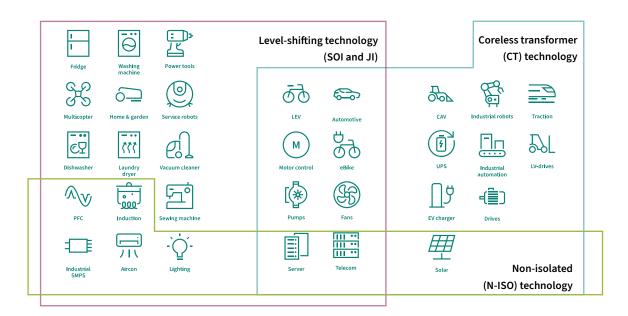
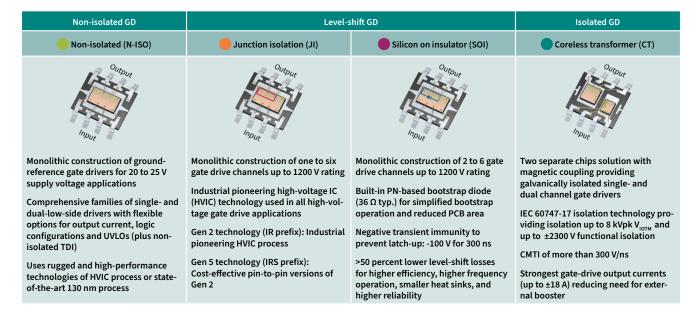


EiceDRIVER™ gate driver ICs

Every switch needs a driver - gate driver solutions for Si, SiC and GaN switches


Edition 2024


Infineon gate driver IC applications

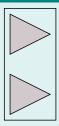
Leveraging the application expertise and advanced technologies of Infineon and International Rectifier, EiceDRIVER™ gate driver ICs are well-suited for many applications such as industrial motor drives, home appliances, solar inverters, automotive applications, EV-charging, UPS, switch-mode power supplies (SMPS), high-voltage lighting, battery-powered applications, and so on.

Infineon gate driver IC technologies

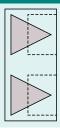
Driver configuration overview

1-channel low-side driver

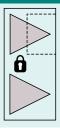
Allows low offset of the voltage between input and output


1-channel high-side driver

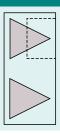
Allows high voltage offset between input and output


2-channel low-side driver

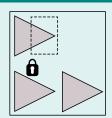
Both channels allow individual low voltage offsets, no interlock


2-channel high-side driver

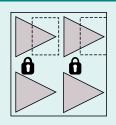
Both channels allow individual high voltage offsets, no interlock


Half-bridge driver

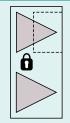
Two interlocked channels for shoot through protection where one of the channels allows a high voltage offset.


High- and low-side driver

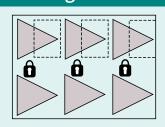
Two non-interlocked channels, one for high voltage, one for low voltage offsets. The industry may also refer this as half-bridge.


Half-bridge plus single low-side driver

Half-bridge with one additional low-side driver.


Full-bridge driver

Four channels in a package with two independent half bridges.


Synchronous-buck drivers

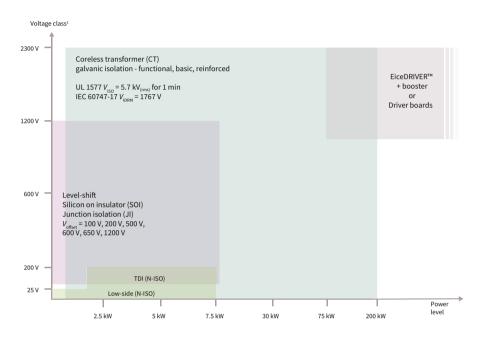
High speed drivers for dual high side and low side MOSFETs in synchronous rectified buck converters.

Three-phase bridge

Six channels in a package with three independent half bridges

Click here to learn more:

www.infineon.com/gatedriver www.infineon.com/driver-gan


www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

EiceDRIVER™ and MOTIX™ gate driver IC

Gate driver ICs serve as the interface between control signals (digital or analog controllers) and power switches (IGBTs, MOSFETs, SiC MOSFETs, and GaN HEMTs). Integrated gate driver solutions reduce design complexity, development time, bill of materials (BOM), and board space while improving reliability over discretely-implemented gate-drive solutions.

Every switch needs a driver, the right driver makes a difference. Infineon offers a comprehensive portfolio of EiceDRIVER™ gate driver ICs with a variety of configurations, voltage classes, isolation levels, protection features, and package options. EiceDRIVER™ gate driver ICs are complementary to Infineon IGBT discretes and modules, silicon (CoolMOS™, OptiMOS™, and StrongIRFET™) and silicon carbide MOSFETs (CoolSiC™), gallium nitride HEMTs (CoolGaN™), or as part of integrated power modules (CIPOS™ IPM and iMOTION™ IPM).

In addition, MOTIX™ motor gate driver ICs are part of the MOTIX™ scalable product portfolio for low-voltage motor control solutions including MOTIX™ Driver, MOTIX™ Bridge, MOTIX™ SBC, and MOTIX™ MCU (SoC/SiP).

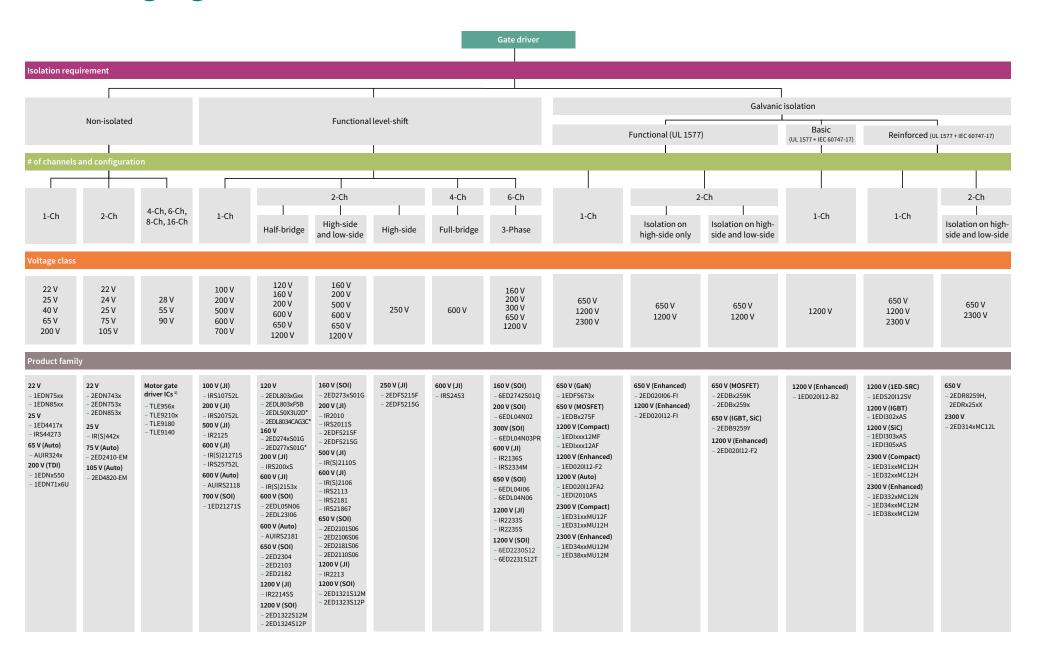
Gate driver confi	guration		25 V	25 - 105 V	200 V	500 V	600 V	650 V	1200 V	2300 V
		Isolated								
	1-Channel	High-side								
		Low-side								
		Isolated								
Gate drivers		High-side								
	2-Channel	Low-side								
		High-side + Low-side					••			
		Half-bridge					••			
	4-Channel	Half-bridge								
	6-Channel	Three-phase							• •	

Note 1 Voltage class on the top row is defined base on different driver configurations for the maximum Voltage class

Non-isolated (N-ISO)

Junction isolation (JI)

Coreless transformer (CT)


Voltage class of the Copi own seemed use of uninered in New Coming and office in Hamiltonian Voltage class.

1. For single high-side, high-side and low-side, half bridge and three phase gate drivers, voltage class is defined as switch break down voltage in applications.

2. For low side drivers (N-ISO), voltage class is defined as maximum operating range supply voltage.

3. For special cases as 1EDNx550 (1EDN-TDI, N-ISO), voltage class is defined as maximum bus voltage (highest floating voltage it can manage).

