (CYW9P62S1-43012EVB-01)
PSoC™ 62S4 pioneer kit (CY8CKIT-062S4)

Connectivity PSoC™ 6 Bluetooth® LE pioneer kit (CY8CKIT-062-BLE)
PSoC™ 6 Bluetooth® LE prototyping kit (CY8CPROTO-063-BLE)

Security PSoC™ 64 “Secure Boot” Wi-Fi Bluetooth® pioneer kit (CY8CKIT-064B0S2-4343W)
PSoC™ 64 Standard “Secure” - AWS Wi-Fi Bluetooth® pioneer kit (CY8CKIT-064S0S2-4343W)

For the complete list of kits for the PSoC™ 6 MCU along with the shield modules, see the Microcontroller (MCUs)
kits page.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 Development ecosystem

Application Note 18 002-28571 Rev. *G
2022-09-12

http://www.infineon.com/MTBEclipseIDEUserGuide
http://www.infineon.com/MTBEclipseIDEUserGuide
http://www.infineon.com/cy8ckit-062-wifi-bt
https://www.infineon.com/CY8CPROTO-062-4343W
https://www.infineon.com/CY8CKIT-062S2-43012
https://www.infineon.com/CY8CPROTO-062S3-4343W
https://www.infineon.com/CYW9P62S1-43438EVB-01
https://www.infineon.com/CYW9P62S1-43012EVB-01
http://www.infineon.com/cy8ckit-062s4
http://www.infineon.com/cy8ckit-062-ble
https://www.infineon.com/CY8CPROTO-063-BLE
https://www.infineon.com/CY8CKIT-064B0S2-4343W
https://www.infineon.com/CY8CKIT-064S0S2-4343W
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/#!boards
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/#!boards

3 Device features
PSoC™ 6 MCUs have extensive features as shown in Figure 10. The following is a list of major features. For more
information, see the device datasheet, the technical reference manual (TRM), and the section on References.
• MCU Subsystem

- 150-MHz Arm® Cortex®-M4 and 100-MHz Arm® Cortex®-M0+
- Up to 2 MB of flash with additional 32 KB for EEPROM emulation and 32‑KB supervisory flash
- Up to 1 MB of SRAM with selectable Deep Sleep retention granularity at 32-KB retention boundaries
- Inter-processor communication supported in hardware
- DMA controllers

• Security features
- Cryptography accelerators and true random number generator function
- One-time programmable eFUSE for secure key storage
- “Secure Boot” with hardware hash-based authentication

• I/O subsystem
- Up to 104 GPIOs with programmable drive modes, drive strength, slew rates
- Two ports with Smart I/O that can implement Boolean operations

Figure 10 PSoC™ 6 MCU block diagram
• Programmable digital blocks, communication interfaces

- Up to 12 UDBs for custom digital peripherals
- Up to 32 TCPWM blocks configurable as 16-bit/ 32-bit timer, counter, PWM, or quadrature decoder
- Up to 13 SCBs configurable as I2C Master or Slave, SPI Master or Slave, or UART

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

3 Device features

Application Note 19 002-28571 Rev. *G
2022-09-12

https://documentation.infineon.com/html/psoc6/bnm1651211483724.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html

- Controller Area Network interface with Flexible Data-Rate
- Up to two “Secure” Digital Host Controllers with support for SD, SDIO, and eMMC interfaces
- Audio subsystem with up to two I2S interface and two PDM channels
- SMIF interface with support for execute-in-place from external quad SPI flash memory and on-the-fly

encryption and decryption
- USB full-speed device interface

• Programmable analog blocks
- Up to two opamps that can operate in system deep sleep mode
- Up to two 12-bit SAR ADCs with maximum of 2-Msps sample rate and capability to function in system

deep sleep mode in some of the PSoC™ 6 MCUs
- One 12-bit, 500 ksps voltage-mode DAC
- Up to two low-power comparators which can be used to wake up the device from all the low-power

modes
- 1.2-V bandgap reference with 1% tolerance for use with SAR ADCs and the DAC

• CAPSENSE™ with SmartSense auto-tuning
- Supports both CAPSENSE™ Sigma-Delta (CSD) and CAPSENSE™ Transmit/Receive (CSX) controllers
- Provides best-in-class SNR, liquid tolerance, and proximity sensing

• Operating voltage range, power domains, and low-power modes
- Device operating voltage: 1.71 V to 3.6 V with user-selectable core logic operation at either 1.1 V or 0.9 V
- Multiple on-chip regulators: low-drop out (LDO for Active, Deep Sleep modes), buck converter
- Six power modes for fine-grained power management
- An "Always ON" backup power domain with built-in RTC, power management integrated circuit (PMIC)

control, and limited SRAM backup

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

3 Device features

Application Note 20 002-28571 Rev. *G
2022-09-12

4 My first PSoC™ 6 MCU design using Eclipse IDE for
ModusToolbox™ software

This section does the following:
• Demonstrate how to build a simple PSoC™ 6 MCU-based design and program it on to the development kit
• Makes it easy to learn PSoC™ 6 MCU design techniques and how to use the Eclipse IDE for ModusToolbox™

software

4.1 Prerequisites
Before you get started, make sure that you have the appropriate development kit for your PSoC™ 6 MCU
product line, and have installed the required software. You also need internet access to the GitHub repositories
during project creation.