Choosing a gate driver IC

Infineon gate driver IC package options

DSO-8 (SOIC-8N)	S Inlinear	DSO-24 (DSO-28 without 4 pins)	O Library Control of the Control of	TSSOP-8	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN T
TSSOP-25	Son Control of the Co	DSO-8 with power pad		DSO-28 (SOIC-28WB)	O Mineur Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-C
TSSOP-28	d Inlineon	DSO-8 300-mil (SOIC-8WB)	S. Minney	DSO-36	Solution Page 1800 Section 1800
VDSON-8	G Island	DSO-14 (SOIC-14N)	G Infinence of the State of the	LCC-32 (PLCC-44)	ROCAL PLOCAL
VQFN-14 (MLPQ 4X4 14L)		DSO-14 150mil	of Milana	LQFP-64	S William Constant
VQFN-28 (MLPQ 5x5 28L)		DSO-14 300 mil (DSO-16 without 2 pins)	TITITITI TO	SOT23-5	S lutinous
VQFN-32 5x5 mm		DSO-16		SOT23-6	© lating on Parties of
VQFN-34 (MLPQ 7Xx7 48L)		DSO-16 300-mil (SOIC-16WB)	(1) Irlingon	SSOP-24	TOR WHITH
VQFN-48		DSO-16 (fine pitch)	William Comments	TFLGA-13	III III
VSON-10 3x3 mm	G Inlineon	DSO-18	d Infineon	TQFN-48	G history
WSON-6		DSO-19	G Infinent	TSDSO-24	mmmm proving
WSON-8		DSO-20 (SOIC-20WB)	TER	TSNP-7	a marie and a mari
СНІР		TSNP-6			
DSO-20 (fine pitch)	C. Million	DSO-20 WB			

Gate driver ICs for GaN HEMTs

GaN HEMTs represent a key technology for modern power electronics systems, providing high efficiency and power density. Infineon's CoolGaN™ HEMT families and EiceDRIVER™ gate driver ICs are designed to provide the best possible performance in GaN-based systems, minimizing R&D effort and cost. Infineon offers a broad range of EiceDRIVER™ gate driver ICs optimized for driving GaN GIT (gate injection transistor) and SG (Schottky gate) HEMTs.

Recommended drivers for GaN GIT HEMTs and 650 V GaN HEMTs

Infineon's CoolGaN™ GIT technology is based on a hybrid-drain HEMT with p-GaN gate resulting in a robust normallyoff power switch. To deal with the particularities of this concept, an innovative differential gate-drive concept has been implemented in tailor-made gate driver ICs of the EiceDRIVER™ 1EDx56x3 product family optimized for CoolGaN™ GIT HEMTs. These drivers ensure robust and highly efficient operation of the high-voltage GaN switch, and at the same time concurrently minimizing R&D efforts and shortening time-to-market. Infineon's EiceDRIVER™ 1EDx56x3 provide negative V_{cs} voltage, which leads to safe off-states during switching transients. Additionally, it protects the GaN switch against spurious turn-on, even for the first pulse or after a burst mode operation. Thanks to the integrated galvanic isolation, Infineon's EiceDRIVER™ GaN gate driver ICs are best suited to drive high-voltage GaN HEMTs in hard-switching halfbridge applications, such as the totem-pole PFC topology. If the PWM signals have to cross the safe isolation barrier, such as in the resonant LLC with secondary-side control, the 1EDS5663H with reinforced isolation is the right choice. Nevertheless, in many applications, standard gate driver ICs with right fit UVLO protection can also be employed when coupled to an RC circuit to generate both the required small steady-state current and the turn-on/turn-off peak currents. Dual-channel drivers of the EiceDRIVER™ 2EDxx259 product family feature dead-time control (DTC) and shoot-through protection (STP) to ensure safe operation in half-bridge topologies using a single IC. A hybrid gate driving configuration for half-bridge topologies, composed of two single-channel gate driver ICs of the EiceDRIVER™ 1EDBx275F and 1EDNx550B, allows optimizing the driver IC placement on the PCB in order to minimize the gate loop parasitic inductances. This results in a PCB area saving (compared with a dual-channel gate driver IC) and it comes with a highly competitive bill-of-material (BOM).

To summarize, the 1-channel and 2-channel gate driver ICs of the EiceDRIVER™ family are the best choices to match with Infineon's CoolGaN™ GIT HEMTs and other 650 GaN HEMTs technologies (e.g., Schottky gate, Cascode) to achieve an optimum combination of efficiency, power density, and robustness in high-performance power conversion applications.

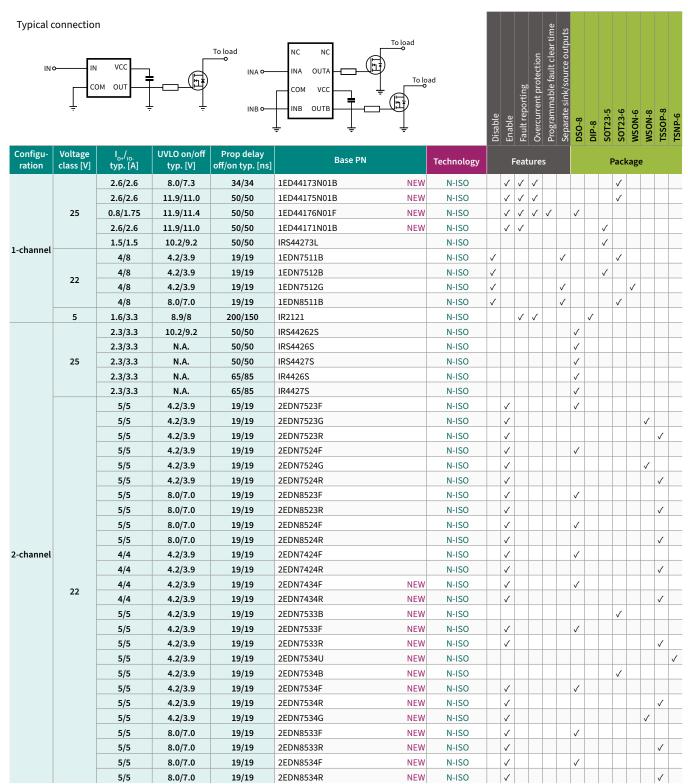
Product family	Part number	Current peak sink/ source	VCC2 (-Vee2)	UVLO*	Prop delay	СМТІ	Other features	Package
1EDB	1EDB7275F	5 A / -9 A	20 V	4 V	45 ns	300 V/ns	Separate source/sink outputs, fast start-up times and fast recovery,	DSO-8 150 mil
	1EDB8275F			8 V			basic isolation, UL 1577	
1EDN-TDI	1EDN7550B	5 A / -9 A	20 V	4 V	45 ns	n. a.	Truly differential inputs to provide high common-mode robustness	SOT23 6-pin
	1EDN8550B	5 A / -9 A		8 V				
2EDB	2EDB7259Y	5 A / -9 A	20 V	4 V	38 ns	150 V/ns	fast start-up times and fast output clamping, basic isolation, UL 1577	DSO-14 150 mil
	2EDB8259Y			8 V				
2EDR	2EDR7259X	5 A / -9 A	20 V	4 V	38 ns	150 V/ns	fast start-up times and fast output clamping, reinforced isolation, UL	DSO-14 300 mil
	2EDR8259X			8 V			1577, VDE 0884-17, IEC 60747-17	

Evaluation boards with gate driver ICs for GaN GIT HEMTs and 650 V GaN HEMTs

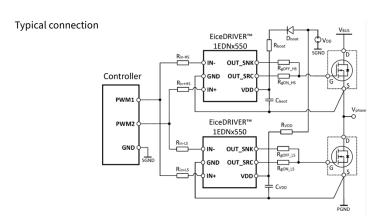
Our evaluation board helps you to set up and test GaN driving solutions quickly and easily.

EVAL_1EDF_G1B_HB_GAN	EVAL_2EDB_HB_GAN	KIT_1EDB_AUX_GAN
	The second state of the se	
High-frequency half-bridge evaluation board featuring EiceDRIVER™ 1EDi-G1.	CoolGaN™ GIT HEMT half-bridge evaluation board with EiceDRIVER™ 2EDB.	Complete driving solution for GaN HEMTs including an isolated gate driver IC with a configurable floating auxiliary supply supporting unipolar and bipolar driving.
www.infineon.com/cms/en/product/evaluation-boards/eval_1edf_g1b_hb_gan/	www.infineon.com/cms/en/product/evaluation- boards/eval_2edb_hb_gan/	www.infineon.com/cms/en/product/evaluation- boards/kit_1edb_aux_gan/

Recommended drivers for GaN SG HEMTs


The 1EDN71x6Gx is a single-channel gate driver IC product family optimized for driving Infineon CoolGaN™ SG HEMTs, as well as other GaN SG HEMTs and Si MOSFETs. This gate driver includes several key features that enable a high-performance system design with fast-switching transistors, including truly differential input (TDI), four driving strength options, active Miller clamp, bootstrap voltage clamp, and with or without adjustable charge pump in PG-SON-10 and PG-TSNP-7 package respectively.

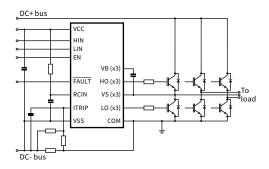
Product family	PN	Current peak sink/ source	CMR _{static} / CMR _{dynamic}	UVLO	Prop delay	СМТІ	Other features	Package
1EDN71x6x	1EDN7116G	2.0 A/2.0 A	150 V/200 V	4 V	55 ns	100 V/ns	Negative charge pump, miller clamp	PG-VSON-10
	1EDN7126G	1.5 A/1.5 A			75 ns			
	1EDN7136G	1.0 A/1.0 A			105 ns			
	1EDN7146G	0.5 A/0.5 A			125 ns			
	1EDN7116U	2.0 A/2.0 A	150 V/200 V	4 V	55 ns	100 V/ns	Miller clamp	PG-TSNP-7
	1EDN7126U	1.5 A/1.5 A			75 ns	100 V/ns		
	1EDN7136U	1.0 A/1.0 A			105 ns	100 V/ns		
	1EDN7146U	0.5 A/0.5 A			125 ns	100 V/ns		
1EDB	1EDB7275F	5 A / -9 A	20 V	4 V	45 ns	300 V/ns	Separate source/sink outputs, fast start-up	DSO-8 150 mil
	1EDB8275F			8 V			times and fast recovery, basic isolation, UL 1577	
1EDN-TDI	1EDN7550B	5 A / -9 A	20 V	4 V	45 ns	n. a.	Truly differential inputs to provide high	SOT23 6-pin
	1EDN8550B	5 A / -9 A		8 V			common-mode robustness	
2EDB	2EDB7259Y	5 A / -9 A	20 V	4 V	38 ns	150 V/ns	Fast start-up times and fast output clam-	DSO-14 150 mil
	2EDB8259Y			8 V	ping, basic isolation, UL 1577		ping, basic isolation, UL 1577	
2EDR	2EDR7259X	5 A / -9 A	20 V	4 V	38 ns	150 V/ns	Fast start-up times and fast output clamping, reinforced isolation, UL 1577, VDE	DSO-14 300 mil
	2EDR8259X			8 V				


Product overview

Infineon's gate driver IC solutions are the expert's choice. With more than 400 reliable and efficient gate driver solutions, we provide a comprehensive portfolio for virtually any application. To ease the selection process, this overview is structured along the configurations of the gate driver ICs, as opposed to application topology.

Non-isolated low-side gate driver IC

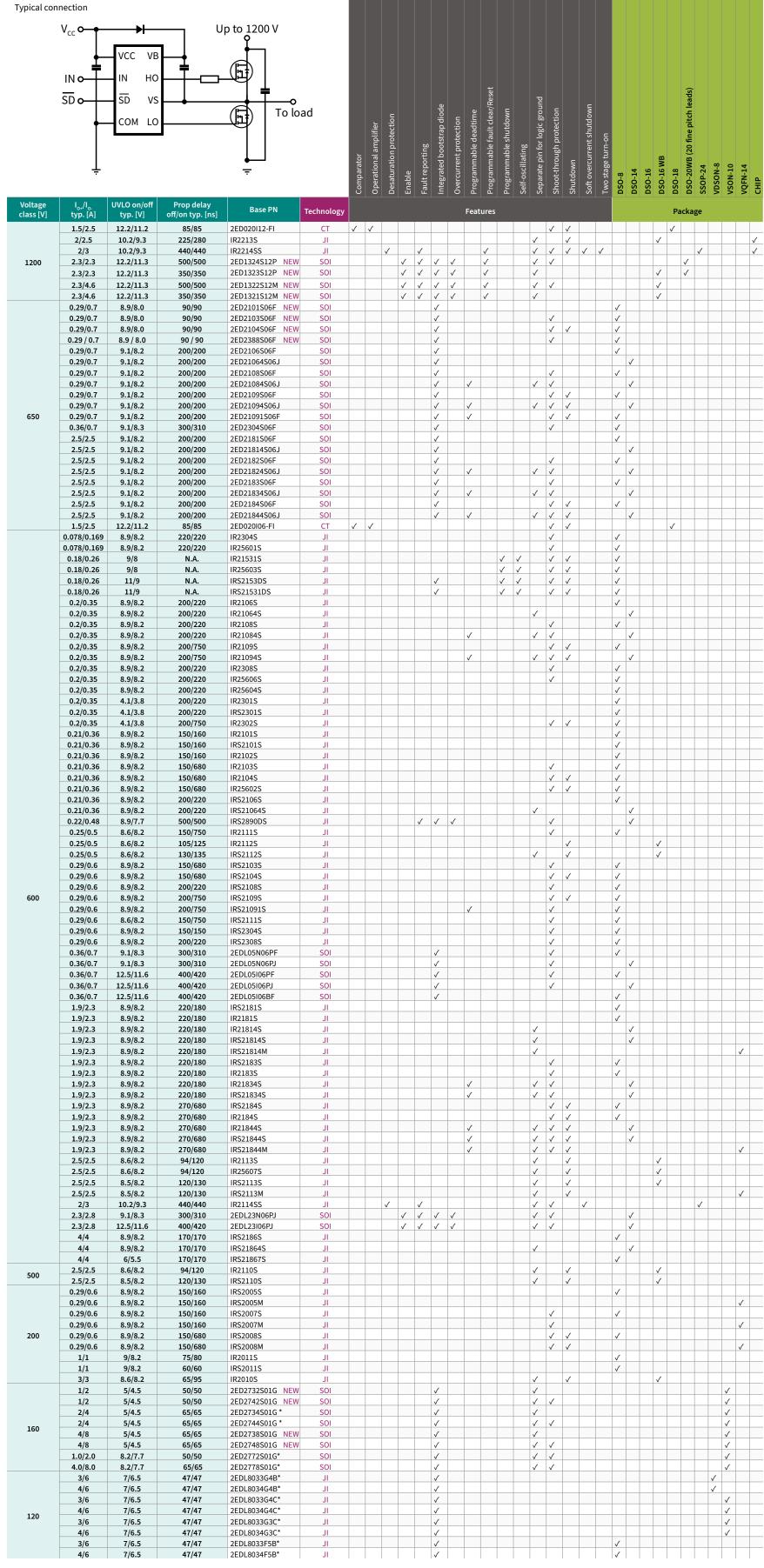
Non-isolated TDI gate driver IC


Adustable Negative charge pump Active Miller clamp Separate sink/source outputs Truly differential inputs SOT 23-6 ISNP-6	VSON-10
---	---------

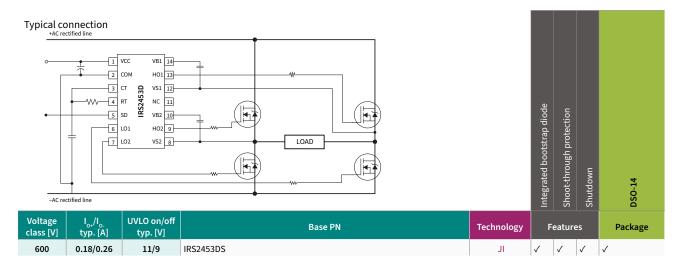
Configuration	Voltage class [V]	l _{o+} /l _{o-} typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN	Technology		Feat	Features			Pack	age	
		4/8	4.2/3.9	45/45	1EDN7550U	N-ISO			✓	✓		✓		
		4/8	4.2/3.9	45/45	1EDN7550B	N-ISO			✓	✓	✓			
		4/8	8.0/7.0	45/45	1EDN8550B	N-ISO			✓	✓	✓			
		4/8	12.2/11.5	45/45	1EDN6550B	N-ISO			✓	✓	✓	Ш		
		4/8	14.9/14.4	45/45	1EDN9550B	N-ISO			✓	✓	✓			
		2/2	3.85/3.75	55/55	1EDN7116G NEW	N-ISO	✓	✓		✓			✓	
1-channel	200	2/2	3.85/3.75	55/55	1EDN7116U NEW	N-ISO		✓		✓			✓	
		1.5/1.5	3.85/3.75	75/75	1EDN7126G NEW	N-ISO	✓	✓		✓		Ш	✓	
		1.5/1.5	3.85/3.75	75/75	1EDN7126U NEW	N-ISO		✓		✓			✓	
		1/1	3.85/3.75	105/105	1EDN7136G NEW	N-ISO	✓	✓		✓			✓	
		1/1	3.85/3.75	105/105	1EDN7136U NEW	N-ISO		✓		✓			✓	
		0.5/0.5	3.85/3.75	125/125	1EDN7146G NEW	N-ISO	✓	✓		✓			✓	
		0.5/0.5	3.85/3.75	125/125	1EDN7146U NEW	N-ISO		✓		✓			✓	

www.infineon.com/driver-gan

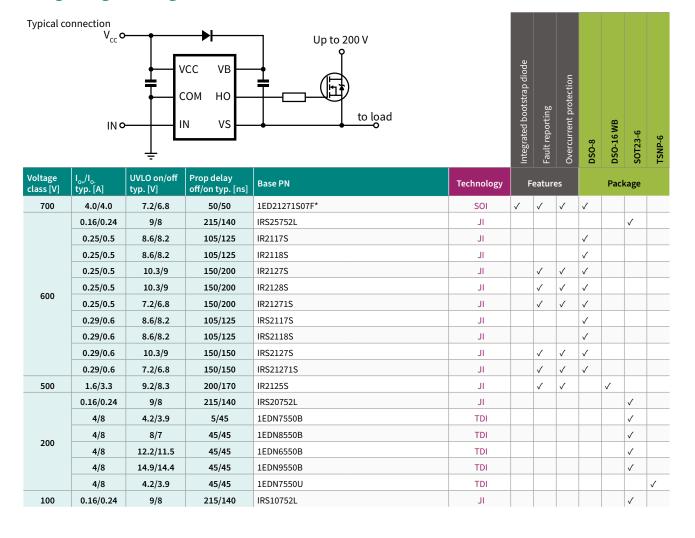
Three-phase gate driver ICs


Typical connection

Enable
Fault reporting
Integrated bootstrap diode
Operaltional amplifier
Overcurrent protection
Power Management Unit
Programmable deadtime
Programmable fault clear/Reset
Programmable OCP Reference Threshold
Programmable Op-amp Voltage Gain
Trickle Charge pumps (100% duty cycle)
Separate pin for logic ground
Shoot-through protection
Shutdown
Two stage turn-on
DSO-20 WB
DSO-24
DSO-28 WB
LCC-32
TSSOP-25
TSSOP-28
VQFN-28
VQFN-32
VQFN-48
CHP