4.1.1 Hardware
The example design shown below is developed for the PSoC™ 6 Wi-Fi Bluetooth® prototyping kit
(CY8CPROTO-062-4343W). However, you can build the application for other development kits. See the Using
these instructions section.

4.1.2 Software
• ModusToolbox™ 3.0 or above
After installing the software, refer to the ModusToolbox™ tools package user guide to get an overview of the
software.

4.2 Using these instructions
These instructions are grouped into several sections. Each section is devoted to a phase of the application
development workflow. The major sections are:
• Part 1: Create a new application
• Part 2: View and modify the design configuration
• Part 3: Write firmware
• Part 4: Build the application
• Part 5: Program the device
• Part 6: Test your design
This design is developed for the PSoC™ 6 Wi-Fi Bluetooth® prototyping kit (CY8CPROTO-062-4343W). You can use
other supported kits to test this example by selecting the appropriate kit while creating the application. The
code described in the sections that follow has been tested on the following additional kits.
• PSoC™ 6 Wi-Fi Bluetooth® pioneer kit (CY8CKIT-062-WiFi-BT)
• PSoC™ 6 Bluetooth® LE pioneer kit (CY8CKIT-062-BLE)
• PSoC™ 6 Bluetooth® LE prototyping kit (CY8CPROTO-063-BLE)
• PSoC™ 62S2 Wi-Fi Bluetooth® pioneer kit (CY8CKIT-062S2-43012)
• PSoC™ 62S1 Wi-Fi Bluetooth® pioneer kit (CYW9P62S1-43438EVB-01)
• PSoC™ 62S1 Wi-Fi Bluetooth® pioneer kit (CYW9P62S1-43012EVB-01)
• PSoC™ 62S3 Wi-Fi Bluetooth® prototyping kit (CY8CPROTO-062S3-4343W)
• PSoC™ 64 “Secure Boot” Wi-Fi Bluetooth® pioneer kit (CY8CKIT-064B0S2-4343W)
• PSoC™ 62S4 pioneer kit (CY8CKIT-062S4)

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 21 002-28571 Rev. *G
2022-09-12

http://www.infineon.com/cy8cproto-062-4343w
http://www.infineon.com/cy8cproto-062-4343w
http://www.infineon.com/modustoolbox
https://www.infineon.com/ModusToolboxUserGuide
http://www.infineon.com/cy8cproto-062-4343w
http://www.infineon.com/cy8ckit-062-wifi-bt
http://www.infineon.com/cy8ckit-062-ble
http://www.infineon.com/cy8cproto-063-ble
https://www.infineon.com/cy8ckit-062s2-43012
https://www.infineon.com/CYW9P62S1-43438EVB-01
https://www.infineon.com/CYW9P62S1-43012EVB-01
https://www.infineon.com/cy8cproto-062s3-4343w
https://www.infineon.com/CY8CKIT-064B0S2-4343W
http://www.infineon.com/cy8ckit-062s4

4.3 About the design
This design uses the CM4 core of the PSoC™ 6 MCU to execute two tasks: UART communication and LED control.
At device reset, the Infineon-supplied pre-built CM0+ application image enables the CM4 core and configures
the CM0+ core to go to sleep. The CM4 core uses the UART to print a “Hello World” message to the serial port
stream, and starts blinking the user LED on the kit. When the user presses the enter key on the serial console,
the blinking is paused or resumed.

4.4 Part 1: Create a new application
This section takes you on a step-by-step guided tour of the new application process. It uses the Empty App
starter application and manually adds the functionality from the Hello World starter application. The Eclipse
IDE for ModusToolbox™ is used in the instructions, but you can use any IDE or the command line if you prefer.
If you are familiar with developing projects with ModusToolbox™ software, you can use the Hello World starter
application directly. It is a complete design, with all the firmware written for the supported kits. You can walk
through the instructions and observe how the steps are implemented in the code example.
If you start from scratch and follow all the instructions in this application note, you can use the Hello World
code example as a reference while following the instructions.
Launch the Eclipse IDE for ModusToolbox™ to get started. Please note that ModusToolbox™ software needs
access to the internet to successfully clone the starter application onto your machine.
1. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox™ presents a dialog to choose a directory for use as the
workspace directory. The workspace directory is used to store workspace preferences and development
artifacts. You can choose an existing empty directory by clicking the Browse button, as Figure 11 shows.
Alternatively, you can type in a directory name to be used as the workspace directory along with the
complete path, and the Eclipse IDE will create the directory for you.

Figure 11 Select a directory as the workspace
2. Create a new ModusToolbox™ application.

a. Click New Application in the Start group of the Quick Panel.
b. Alternatively, you can choose File > New > ModusToolbox™ Application, as Figure 12 shows.

The Project Creator opens.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 22 002-28571 Rev. *G
2022-09-12

Figure 12 Create a new ModusToolbox™ application
3. Select a target PSoC™ 6 development kit

ModusToolbox™ speeds up the development process by providing BSPs that set various workspace/
project options for the specified development kit in the new application dialog.

a. In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. The
steps that follow use CY8CPROTO-062-4343W. See Figure 13 for help with this step

b. Click Next

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 23 002-28571 Rev. *G
2022-09-12

Figure 13 Choose target hardware
c. In the Select Application dialog, select Empty App starter application, as Figure 14 shows.
d. In the Name field, type in a name for the application, such as Hello_World. You can choose to

leave the default name if you prefer.
e. Click Create to create the application, as Figure 14 shows, wait for the Project Creator to

automatically close once the project is successfully created.

Figure 14 Choose starter application
You have successfully created a new ModusToolbox™ application for a PSoC™ 6 MCU.
The BSP uses CY8C624ABZI-D54 as the default device that is mounted on the PSoC™ 6 Wi-Fi-Bluetooth®

prototyping kit (CY8CPROTO-062-4343W) along with the CYW4343WKUBG Wi-Fi/Bluetooth® radio.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 24 002-28571 Rev. *G
2022-09-12

http://www.infineon.com/cy8cproto-062-4343w
http://www.infineon.com/cy8cproto-062-4343w

If you are using custom hardware based on PSoC™ 6 MCU, or a different PSoC™ 6 MCU part number, please refer
to the Custom BSP App Note or the BSP Assistant user guide.

4.5 Part 2: View and modify the design configuration
Figure 15 shows the Eclipse IDE Project Explorer interface displaying the structure of the application project.
A PSoC™ 6 MCU application consists of a project to develop code for the CM4 core. A project folder consists of
various subfolders – each denoting a specific aspect of the project.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 25 002-28571 Rev. *G
2022-09-12

Figure 15 Project Explorer view

1. The files provided by the BSP are in the bsps folder and are listed under TARGET_<bsp name> sub-folders.
All the input files for the device and peripheral configurators are in the config folder inside the BSP.
The GeneratedSource folder in the BSP contains the files that are generated by the configurators and
are prefixed with cycfg_. These files contain the design configuration as defined by the BSP. From
ModusToolbox™ 3.x or later, you can directly customize configurator files of BSP for your application

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 26 002-28571 Rev. *G
2022-09-12

rather than overriding the default design configurator files with custom design configurator files since
BSPs are completely owned by the application.
The BSP folder also contains the linker scripts and the start-up code for the PSoC™ 6 MCU used on the
board.

2. The build folder contains all the artifacts resulting from a build of the project. The output files are
organized by target BSPs.

3. The deps folder contains .mtb files, which provide the locations from which ModusToolbox™ pulls the
libraries that are directly referenced by the application. These files typically each contain the GitHub
location of a library. The .mtb files also contain a git Commit Hash or Tag that tells which version of the
library is to be fetched and a path as to where the library should be stored locally.
For example, Here, retarget-io.mtb points to mtb://retarget-io#latest-v1.X#$$ASSET_REPO$$/retarget-
io/latest-v1.X. The variable $$ASSET_REPO$$ points to the root of the shared location which defaults to
mtb_shared. If the library must be local to the application instead of shared, use $$LOCAL$$ instead of
$$ASSET_REPO$$.

4. The libs folder also contains .mtb files. In this case, they point to libraries that are included indirectly
as a dependency of a BSP or another library. For each indirect dependency, the Library Manager places
an .mtb file in this folder. These files have been populated based on the targets available in deps folder.
For example, using BSP CY8CPROTO-062-4343W populates libs folder with the following .mtb files:
cmsis.mtb, core-lib.mtb, core-make.mtb, mtb-hal-cat1.mtb, mtb-pdl-cat1.mtb, cat1cm0p.mtb, recipe-
make-cat1a.mtb.
The libs folder contains the file mtb.mk, which stores the relative paths of the all the libraries required by
the application. The build system uses this file to find all the libraries required by the application.
Everything in the libs folder is generated by the Library Manager so you should not manually edit
anything in that folder.