Voltage class [V]	l _{o+} /l _o . typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN	Tech- nology																Pa	acka	ige			
	0.35/0.65	12.2 / 11.3	600/600	6ED2231S12T NEW	SOI	✓	✓	✓		✓		√			✓	√			√							✓
	0.35/0.65	11.4/10.4	600/600	6ED2230S12T	SOI	V	√	√		✓		√			✓	√			✓							✓
1200	0.25/0.5	8.6/8.2	700/750	IR2233S	JI		✓		✓	✓					✓	√	✓			✓						
1200	0.25/0.5	8.6/8.2	700/750	IR2233J	JI		√		✓	√					✓	√	✓				√					
	0.25/0.5	10.4/9.4	700/750	IR2235S	JI		√		✓	✓					✓	√	✓			✓						
	0.25/0.5	10.4/9.4	700/750	IR2235J	JI		√		✓	✓					✓	√	✓				√			Ш		
	0.165/0.375	9.0/8.1	490/530	6EDL04N065PR NEW	SOI	V	√	√		✓					✓							✓				
	0.165/0.375	11.7/9.8	490/530	6EDL04I065PR NEW	SOI	V	✓	√		✓					✓						_	✓		Ш		_
650	0.165/0.375	11.7/9.8	490/530	6EDL04I065NR NEW	SOI	V	√	√		√					✓							✓				
	0.165/0.375	9.0/8.1	490/530	6EDL04N065NT NEW	SOI	✓	√	✓		✓					✓					✓		\perp		Ш	_	
	0.165/0.375	11.7/9.8	490/530	6EDL04I065PT NEW	SOI	V	✓	✓		✓					✓					✓						
	0.165/0.375	11.7/9.8	490/530	6EDL04I06NT	SOI	✓	✓	√		✓					✓					✓	_	_	\perp	Ш	,	✓
	0.165/0.375	11.7/9.8	490/530	6EDL04I06PT	SOI	V	✓	√		√					✓					✓	_			Ш	,	✓
	0.165/0.375	9/8.1	530/530	6EDL04N06PT	SOI	V	✓	√		✓					✓					√	_			Ш	,	✓
	0.2/0.35	8.9/8.2	400/425	IR2136S	JI	V	√			✓					✓					√	√	4		Ш		
	0.2/0.35	11.1/10.9	400/425	IR21363S	JI	V	✓			✓					✓					✓		_	_	Ш	_	_
	0.2/0.35	10.4/9.4	530/500	IR21364S	JI	√	√			✓					✓			_		✓	4	_			4	
	0.2/0.35	11.1/10.9	530/530	IRS2334M	JI									4				_			_	_	✓	Ш	4	_
	0.2/0.35	11.1/10.9	530/530	IRS2334S	JI													V	/			_	4	Ш	4	
600	0.2/0.35	8.9/8.2	530/530	IRS2336DJ	JI	V	✓	√		✓				_	✓						✓	_	_	Ш	_	_
000	0.2/0.35	8.9/8.2	530/530	IRS2336DS	JI	√	√	√		✓					✓			_		✓	4				4	
	0.2/0.35	8.9/8.2	530/530	IRS23364DS	JI	√	✓	√		✓					✓			_		✓	_	_	_	Ш	_	_
	0.25/0.5	9/8.7	425/675	IR2130S	JI		√		✓	✓					✓					✓		_	4	Ш	4	
	0.25/0.5	9/8.7	425/675	IR2130J	JI		✓		✓	✓					✓						√	_	_	Ш	_	_
	0.25/0.5	9/8.7	425/675	IR2132S	JI		√		✓	✓				4	✓			_	_	√	4			Ш	4	
	0.25/0.5	9/8.7	425/675	IR2132J	JI		✓		✓	✓				_	✓			+	-		√	_		Ш	\perp	_
	0.25/0.5	8.6/8.2	700/750	IR2133S	JI		√		✓	✓				4	✓		✓			√	4	_	-	\perp	4	
	0.25/0.5	8.6/8.2	700/750	IR2133J	JI		✓		✓	✓					✓		✓				√	_	_	Ш	4	_
	0.25/0.5	10.4/9.4	700/750	IR2135J	JI		✓		✓	✓					✓		✓				√	_	-	Ш	4	
300	0.165/0.375	9.0/8.1	530/530	6EDL04N03PR NEW	SOI	√	✓	√		✓					✓							√	+	Н	_	_
200	0.165/0.375	11.7/9.8	490/530	6ED003L02-F2	SOI	√				✓					✓						4	✓		Н	_	
	0.165/0.375	9/8.1	530/530	6EDL04N02PR	SOI	✓	H	-		✓					✓	√					_	V	_	\sqcup	_	
160	1/2	7.5/6.8	100/100	6ED2742S01Q NEW	SOI	✓	√	√	✓	✓	✓	√			√						-	+	+	√		
60	1.5/1.5	5.8/4.5	140/140	6EDL7141	SOI	✓	V		✓	✓	✓ ✓	√	 	✓	√ √	✓	√	√						-	√	

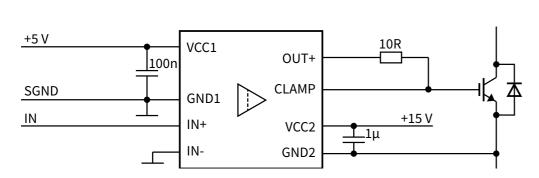
Half-bridge and high- and low-side gate driver IC



* Coming soon

Full-bridge gate driver ICs

Single high-side gate driver ICs



Mg Click here to learn more:

www.infineon.com/gatedriver www.infineon.com/driver-gan

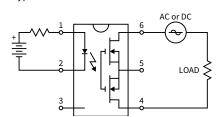
Galvanic isolated gate driver ICs

									Activ	Con	Desi Digi	Disa	Enac Fast Faul	Faul	Ove Sep	Sep	Shutdo Soft off	Two-le	UL 157 VDE 08	DSO-8 DSO-8 DSO-1	DSO- DSO-	DSO-1 DSO-1 DSO-1	DSO-3 TFLGA
iguration clas	ltage ss [V]	Isolation type	Isolation rating	l _{o+} /l _{o-} typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns		echnology	/					Feature							Pa	ackage	
		Reinforced Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	5.5/5.5 5.5/5.5	10/8 10/8	90/90 90/90	1ED3120MC12H NEW 1ED3120MU12H NEW	CT CT							✓				√ √ √	✓ ✓			
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	5.5/5.5	12.5/10.5	90/90	1ED3121MC12H NEW	СТ							√				/ /	V			
		Functional Reinforced	V _{ISO} = 5.7 kV(rms) V _{IOBM} = 1.7 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms)	5.5/5.5 5.5/5.5	12.5/10.5 12.5/10.5	90/90 280/280	1ED3121MU12H NEW 1ED3131MC12H NEW	CT CT							✓ ✓				✓ ✓ ✓	✓ ✓			
		Functional	V _{iso} = 5.7 kV(rms)	5.5/5.5	12.5/10.5	280/280	1ED3131MU12H NEW	СТ							√	✓			√	✓			
		Reinforced Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	10/9 10/9	10/8 10/8	90/90 90/90	1ED3122MC12H NEW 1ED3122MU12H NEW	CT CT	√ √						✓ ✓				√ √ ✓	✓ ✓			
		Functional	V _{ISO} = 3 kV(rms)	10/9	12.5/10.5	90/90	1ED3125MU12F NEW	СТ	√						✓				√	√			
		Functional	V _{ISO} = 3 kV(rms)	10/9	12.5/10.5	90/90 90/90	1ED3127MU12F NEW 1ED3123MC12H NEW	CT CT	✓						✓ ✓	,			✓ ✓ ✓	√			
		Reinforced Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	13.5/14 13.5/14	10/8 10/8	90/90	1ED3123MU12H NEW	CT							√ √	-			√	✓ /			
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	13.5/14	12.5/10.5	90/90	1ED3124MC12H NEW	СТ							√				V V	√			
	-	Functional Functional	V _{iso} = 5.7 kV(rms) V _{iso} = 3 kV(rms)	13.5/14 13.5/14	12.5/10.5 12.5/10.5	90/90 90/90	1ED3124MU12H NEW 1ED3124MU12F NEW	CT CT							✓ ✓				√ √	✓ ✓			
		Functional	V _{iso} = 3 kV(rms);	6/6.5	8.5/9.3	45/45	1ED3140MU12F NEW	СТ							✓	_			√	√			
		Functional	V _{ISO} = 3 kV(rms);	6/6.5	11/12	45/45	1ED3141MU12F NEW	CT							√				√	√ √			
		Functional Reinforced	V _{ISO} = 3 kV(rms); V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); V _{ISO} = 5.7 kV(rms)	6/6.5 6.5 / 6.5	12.5/13.6 11.0/12.0	45/45 45 / 45	1ED3142MU12F NEW 1ED3141MC12H*	CT CT							✓ ✓ ✓	V		√	√ √	√ √			
		Reinforced	$V_{IORM} = 1.767 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV(rms)}; V_{ISO} = 5.7 \text{ kV(rms)}$	6.5 / 6.5	12.5/13.6	45 / 45	1ED3142MC12H*	СТ							√ ✓			✓		✓			
25	300	Reinforced Reinforced	V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); V _{ISO} = 5.7 kV(rms) V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); V _{ISO} = 5.7 k Vrms	6.5 / 6.5 6.5 / 6.5	11.0/12.0 12.5/13.6	45 / 45 45 / 45	1ED3143MC12H* 1ED3144MC12H*	CT CT							√ ✓			✓ ✓		√ √			\perp
		Reinforced	V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); V _{ISO} = 5.7 k Vrms	6.5 / 6.5	Adjustable	45 / 45	1ED3145MC12H*	СТ							✓ 			✓		√			
		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	10/10	12.5/10.4	110/110 110/110	1ED3240MC12H NEW	CT CT							✓ ✓				√ √ √ √	✓ ✓			4
		Reinforced Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	10/10 18/18	12.5/10.4 12.5/10.4	110/110	1ED3250MC12H NEW 1ED3251MC12H NEW	CT	√						✓ ✓				√ √	✓ ✓			+
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	18/18	12.5/10.4	110/110	1ED3241MC12H NEW	СТ	✓						✓			✓	✓	✓			
		Reinforced Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	3.3/6	12.6/10.4 12.6/10.4	86/80 86/80	1ED3320MC12N NEW 1ED3321MC12N NEW	CT CT	√ √		✓ ✓			√ √	✓ ✓		✓ ✓		√ √ √ √				+
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	6/8.5 6/8.5	14.2/11.9	86/80	1ED3321MC12N NEW	CT	√		✓ ✓			√	✓ ✓	-	V		√ √				
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	6/8.5	12.6/10.4	86/80	1ED3323MC12N NEW	CT	✓		✓			√	✓				√ √				1
		Reinforced Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	3.8/2.5 3.8/2.5	12.6/10.4 12.6/10.4	236/244 236/244	1ED3431MC12M NEW 1ED3431MU12M NEW	CT CT	√ √ √ √		✓ ✓			√ √	✓ ✓		✓ ✓		✓ ✓ ✓		✓ ✓ ✓		+
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$	3.8/2.5	Adjustable	236/244	1ED3830MC12M NEW	CT	✓		✓ ✓			√	✓ /		√	√	✓		V		
		Functional	V _{iso} = 5.7 kV(rms)	3.8/2.5	Adjustable	236/244	1ED3830MU12M NEW	CT	/		√ ✓			√ /	√ √		✓	✓	1 1			/	
		Reinforced Functional	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{ISO} = 5.7 \text{ kV(rms)}$	7.5/5 7.5/5	12.6/10.4 12.6/10.4	236/244 236/244	1ED3461MC12M NEW 1ED3461MU12M NEW	CT CT	✓ ✓ ✓ ✓		√ √			√ √	√ √		√		√ √ √		-	/	
		Reinforced	$V_{IORM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	7.5/5	Adjustable	236/244	1ED3860MC12M NEW	СТ	✓		√ ✓		✓	✓	✓	✓	✓		V		V	/	
		Functional Reinforced	$V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IOBM} = 1.7 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$	7.5/5 11/7.5	Adjustable 12.6/10.4	236/244 236/244	1ED3860MU12M NEW 1ED3491MC12M NEW	CT CT	✓ ✓ ✓		✓ ✓ ✓			√ ✓	✓ ✓		✓ ✓	√	✓ ✓ ✓		V	/	+
		Functional	V _{ISO} = 5.7 kV(rms)	11/7.5	12.6/10.4	236/244	1ED3491MU12M NEW	CT	✓ ✓		✓ /		✓	✓	✓		√		✓		V	-	
nnel		Reinforced	V _{IORM} = 1.7 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	11/7.5	Adjustable	236/244	1ED3890MC12M NEW	CT CT	✓ ✓		✓ ✓ ✓ ✓			√ √	✓ ✓		√	-	✓ ✓ ✓			/	4
		Functional Basic	V _{ISO} = 5.7 kV(rms) V _{IORM} = 1.4 kV; V _{IOTM} =6 kV; V _{ISO} = 3.7 kV(rms)	11/7.5 2/2	Adjustable 12/11	236/244 165/170	1ED3890MU12M NEW 1ED020I12-B2	CT	√ ✓		V V			√	✓ ✓	V	V	V	√ √		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<i>/</i>	+
		Basic	V _{IORM} = 1.4 kV; V _{IOTM} = 6 kV; V _{ISO} = 3.7 kV(rms)	2/2	12/11	1750/1750	1ED020I12-BT	CT	✓		✓			√	✓			√	√ √			✓	
		Functional Functional	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{ISO} = \pm 1.2 \text{ kV}$	2/2 2/2	12/11 12/11	165/170 1750/1750	1ED020I12-F2 1ED020I12-FT	CT CT	√ √		✓ ✓			√ √	✓ ✓			√				✓ ✓	+
		Reinforced	V _{IORM} = 1.4 kV(rms); V _{IOTM} = 8 kV; V _{ISO} = 5.7 kV(rms)	4/8	5.0/4.5	37/37	1EDS5663H	CT	V			√	ľ	V		√		√	√ ✓			√	
		Functional	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms)	5.4/9.8	12.2/11.5	45/45	1EDB6275F	CT				√	√			√			√	✓ ✓			
		Functional Functional	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms) V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms)	5.4/9.8 5.4/9.8	4.2/3.9 8/7	45/45 45/45	1EDB7275F 1EDB8275F	CT CT				√ √	√ √			√ √			√ √	√ √			+
		Functional	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 3 kV(rms)	5.4/9.8	14.9/14.4	45/45	1EDB9275F	СТ				√	✓			✓			√	✓			
		Functional Functional	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms)	4/8 4/8	5/4.5 5/4.5	37/37 37/37	1EDF5673F 1EDF5673K	CT CT				✓ ✓				√ √		✓ ✓			√		
		Functional	$V_{IOWM} = 460 \text{ V(rms)}; V_{ISO} = 1.5 \text{ kV(rms)}$ $V_{ISO} = \pm 1.2 \text{ kV}$	1.3/0.9	12/11.1	300/300	1EDI05I12AF	CT				V			✓			V		√			
	_	Functional	V _{ISO} = ± 1.2 kV	1.3/0.9	12/11.1	300/300	1EDI05I12AH	CT							√					√			
		Functional Functional	V _{iso} = 2.5 kV(rms) V _{iso} = ± 1.2 kV	1.3/0.9 2.2/2.3	12/11.1 12/11.1	300/300 300/300	1EDC05I12AH 1EDI10I12MF	CT CT	√						✓ ✓	V			✓	✓ ✓			+
		Functional	V _{ISO} = ± 1.2 kV	2.2/2.3	12/11.1	300/300	1EDI10I12MH	СТ	✓						✓					✓			