5. An application contains a Makefile which is at the application's root folder. This file contains the set of
directives that the make tool uses to compile and link the application project. There can be more than
one project in an application. In that case there is a Makefile at the application level and one inside
each project. See AN215656 - PSoC™ 6 MCU dual-core system design for details related to multi-project
applications.

6. By default, when creating a new application or adding a library to an existing application and specifying
it as shared, all libraries are placed in an mtb_shareddirectory adjacent to the application directories.
The mtb_shared folder is shared between different applications within a workspace. Different
applications may use different versions of shared libraries if necessary.

4.5.1 Opening the Device Configurator
BSP configurator files are in the bsps/TARGET_<BSP-name>/config folder. For example, click <Application-name>
from Project Explorer then click Device Configurator link in the Quick Panel to open the file design.modus in
the Device Configurator as shown in Figure 16. You can also open other configuration files in their respective
configurators or click the corresponding links in the Quick Panel.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 27 002-28571 Rev. *G
2022-09-12

https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/core-make
https://github.com/cypresssemiconductorco/mtb-hal-cat1
https://github.com/cypresssemiconductorco/mtb-pdl-cat1
https://github.com/cypresssemiconductorco/cat1cm0p
https://www.infineon.com/an235656

Figure 16 Device Configurator

The DeviceConfigurator provides a set of Resources Categories tabs. Here you can choose between different
resources available in the device such as peripherals, pins, and clocks from the List of Resources.
You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial
Communication Block (SCB) resource can have EZI2C, I2C, SPI, or UART personalities. The Alias is your name
for the resource, which is used in firmware development. One or more aliases can be specified by using a
comma to separate them (with no spaces).
The Parameters pane is where you enter the configuration parameters for each enabled resource and the
selected personality. The Code Preview pane shows the configuration code generated per the configuration
parameters selected. This code is populated in the cycfg_ files in the GeneratedSource folder. The Parameters
pane and Code Preview pane may be displayed as tabs instead of separate windows but the contents will be
the same.
Any errors, warnings, and information messages arising out of the configuration are displayed in the Notices
pane.
Currently, the device configurator supports configurations using PDL source. If you choose to use HAL libraries
in your application then you do not need to do any device configurations changes in here. The application
project contains source files that help you create an application for the CM4 core (for example, main.c), while
the CM0+ application is supplied as a default C file (psoc6_02_cm0p_sleep.c for the CY8C624ABZI-D44 device). See
the cat1cm0p library. This C file is compiled and linked with the CM4 image as part of the normal build process.
At this point in the development process, we are ready to add the required middleware to the design. The only
middleware required for the Hello World application is the retarget-io library.

4.5.2 Add retarget-io middleware
In this step, you will add the retarget-io middleware to redirect standard input and output streams to the UART
configured by the BSP. The initialization of the middleware will be done in main.c.
1. In the Quick Panel, click the Library Manager link.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 28 002-28571 Rev. *G
2022-09-12

https://github.com/Infineon/cat1cm0p
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

2. In the subsequent dialog, click Add Libraries.
3. Under Peripherals, select and enable retarget-io.
4. Click OK and then Update.
The files necessary to use the retarget-io middleware are added in the mtb_shared > retarget_io folder, and
the .mtb file is added to the deps folder, as Figure 17 shows.

Figure 17 Add the retarget-io middleware

4.5.3 Configuration of UART, timer peripherals, pins, and system clocks
The configuration of the debug UART peripheral, timer peripheral, pins and system clocks can be done directly
in the code using the function APIs provided by the BSP and HAL. Therefore, it is not necessary to configure
them with the Device Configurator. See Part 3: Write firmware.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 29 002-28571 Rev. *G
2022-09-12

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

4.6 Part 3: Write firmware
At this point in the development process, you have created an application with the assistance of an application
template and modified it to add the retarget-io middleware. In this part, you write the firmware that
implements the design functionality.
If you are working from scratch using the Empty PSoC™ 6 starter application, you can copy the respective source
code to the main.c of the application project from the code snippet provided in this section. If you are using the
Hello World code example, all the required files are already in the application.