		Functional Functional	V _{ISO} = 2.5 kV(rms) V _{ISO} = ± 1.2 kV	2.2/2.3 4/3.5	12/11.1 9.1/8.5	300/300 120/115	1EDC10I12MH 1EDI20N12AF	CT CT	✓						✓ ✓	,			✓	V			4
		Functional	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{ISO} = \pm 1.2 \text{ kV}$	4/3.5	12/11.1	125/113	1EDI20H12AH	CT							✓ /					√			
	200	Functional	V _{ISO} = 2.5 kV(rms)	4/3.5	12/11.1 12/11.1	125/120 300/300	1EDC20H12AH 1EDI20I12AF	CT CT							✓ ✓				√	✓ ✓			
12	200	Functional Functional	$V_{iso} = \pm 1.2 \text{ kV}$ $V_{iso} = \pm 1.2 \text{ kV}$	4/3.5 4/3.5	12/11.1	300/300	1EDI20I12AF	CT							✓ ✓	-				V /			
		Functional	V _{ISO} = 2.5 kV(rms)	4/3.5	12/11.1	300/300	1EDC20I12AH	СТ							√	✓			✓	✓			4
		Functional Functional	$V_{ISO} = \pm 1.2 \text{ kV}$ $V_{ISO} = \pm 1.2 \text{ kV}$	4.4/4.1 4.4/4.1	12/11.1 12/11.1	300/300 300/300	1EDI20I12MF 1EDI20I12MH	CT CT	√ √						✓ ✓					√			Н
		Functional	V _{ISO} = 2.5 kV(rms)	4.4/4.1	12/11.1	300/300	1EDC20I12MH	СТ	✓						✓				√	√			
		Functional	V _{ISO} = ± 1.2 kV	5.9/6.2	12/11.1	300/300	1EDI30I12MF	CT	√						√					√			4
		Functional Functional	$V_{iso} = \pm 1.2 \text{ kV}$ $V_{iso} = 2.5 \text{ kV(rms)}$	5.9/6.2 5.9/6.2	12/11.1 12/11.1	300/300 300/300	1EDI30I12MH 1EDC30I12MH	CT CT	✓ ✓						✓ ✓				√	✓ ✓			+
		Functional	V _{ISO} = ± 1.2 kV	7.5/6.8	12/11.1	300/300	1EDI40I12AF	СТ							V					√			
		Functional Functional	V _{iso} = ± 1.2 kV V _{iso} = 2.5 kV(rms)	7.5/6.8 7.5/6.8	12/11.1 12/11.1	300/300 300/300	1EDI40I12AH 1EDC40I12AH	CT CT							✓ ✓				√	✓ ✓			+
		Functional	$V_{ISO} = \pm 1.2 \text{ kV}$	10/9.4	9.1/8.5	120/115	1EDI60N12AF	CT							✓					✓ 			
		Functional	V _{ISO} = ± 1.2 kV	10/9.4	12/11.1	125/120	1EDI60H12AH	CT							√	-				√			
		Functional Functional	V _{ISO} = 2.5 kV(rms) V _{ISO} = ± 1.2 kV	10/9.4 10/9.4	12/11.1 12/11.1	125/120 300/300	1EDC60H12AH 1EDI60I12AF	CT CT							√	-			√	✓ ✓			-
		Functional	V _{ISO} = ± 1.2 kV	10/9.4	12/11.1	300/300	1EDI60I12AH	СТ							✓	✓				✓			
		Functional Reinforced	V _{ISO} = 2.5 kV(rms) V _{IODM} = 1.4 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5 kV(rms)	10/9.4 SRC/2	12/11.1 11.9/11	300/300 460/460	1EDC60I12AH 1EDS20I12SV	CT CT			√	√	.1	√	✓ ✓ ✓	√	√	1	√ √ √	√			/
		Functional	$V_{IORM} = 1.4 \text{ kV(rins)}; V_{IOTM} = 3 \text{ kV}; V_{ISO} = 5 \text{ kV(rins)}$ $V_{ISO} = 5 \text{ kV(rms)}$	SRC/2	11.9/11	460/460	1EDU20I12SV	CT			√ ✓	√ √	✓	✓	V		√ ✓		√			✓ ✓	_
		Functional	V _{ISO} = ± 1.2 kV	SRC/2	11.9/11	460/460	1EDI20I12SV	CT			V	✓	✓	√	√ √	/	✓		/			√	1
		Reinforced Reinforced	V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); VISO = 5.7 kV(rms) V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); VISO = 5.7 kV(rms)	6.5 / 6.5 6.5 / 6.5	8.5 / 9.3 11.0/12.0	50 / 50 50 / 50	2ED3140MC12L* 2ED3141MC12L*	CT CT		√ √					✓ ✓	✓ ✓		✓ ✓		✓ ✓			
		Reinforced	$V_{IORM} = 1.767 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV(rms)}; VISO = 5.7 \text{ kV(rms)}$	6.5 / 6.5	12.5/13.6	50 / 50	2ED3142MC12L*	СТ		✓	✓				✓	✓		✓	✓	✓			1
		Reinforced Reinforced	V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); VISO = 5.7 kV(rms) V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); VISO = 5.7 kV(rms)	6.5 / 6.5 6.5 / 6.5	14.7/16.0 8.5/9.3	50 / 50 50 / 50	2ED3143MC12L* 2ED3144MC12L*	CT CT		✓ ✓	✓	√			✓ ✓	√		√		✓ ✓			4
		Reinforced	V _{IORM} = 1.767 kV(rms); V _{IOTM} = 8 kV(rms); VISO = 5.7 kV(rms)	6.5 / 6.5	11.0/12.0	50 / 50	2ED3145MC12L*	СТ		√		√			√	√		✓	✓	✓			
		Reinforced	$V_{IORM} = 1.767 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV(rms)}; VISO = 5.7 \text{ kV(rms)}$	6.5 / 6.5	12.5/13.6	50 / 50	2ED3146MC12L*	CT		√		√			√	1		√	-	✓ /			1
		Reinforced Functional	$V_{IORM} = 1.767 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV(rms)}; VISO = 5.7 \text{ kV(rms)}$ $V_{ISO} = \pm 1.2 \text{ kV}$	6.5 / 6.5 2/2	14.7/16.0 12/11	50 / 50 165/170	2ED3147MC12L* 2ED020l12-F2	CT CT	√	✓	√	✓	1	√	√	✓		✓	V	✓			,
		Reinforced	V _{IORM} = 1.4 kV(rms); V _{IOTM} =8 kV; V _{ISO} = 5.7 kV(rms)	1/2	4.2/3.9	37/37	2EDS7165H	СТ				√	✓						/ /			√	
		Reinforced Reinforced	$V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV; } V_{ISO} = 5.7 \text{ kV(rms)}$	1/2 4/8	8/7 8/7	37/37 37/37	2EDS8165H 2EDS8265H	CT CT				✓ ✓	✓ ✓						✓ ✓ ✓ ✓			✓ ✓	
		Reinforced	$V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IORM} = 1.4 \text{ kV(rms)}; V_{IOTM} = 8 \text{ kV}; V_{ISO} = 5.7 \text{ kV(rms)}$	4/8	14.9/14.4	37/37	2EDS9265H 2EDS9265H	CT				√ ✓	√ ✓						√ √			✓ ✓	
		Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9	4.2/3.9	38/36	2EDR7259X	СТ		√		✓	√			√			/ /		√		
nel		Reinforced Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms) V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9 5/9	8/7 8/7	38/36 38/36	2EDR8259H 2EDR8259X	CT CT		√		✓ ✓	✓ ✓			✓ ✓			√ √ √ √		√	✓	
		Reinforced	$V_{IOTM} = 4.2 \text{ kV(peak)}; V_{ISO} = 5.7 \text{ kV(rms)}$ $V_{IOTM} = 4.2 \text{ kV(peak)}; V_{ISO} = 5.7 \text{ kV(rms)}$	5/9	14.9/14.4	38/36	2EDR9259X 2EDR9259X	СТ		✓		✓	✓			✓			V V		√		
		Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9	8/7	38/36	2EDR8258X	СТ		✓		✓	✓			√			V V		V		4
120	200**	Reinforced Reinforced	V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms) V _{IOTM} = 4.2 kV(peak); V _{ISO} = 5.7 kV(rms)	5/9 5/9	12.2/11.5 14.9/14.4	38/36 38/36	2EDR6258X 2EDR9258X	CT CT		✓ ✓			✓ ✓			√			√ √ √ √		√ √		
		Basic	V _{IOTM} = 4.2 kV(peak), V _{ISO} = 3.7 kV(titis) V _{IORM} = 800 V(rms); V _{IOTM} = 3.5 kV; V _{ISO} = 2.5 kV(rms)	5/9	4.2/3.9	38/36	2EDB7259K	СТ		✓		√	✓			√			✓				1
		Basic	V _{IORM} = 800 V(rms); V _{IOTM} =3.5 kV; V _{ISO} = 2.5 kV(rms)	5/9	8/7	38/36	2EDB8259K	CT		✓		√	√			✓			✓				4
		Basic Basic	$V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV; } V_{ISO} = 3 \text{ kV(rms)}$ $V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV; } V_{ISO} = 3 \text{ kV(rms)}$	5/9 5/9	8/7 4.2/3.9	38/36 38/36	2EDB8259F 2EDB7259Y	CT CT				✓ ✓	✓ ✓							√	√		+
		Basic	$V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV}; V_{ISO} = 3 \text{ kV(rms)}$	5/9	8/7	38/36	2EDB8259Y	СТ				✓								✓			1
		Basic	$V_{IORM} = 1 \text{ kV(rms)}; V_{IOTM} = 4.2 \text{ kV}; V_{ISO} = 3 \text{ kV(rms)}$	5/9 1/2	14.9/14.4	38/36 37/37	2EDB9259Y	CT				1	./							✓	V		4
		Functional Functional	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms) V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms)	1/2 4/8	4.2/3.9 4.2/3.9	37/37 37/37	2EDF7175F 2EDF7275F	CT CT				√ ✓	✓ ✓								√ ✓		
		Functional	$V_{IOWM} = 460 \text{ V(rms)}; V_{ISO} = 1.5 \text{ kV(rms)}$	4/8	4.2/3.9	37/37	2EDF7275K	СТ				✓	✓										
		Functional Functional	V _{IOWM} = 510 V(rms); V _{ISO} = 1.5 kV(rms) V = 510 V(rms); V = 1.5 kV(rms)	4/8 4/8	8/7 14.9/14.4	37/37 37/37	2EDF8275F 2EDF9275F	CT CT				✓ ✓	√ √								✓ ✓		4
	200 F	Functional Functional on high side	$V_{IOWM} = 510 \text{ V(rms)}; V_{ISO} = 1.5 \text{ kV(rms)}$ $V_{ISO} = \pm 1.2 \text{ kV}$	4/8 1.5/2.5	14.9/14.4	37/37 85/85	2EDF9275F 2ED020I12-FI	CT		√		٧	٧	√		√	√				V	√	
nnal .		Functional on high side	V _{ISO} = ± 650 V	1.5/2.5	12.2/11.2	85/85	2ED020I06-FI 2EDF5215F	CT CT								✓						√	
on on		Functional on high side	V _{ISO} = ±250 V (high-side to low-side)	5.2/9.2	7/6.4	37/37		47.5					✓					1		√			-