Firmware flow

We now examine the code in the main.c file of the application. Figure 18 shows the firmware flowchart.
The CM0+ core comes out of reset and enables the CM4 core. The CM0+ core is then configured to go to sleep
by the provided CM0+ application. Resource initialization for this example is performed by the CM4 core. It
configures the system clocks, pins, clock to peripheral connections, and other platform resources.
When the CM4 core is enabled, the clocks and system resources are initialized by the BSP initialization
function. The retarget-io middleware is configured to use the debug UART, and the user LED is initialized.
The debug UART prints a “Hello World!” message on the terminal emulator – the on-board KitProg3 acts the
USB-UART bridge to create the virtual COM port. A timer object is configured to generate an interrupt every
1000 milliseconds. At each Timer interrupt, the CM4 core toggles the LED state on the kit.
The firmware is designed to accept the 'Enter' key as an input and on every press of the 'Enter' key the firmware
starts or stops the blinking of the LED.
Note that the application code uses BSP/HAL/middleware functions to execute the intended functionality.
cybsp_init()- This BSP function sets up the HAL hardware manager and initializes all the system resources of
the device including but not limited to the system clocks and power regulators.
cy_retarget_io_init()- This function from the retarget-io middleware uses the aliases set up in the BSP for
the debug UART pins to configure the debug UART with a standard baud rate of 115200 and also redirects the
input/output stream to the debug UART.

Note: You can open the Device Configurator to view the aliases that are set up in the BSP.

cyhal_gpio_init()- This function from the GPIO HAL initializes the physical pin to drive the LED. The LED used is
derived from the alias for the pin set up in the BSP.
timer_init()- This function wraps a set of timer HAL function calls to instantiate and configure a hardware
timer. It also sets up a callback for the timer interrupt.
Copy the following code snippet to main.c of your application project.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 30 002-28571 Rev. *G
2022-09-12

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

Code listing 1: main.c file

#include "cyhal.h"
#include "cybsp.h"
#include "cy_retarget_io.h"

/***
* Macros
***/

/* LED blink timer clock value in Hz */
#define LED_BLINK_TIMER_CLOCK_HZ (10000)

/* LED blink timer period value */
#define LED_BLINK_TIMER_PERIOD (9999)

/***
* Function Prototypes
***/
void timer_init(void);
static void isr_timer(void *callback_arg, cyhal_timer_event_t event);

/***
* Global Variables
***/
bool timer_interrupt_flag = false;
bool led_blink_active_flag = true;

/* Variable for storing character read from terminal */
uint8_t uart_read_value;

/* Timer object used for blinking the LED */
cyhal_timer_t led_blink_timer;

/***
* Function Name: main
**
* Summary:
* This is the main function for CM4 core. It sets up a timer to trigger a
* periodic interrupt. The main while loop checks for the status of a flag set
* by the interrupt and toggles an LED at 1Hz to create an LED blinky. The
* while loop also checks whether the 'Enter' key was pressed and
* stops/restarts LED blinking.
*
* Parameters:
* none
*
* Return:
* int

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 31 002-28571 Rev. *G
2022-09-12

*
***/
int main(void)
{
 cy_rslt_t result;

 /* Initialize the device and board peripherals */
 result = cybsp_init();

 /* Board init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Enable global interrupts */
 __enable_irq();

 /* Initialize retarget-io to use the debug UART port */
 result = cy_retarget_io_init(CYBSP_DEBUG_UART_TX, CYBSP_DEBUG_UART_RX,
 CY_RETARGET_IO_BAUDRATE);

 /* retarget-io init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Initialize the User LED */
 result = cyhal_gpio_init(CYBSP_USER_LED, CYHAL_GPIO_DIR_OUTPUT,
 CYHAL_GPIO_DRIVE_STRONG, CYBSP_LED_STATE_OFF);

 /* GPIO init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
 printf("\x1b[2J\x1b[;H");

 printf("****************** "
 "PSoC 6 MCU: Hello World! Example "
 "****************** \r\n\n");

 printf("Hello World!!!\r\n\n");

 printf("For more PSoC 6 MCU projects, "
 "visit our code examples repositories:\r\n\n");

 printf("https://github.com/Infineon/"
 "Code-Examples-for-ModusToolbox-Software\r\n\n");

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 32 002-28571 Rev. *G
2022-09-12

 /* Initialize timer to toggle the LED */
 timer_init();

 printf("Press 'Enter' key to pause or "
 "resume blinking the user LED \r\n\r\n");

 for (;;)
 {
 /* Check if 'Enter' key was pressed */
 if (cyhal_uart_getc(&cy_retarget_io_uart_obj, &uart_read_value, 1)
 == CY_RSLT_SUCCESS)
 {
 if (uart_read_value == '\r')
 {
 /* Pause LED blinking by stopping the timer */
 if (led_blink_active_flag)
 {
 cyhal_timer_stop(&led_blink_timer);

 printf("LED blinking paused \r\n");
 }
 else /* Resume LED blinking by starting the timer */
 {
 cyhal_timer_start(&led_blink_timer);

 printf("LED blinking resumed\r\n");
 }

 /* Move cursor to previous line */
 printf("\x1b[1F");

 led_blink_active_flag ^= 1;
 }
 }

 /* Check if timer elapsed (interrupt fired) and toggle the LED */
 if (timer_interrupt_flag)
 {
 /* Clear the flag */
 timer_interrupt_flag = false;

 /* Invert the USER LED state */
 cyhal_gpio_toggle(CYBSP_USER_LED);
 }
 }
}

/***
* Function Name: timer_init
**
* Summary:
* This function creates and configures a Timer object. The timer ticks

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 33 002-28571 Rev. *G
2022-09-12

* continuously and produces a periodic interrupt on every terminal count
* event. The period is defined by the 'period' and 'compare_value' of the
* timer configuration structure 'led_blink_timer_cfg'. Without any changes,
* this application is designed to produce an interrupt every 1 second.
*
* Parameters:
* none
*
***/
 void timer_init(void)
 {
 cy_rslt_t result;

 const cyhal_timer_cfg_t led_blink_timer_cfg =
 {
 .compare_value = 0, /* Timer compare value, not used */
 .period = LED_BLINK_TIMER_PERIOD, /* Defines the timer period */
 .direction = CYHAL_TIMER_DIR_UP, /* Timer counts up */
 .is_compare = false, /* Don't use compare mode */
 .is_continuous = true, /* Run timer indefinitely */
 .value = 0 /* Initial value of counter */
 };

 /* Initialize the timer object. Does not use input pin ('pin' is NC) and
 * does not use a pre-configured clock source ('clk' is NULL). */
 result = cyhal_timer_init(&led_blink_timer, NC, NULL);

 /* timer init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Configure timer period and operation mode such as count direction,
 duration */
 cyhal_timer_configure(&led_blink_timer, &led_blink_timer_cfg);

 /* Set the frequency of timer's clock source */
 cyhal_timer_set_frequency(&led_blink_timer, LED_BLINK_TIMER_CLOCK_HZ);

 /* Assign the ISR to execute on timer interrupt */
 cyhal_timer_register_callback(&led_blink_timer, isr_timer, NULL);

 /* Set the event on which timer interrupt occurs and enable it */
 cyhal_timer_enable_event(&led_blink_timer, CYHAL_TIMER_IRQ_TERMINAL_COUNT,
 7, true);

 /* Start the timer with the configured settings */
 cyhal_timer_start(&led_blink_timer);
 }

/***

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 34 002-28571 Rev. *G
2022-09-12

* Function Name: isr_timer
**
* Summary:
* This is the interrupt handler function for the timer interrupt.
*
* Parameters:
* callback_arg Arguments passed to the interrupt callback
* event Timer/counter interrupt triggers
*
***/
static void isr_timer(void *callback_arg, cyhal_timer_event_t event)
{
 (void) callback_arg;
 (void) event;

 /* Set the interrupt flag and process it from the main while(1) loop */
 timer_interrupt_flag = true;
}

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 35 002-28571 Rev. *G
2022-09-12

Figure 18 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source
files for a deeper understanding.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 36 002-28571 Rev. *G
2022-09-12

4.7 Part 4: Build the application
This section shows how to build the application.
1. Select the application project in the Project Explorer view.
2. Click Build Application shortcut under the <name> group in the Quick Panel.

It selects the build configuration from Makefile and compiles/links all projects that constitute the
application. By default, Debug configurations are selected.

3. The Console view lists the results of the build operation, as Figure 19 shows.

Figure 19 Build the application

If you encounter errors, revisit prior steps to ensure that you completed all the required tasks.

Note: You can also use the command line interface (CLI) to build the application. Please refer to the Build
system chapter in the ModusToolbox™ tools package user guide. This document is located in the /
docs_<version>/ folder in the ModusToolbox™ installation.

4.8 Part 5: Program the device
This section shows how to program the PSoC™ 6 MCU.
ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on PSoC™ 6 MCUs.
The kit must be running KitProg3. Some kits are shipped with KitProg2 firmware instead of KitProg3. See
Programming/debugging using Eclipse IDE for details. The ModusToolbox™ tools package includes the fw-
loader command-line tool to switch the KitProg firmware from KitProg2 to KitProg3. See the PSoC™ 6 MCU
KitProg Firmware Loader section in the Eclipse IDE for ModusToolbox™ user guide for more details.
If you are using a development kit with a built-in programmer (the CY8CPROTO-062-4343W, for example),
connect the board to your computer using the USB cable.
If you are developing on your own hardware, you can use a hardware programmer/debugger; for example, a
CY8CKIT-005 MiniProg4, J-Link, or ULINKpro.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 37 002-28571 Rev. *G
2022-09-12

https://www.infineon.com/ModusToolboxUserGuide
http://www.infineon.com/MTBEclipseIDEUserGuide
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005
https://www.segger.com/products/debug-probes/j-link/
https://www2.keil.com/mdk5/ulink/ulinkpro/

Select the application project and click the <application name> Program (KitProg3_MiniProg4) shortcut
under the Launches group in the Quick Panel, as Figure 20 shows. The IDE will select and run the appropriate
run configuration.

Note: This step also performs a build if any files have been modified since the last build.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 38 002-28571 Rev. *G
2022-09-12

Figure 20 Programming an application to a device

The Console view lists the results of the programming operation, as Figure 21 shows.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 39 002-28571 Rev. *G
2022-09-12

Figure 21 Programming an application to a device

4.9 Part 6: Test your design
This section describes how to test your design.
Follow the steps below to observe the output of your design. This note uses Tera Term as the UART terminal
emulator to view the results. You can use any terminal of your choice to view the output.
1. Select the serial port

Launch Tera Term and select the USB-UART COM port as Figure 22 shows. Note that your COM port
number may be different.

Figure 22 Selecting the KitProg3 COM port in Tera Term
2. Set the baud rate

Set the baud rate to 115200 under Setup > Serial port as Figure 23 shows.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 40 002-28571 Rev. *G
2022-09-12

Figure 23 Configuring the baud rate in Tera Term
3. Reset the device

Press the reset switch (SW1) on the kit. A message appears on the terminal as Figure 24 shows. The user
LED on the kit will start blinking.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 41 002-28571 Rev. *G
2022-09-12

Figure 24 UART message printed from CM4 core
4. Pause/resume LED blinking functionality

Press the Enter key to pause/resume blinking the LED. When the LED blinking is paused, a corresponding
message will be displayed on the terminal as Figure 25 shows.

Figure 25 UART message from CM4 core

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 42 002-28571 Rev. *G
2022-09-12

5 Summary
This application note explored the PSoC™ 6 MCU device architecture and the associated development tools.
PSoC™ 6 MCU is a truly programmable embedded system-on-chip with configurable analog and digital
peripheral functions, memory, and a dual-core system on a single chip. The integrated features and low-power
modes make PSoC™ 6 MCU an ideal choice for smart home, IoT gateways, and other related applications.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Summary

Application Note 43 002-28571 Rev. *G
2022-09-12

References
For a complete and updated list of PSoC™ 6 MCU code examples, please visit our GitHub. For more PSoC™ 6
MCU-related documents, please visit our PSoC™ 6 MCU product web page.
Table 3 lists the system-level and general application notes that are recommended for the next steps in learning
about PSoC™ 6 MCU and ModusToolbox™.

Table 3 General and system-level application notes

Document Document name
AN221774 Getting started with PSoC™ 6 MCU on PSoC™ Creator

AN210781 Getting started with PSoC™ 6 MCU with Bluetooth® Low Energy (BLE) connectivity on
PSoC™ Creator

AN218241 PSoC™ 6 MCU hardware design considerations

AN219528 PSoC™ 6 MCU low-power modes and power reduction techniques

Table 4 lists the application notes (AN) for specific peripherals and applications.

Table 4 Documents related to PSoC™ 6 MCU features

Document Document name
System resources, CPU, and interrupts
AN215656 PSoC™ 6 MCU dual-core system design

AN217666 PSoC™ 6 MCU interrupts

AN235279 Performing ETM and ITM Trace on PSoC 6 MCU

CAPSENSE™

AN92239 Proximity sensing with CAPSENSE™

AN85951 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Device Firmware Update
AN213924 PSoC™ 6 MCU device firmware update software development kit guide

Low-power analog
AN230938 PSoC™ 6 MCU low-power analog

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

References

Application Note 44 002-28571 Rev. *G
2022-09-12

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
http://www.infineon.com/psoc6
https://www.infineon.com/an221774
https://www.infineon.com/an210781
http://www.infineon.com/an218241
http://www.infineon.com/an219528
http://www.infineon.com/an215656
http://www.infineon.com/an217666
http://www.infineon.com/an235279
https://www.infineon.com/an92239
http://www.infineon.com/an85951
http://www.infineon.com/an213924
https://www.infineon.com/PSoC6LPAnalogAN

Glossary
This section lists the most commonly used terms that you might encounter while working with PSoC™ family of
devices.
• Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other

functions. The board support package is a set of libraries that provide firmware APIs to initialize the board
and provide access to board level peripherals.

• Cypress Programmer: Cypress Programmer is a flexible, cross-platform application for programming
Cypress devices. It can Program, Erase, Verify, and Read the flash of the target device.

• Hardware abstraction layer (HAL): The HAL wraps the lower level drivers (like MTB-PDL-CAT1) and provides
a high-level interface to the MCU. The interface is abstracted to work on any MCU.

• KitProg: The KitProg is an onboard programmer/debugger with USB-I2C and USB-UART bridge
functionality. The KitProg is integrated onto most PSoC™ development kits.

• MiniProg3/MiniProg4: Programming hardware for development that is used to program PSoC™ devices on
your custom board or PSoC™ development kits that do not support a built-in programmer.

• Personality: A personality expresses the configurability of a resource for a functionality. For example, the
SCB resource can be configured to be an UART, SPI or I2C personalities.

• PSoC™: A programmable, embedded design platform that includes a CPU, such as the 32-bit Arm® Cortex®-
M0, with both analog and digital programmable blocks. It accelerates embedded system design with
reliable, easy-to-use solutions, such as touch sensing, and enables low-power designs.

• Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application.
Some middleware may provide network protocols (e.g. MQTT), and some may provide high level software
interfaces to device features (e.g. USB, audio).

• ModusToolbox™: An Eclipse based embedded design platform for IoT designers that provides a single,
coherent, and familiar design experience combining the industry’s most deployed Wi-Fi and Bluetooth®
technologies, and the lowest power, most flexible MCUs with best-in-class sensing.

• Peripheral driver library (PDL): The peripheral driver library (PDL) simplifies software development for the
PSoC™ 6 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus
easing software development for the extensive set of peripherals available.

• WICED: WICED (Wireless Internet Connectivity for Embedded Devices) is a full-featured platform with
proven Software Development Kits (SDKs) and turnkey hardware solutions from partners to readily enable
Wi-Fi and Bluetooth® connectivity in system design.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Glossary

Application Note 45 002-28571 Rev. *G
2022-09-12

https://github.com/infineon?q=TARGET+NOT+Deprecated
https://www.infineon.com/cypressprogrammer
https://github.com/Infineon/mtb-hal-cat1
https://github.com/Infineon/mtb-pdl-cat1
http://www.infineon.com/cy8ckit-002
http://www.infineon.com/cy8ckit-005
http://www.infineon.com/psoc
https://github.com/Infineon/modustoolbox-software#mcu-middleware-libraries
http://www.infineon.com/modustoolbox
https://www.infineon.com/pdl
https://www.infineon.com/wiced

Revision history
Document
version

Date of release Description of changes

** 2017-07-26 New application note

*A 2018-01-09 Updated screenshots with latest release of ModusToolbox™

Added new supported PSoC™ 6 MCU devices
Added AnyCloud description under ModusToolbox™ software

*B 2019-04-16 Added new supported PSoC™ 6 MCU device – PSoC™ 62S4
Added information on PSoC™ 6 product lines and development kits
available for each product line

*C 2020-05-06 Updated Figure 1
Updated Screenshots with MTB v2.2
Added mtb_shared folder description, updated application creation
process with MTB flow

*D 2021-03-11 Updated to Infineon template

*E 2021-07-09 Updated the GitHub links
Added reference to new PSoC™ 6 MCU low-power analog
Updated Figure 22 to Figure 25
Firmware updated to the latest version

*F 2022-07-21 Template update

*G 2022-09-12 Updated the development flow as per MTB v3.0 software
Updated link references
Updated configurator info
Added new Figure 2 and Figure 7
Updated Figure 8 and Figure 14
Added reference to new AN235279
Added a new section for ModusToolbox™ applications
Removed reference to deprecated AN225588
Updated Figure 17 to Figure 19

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Revision history

Application Note 46 002-28571 Rev. *G
2022-09-12

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-09-12
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-ofg1649405242329

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Development ecosystem
	2.1 PSoC™ resources
	2.2 Firmware/application development
	2.2.1 Installing the ModusToolbox™ tools package
	2.2.2 Choosing an IDE
	2.2.3 ModusToolbox™ software
	2.2.4 ModusToolbox™ applications
	2.2.5 PSoC™ 6 software resources
	2.2.5.1 Configurators
	2.2.5.2 Library management for PSoC™ 6 MCU
	2.2.5.3 Software development for PSoC™ 6 MCU

	2.2.6 ModusToolbox™ help

	2.3 Support for other IDEs
	2.4 FreeRTOS support with ModusToolbox™
	2.5 Programming/debugging using Eclipse IDE
	2.6 PSoC™ 6 MCU development kits

	3 Device features
	4 My first PSoC™ 6 MCU design using Eclipse IDE for ModusToolbox™ software
	4.1 Prerequisites
	4.1.1 Hardware
	4.1.2 Software

	4.2 Using these instructions
	4.3 About the design
	4.4 Part 1: Create a new application
	4.5 Part 2: View and modify the design configuration
	4.5.1 Opening the Device Configurator
	4.5.2 Add retarget-io middleware
	4.5.3 Configuration of UART, timer peripherals, pins, and system clocks

	4.6 Part 3: Write firmware
	4.7 Part 4: Build the application
	4.8 Part 5: Program the device
	4.9 Part 6: Test your design

	5 Summary
	References
	Glossary
	Revision history
	Disclaimer