Click here to learn more:

www.infineon.com/gatedriver
www.infineon.com/driver-gan-sg
www.infineon.com/gdfinder
www.infineon.com/driver-gan-git

* Coming soon


Automotive gate driver ICs

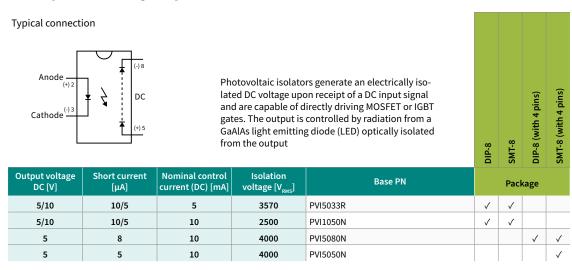
								Buff	Des	Ena	Faul	Ove Prog	Prog	Sep	Shu	Syn	Two	Soft	VDE ISO	130	DSC	DSC		DSC TSD
Configuration	Voltage class [V]	l _{o+} /l _{o-} typ. [A]	UVLO on/off typ. [V]	Prop delay off/on typ. [ns]	Base PN		Technology							Feature	s							Par	ckage	
		12/12	12.6/11.8	60/60	1EDI3020AS		CT (IGBT)	✓	√ \	/	✓	✓		V V			✓	✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3021AS		CT (IGBT)	✓	√ \	/	✓	√		V V			✓	✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3023AS		CT (IGBT)	✓	✓ \	/	✓	√		V V			✓	✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3030AS		CT (SiC)	✓	√ \	√	✓	✓		V V			✓	✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3031AS		CT (SiC)	✓	√ \	/	✓	✓		V V			✓	✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3033AS		CT (SiC)	✓	√ \	/	✓	✓		V V			✓	✓	✓	✓			✓	
1-channel isolated	1200	12/12	12.6/11.8	60/60	1EDI3025AS	NEW	CT (SiC)	✓	√ \	/	✓	✓		V V				V V	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3026AS	NEW	CT (IGBT)	✓	√ \	√	√	✓		V V				√	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3028AS	NEW	CT (IGBT)	✓	√ \	✓ .	✓	✓		V V				√ ✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3035AS	NEW	CT (SiC)	✓	√ \	✓ .	√	✓		V V				√ ✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3038AS	NEW	CT (SiC)	✓	√ \	✓ ·	✓	✓		V V				√ ✓	✓	✓			✓	
		12/12	12.6/11.8	60/60	1EDI3050AS	NEW	CT (IGBT & SiC)	✓	√ \	✓ .	√	✓	✓	V V	✓		✓	✓	✓	✓				✓
		12/12	12.6/11.8	60/60	1EDI3051AS	NEW	CT (IGBT & SiC)	✓	√ \	✓ .	√	√	✓	V V	✓		✓	✓	✓	✓				✓
Half-bridge	100	1/1	7.3/6.8	N.A.	AUIR2085S		JI		,	/		V V	V							,	/			
		1.9/2.3	8.9/8.2	135/135	AUIRS21811S		JI														/			
		1.9/2.3	8.9/8.2	200/160	AUIRS21814S		JI							✓							✓			
High-side and low- side	600	1.9/2.3	8.9/8.2	200/160	AUIRS2181S		JI													,	/			
		3.5/3.5	8.9/8.2	90/90	AUIRS2191S		JI							✓								√		
		0.2/0.35	4.1/3.8	200/220	AUIRS2301S		JI														/			
Single high-side	65	0.3/0.3	10/6.5	2500/2500	AUIR3241STR		N-ISO		,	/	√									,	/			
Jingle ingli-side	65	0.3/0.3	10/6.5	2500/2500	AUIR3242STR		N-ISO		,	/	✓									,	/			
Dual high-side	75	0.3/1.4	12.5/10.0	4000/7000	2ED2410-EM	NEW	N-ISO		,	/	√	√							✓					✓
Dual High-side	105	0.3/1.0	7.0/6.6	3000/3000	2ED4820-EM	NEW	N-ISO		,	/	✓	✓			✓				✓					\ \

Complementary: Opto-isolated solid state relays

Typical connection

Microelectronic relays (MER) are power MOSFET or IGBT output photovoltaic relays where the output switch is controlled by radiation from a GaAlAs light emitting diode (LED) optically isolated from the output. MERs are a good choice to replace mechanical relays.

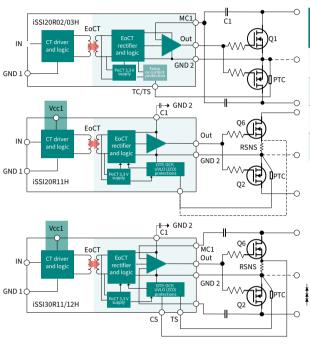
					th 4 pins)
JIP-6	9-TMS	S-HIC	SMT-8	JIP - 4	SMT-8 (with 4 pins)


						0)		0)		•
Load voltage [V]	Load current [mA]	$\begin{matrix} R_{\scriptscriptstyle DS(on)} \\ [\Omega] \end{matrix}$	Isolation voltage [V _{RMS}]	Base PN						
	140 AC-DC	27/7	4000	PVU414		✓				
	120 AC-DC	35/9	4000	PVT412L	✓			✓		
400	240 AC-DC	6/2	4000	PVT412A	✓	✓				
	140 AC-DC	27/7	4000	PVT412	✓	✓				
	120 AC-DC	35	4000	PVT422			✓	✓		
	150 AC-DC 24		4000	PVA3354N					✓	✓
300	150 AC-DC	24	4000	PVA3324N					✓	
300	50 AC DC	160	4000	PVA3055N					✓	✓
	50 AC-DC	160	4000	PVA3054N						✓
	170 AC-DC	15/4.25	4000	PVT312L	✓	✓				
250	190 AC-DC	10/3	4000	PVT312		✓				
250	170 AC-DC	8	4000	PVT322A				√		
	170 AC-DC	10	4000	PVT322			✓	✓		
200	150 AC-DC	24	4000	PVA2352N					✓	
150	550 AC-DC	0.7/0.25	4000	PVT212		✓				
	550 DC	1.5	4000	PVD1354N					✓	✓
100	350 DC	1.5	4000	PVD1352N					✓	✓
100	375 AC-DC	5	4000	PVA1354N					✓	
	373 AC-DC	3	4000	PVA1352N					✓	
	1500 DC	0.25	4000	PVDZ172N					✓	✓
60	2000 AC/4000 DC	0.1/0.035	4000	PVG612A	✓	✓				
	1000 AC/2000 DC	0.5/0.15	4000	PVG612	✓	✓				

www.infineon.com/driver-gan

Infineon solid state relay and isolators package package options

Complementary: Opto-isolated solid state isolators



Coreless Transformer Solid State Isolators

ISSI20RXXH, ISSI30RXXH

The new Infineon Solid State Isolator (SSI) family of products use Infineon's Coreless Transformer technology for a high-performance isolator. They allow driving high power and low on-state resistance MOSFETs, thus allowing to replace SCRs and TRIACs with the advantage of dramatically reducing the power dissipation and extending the field application range of the SSR. Solid State Relays (SSR) built by using the SSI can easily replace most Electromechanical Relay (EMR) in a wide range of power applications where conventional SSR had no success until today. The new SSI also comes with precise and fast-acting protection functions such as Miller Clamp, overcurrent, and overtemperature protections to achieve unprecedented reliability and availability of SSR designs.

Typical connection diagram

Product specifications at a glance

Part Number	V _{in} range	V _{cc} ran- ge	l _{out} peak	V _{out} typ	Features	Package
iSSI20R02H iSSI20R03H	TTL/CMOS	2.85 V -3.5 V	175 uA	13 V at Vin = 2.6 V 15 V at Vin= 3.3 V	TS/CS + MC	DSO-8-66
iSSI20R11H	TTL/CMOS	2.85 V -3.5 V	400 mA	13 V at Vin = 2.6 V >15 V at Vin= 3.3 V	TS, CS	DSO-8-66
iSSI30R11H	TTL/CMOS	2.85 V -3.5 V	400 mA	13 V at Vin = 2.6 V >15 V at Vin= 3.3 V	CS, TS, MC (2)	DSO-16-33
iSSI30R12H	TTL/CMOS	2.85 V -3.5 V	400 mA	13 V at Vin = 2.6 V >15 V at Vin= 3.3 V	CS, TS, MC (2), D-Sense (30R12H)	DSO-16-33

- TS: Temperature Sense (input pin for overtemperature protection)
- CS: Current Sense (input pin for overcurrent protection
- MC: Miller Clamp
 D-Sense: Diode Sense (30R12H Only)

Features and benefits

Product features			
– Large input voltage range, compatible with photovoltaic isolators.			
 Self-supplied output stage with very high output short circuit 			
 Very high output voltage, suitable for MOSFETs and IGBTs 			
- Thermal protection			
- Overcurrent protection			
- Miller Clamp			
– Fast turn-off /-on of output devices			
Power on reset and safety clamp on input stage			

- Replaces PVI and improves circuit performances
- No need for isolated supply for the output stage, smaller BOM
- Direct drive of switches' gate, no need for series/parallel
- Switches protection in temperature and current, avoids CdV/dT effect by Miller Clamp
- Ensures safe switching transition of MOSFETs

Full featured evaluation board: **EVAL-iSSI30R12H**

- Evaluation board with iSSI30R12H and two CoolMOS™ IPT60T022S7 MOSFETs in an AC switch configuration
- Ultrafast overcurrent detection that is triggered at the typical peak current of 35 A
- Direct-chip temperature measurement of CoolMOS™ with shutdown at 155°C

Evaluation board options:

Product type	Voltage range	Current range	Features
EVAL-ISSI20R02HCS	40 V d.c. or 24 V a.c.	10 A d.c. or 7A a.c	 Overcurrent protection at 20 A peak by shunt monitoring, Fast turn-off (< 5 μs typ), Dynamic Miller clamping
EVAL-ISSI20R02HTS	60 V d.c. or 48 V a.c.	10 A d.c. or 6.5 A a.c.	 − PTC temperature measurement − Fast turn-off (< 5 μs typ), Dynamic Miller clamping
EVAL-ISSI20R03H	60 V d.c. or 48 V a.c.	10 A d.c. or 7 A a.c	— Overcurrent protection at 20 A peak by shunt monitoring — PTC Temperature measurement Fast turn-off (< 5 μs typ)
EVAL-ISSI20R11H	320 V d.c. or 230 V a.c.	2 A d.c. or a.c.	 Overcurrent protection at 9 A peak by shunt monitoring Fast turn-off (< 5 μs typ)
EVAL-ISSI30R11H	320 V d.c. or 230 V a.c.	7A d.c. or a.c., 45 A _{Peak}	 PTC Temperature measurement Fast turn-off of CoolMOS™ (< 5 µs typ)
EVAL-ISSI30R12H	320 V d.c. or 230 V a.c.	7A d.c. or a.c., 45 A _{Peak}	 On-chip junction temperature measurement of CoolMOS™, Fast turn-off of CoolMOS™ (< 5 µs typ)

www.infineon.com/driver-gan www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git www.infineon.com/gdfinder

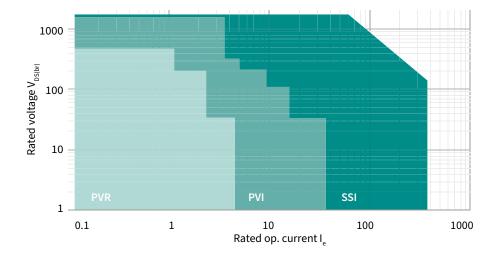
Infineon Solid State Relays (SSR) technologies

Using Infineon power-switch technologies, Infineon Solid State Relays (SSRs) are remotely controlled switches (on/off) with complete galvanic isolation from input to output. No power supply is needed on the output.

Two main sub-groups:

- Isolated: Photovoltaic (PVI) And Coreless Transformer (Solid State Isolators-SSI)
 - Isolated, low-power DC voltage sources capable of driving MOSFET or IGBT gates directly
- Photovoltaic relays (PVR)
 - PVI plus internal power MOSFET

Main benefits of Infineon SSR technology:


- Optically isolated and Coreless Transformer based technology provides galvanic isolation for safety applications
- Wide range of applications from industrial automation to test equipment
- Established and reliable products with over 20 years of history

Key advantages over electromechanical relays:

- Low total cost of ownership
- Silent operation
- No contact bounce
- Compact solution
- Fast response time
- High input sensitivity
- High reliability with long operational life
- Insensitivity to stray EMF, shock, and vibration
- Stable contact resistance over life

Infineon SSRs can be used in a wide range of applications:

- Electro-mechanical relay (EMR) replacement
- Battery management systems
- UPS
- Automatic test equipment
- Instrumentation systems
- Industrial automation
- Thermostats
- Programmable logic controller
- Power Distribution Units (PDU)
- Building Automation
- HVAC Controllers

Features

Addressing various application requirements, Infineon delivers solutions with an assortment of features intended to optimize performance, minimize size and reduce cost. Below is a table of additional gate driver IC features available in the current portfolio.

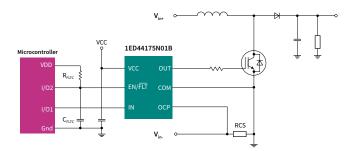
Features	Abbreviation	Benefits
Active Miller clamp	M-CLAMP	Protection against inadvertent dynamic turn-on because of parasitic Miller effects
Active shutdown	SD-ACT	Ensures a safe IGBT off-state in case the output chip is not connected to the power supply or an undervoltage lockout is in effect
Brake chopper	BRAKE	Integrated brake IGBT driver with protection
Comparator	СМР	General purpose comparator included
Desaturation protection	DESAT	Protects the IGBT at short circuit
Enable	EN	Dedicated pin terminates all outputs
Fault reporting	FAULT-RPT	Indicates an overcurrent or undervoltage shutdown has occurred
Fault reset	FAULT-RST	Dedicated pin resets the DESAT-FAULT-state of the chip
High-voltage start-up	HVSTART	Provides easy and fast circuit start-up while enabling low circuit standby losses
Integrated bootstrap diode	BSD	Integrated bootstrap reduces BOM
Operational amplifier	OPAMP	An independent op-amp for current measurement or overcurrent detection
Oscillator	osc	Integrated front end oscillator
Over-current protection (ITRIP)	ОСР	Ensures safe application operation in case of overcurrent
Programmable deadtime	DT-PROG	Deadtime is programmable with external resistor for flexible design
Programmable fault clear time	FLTC	The length of the fault clear time period (t_{FLTC}) is programmed by external capacitor which connected between FLTC and V_{ss} (C_{FLTC}).
Programmable shutdown	SD-PROG	A shutdown feature has been designed into a pin
Separate pin for logic ground	SEP-GND	Dedicated pin or logic ground for improved noise immunity
Separate sink/source outputs	SEP-OUT	Simplifies gate resistor selection, reduces BOM, and improves dV/dt control
Shoot-through protection	STP	Additional shoot-through protection logic such as interlock
Short-circuit clamping	SC-CLAMP	During short circuit the IGBT's gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage.
Shutdown	SD	Dedicated pin disables the IC outputs
Soft overcurrent shutdown	SD-SOFT	Dedicated pin turns off the desaturated transistor, preventing overvoltages
Truly Differential Inputs	TDI	Control inputs independent from gate driver GND, robust against ground shifts from power MOSFET switching
Two-level turn-off	TLTO	Lowers VCE overshoots at turn-off during short circuits or overcurrent events
UL 1577	UL	Double galvanic isolation certification
Undervoltage lockout	UVLO	Ensures safe application operation by avoiding unexpected driver behavior at low voltages
VDE 0884-10 or VDE 0884-11	VDE	Reinforced galvanic isolation certifications for non-optical couplers

Gate driver ICs for SiC MOSFETs

Ultrafast switching from 650 V to 2000 V power transistors, such as CoolSiC™ SiC MOSFETs, can be more easily handled by isolated gate driver solutions.

The following EiceDRIVER™ gate driver ICs incorporate the most important key features for driving SiC MOSFET such as tight propagation delay matching, precise input filters, wide output supply voltage range, negative gate voltage capability, extended CMTI capability, Miller clamp, and DESAT protection.

Product family	Part number	Typ. current	V _{CC2} -V _{EE2}	UVLO	Prop. delay (accuracy)	СМТІ	Isolated	Other key features	Package
	Achieve high et	ficiency and	l power	density: take	advantage of low	v propaga	tion delay	and high CMTI	
EiceDRIVER™ 1EDB 1-channel family	1EDB9275F 1EDB6275F	5/9 A	20 V	14.9/14.4 V 12.2/11.5 V	45 ns (+6/-4 ns)	300 V/ns	✓	Separate source/sink outputs, fast start-up times and fast reco- very, basic isolation, UL 1577	DSO-8, 150 mil
EiceDRIVER™ 2EDi 2-channel family	2EDR9259X 2EDR9258X 2EDR6258X	5/9 A	20 V	14.9/15.4 V 14.9/15.4 V 12.5/11.5 V	38 ns (+9/-5 ns)	150 V/ns	√	2EDi Gen 2, dead-time control, disable/enable, reinforced isolation, UL 1577, VDE-11, IEC 62368-1, GB4943.1	DSO-14, 300mil
	2EDB9259Y			14.9/15.4 V			√	2EDi Gen 2, dead-time control, basic isolation, UL 1577, GB4943.1	DSO-14, 150 mil
EiceDRIVER™ 1EDN-TDI 1-channel family	1EDN6550B 1EDN9550B	4/8 A	20 V	12.2/11.5 V 14.9/14.4 V	45 ns (+10/-7 ns)	N/A	-	Separate source/sink outputs	SOT23-6
EiceDRIVET™ X3 Compact 2-channel family	2ED3146MC12L	6.5/6.5 A	35 V	12.5 / 13.6 V	50 ns (+/- 8ns)	300 V/ns	√	Active shutdown, dead-time (DT) control with arm shoot-through prevention in half-bridge operation, Individual channel control operation (DT: open or tied to VCC1), Enable, Reinforced isolation IEC 60747-17, UL 1577	DSO-14, 300mil
		Avoid pa	rasitic t	urn-on: take	advantage of Mille	er clamp o	ptions		
EiceDRIVER™ 1ED Compact	1EDI20I12MF	4 A	20 V	12.7/10.5 V	300 ns	100 V/ns	✓	Miller clamp, functional isolation	DSO-8,
1-channel family	1EDI60N12AF	10 A	35 V	10/8 V	125 ns	100 V/ns	✓	Separate source/sink outputs, functional isolation	150 mil
EiceDRIVER™ X3 Compact 1-channel family	1ED1342MU12F	6.5/6.5 A	35 V	12.5 / 13.6 V	45 ns (+/- 7ns)	300 V/ns	✓	Active shutdown, functional isolation UL 1577	DSO-8, 150 mil
EiceDRIVER™ 2L-SRC Compact 1-channel family	1ED3145MC12H	6.5/6.5 A	35 V	12.5 / 13.6 V	45 ns (+/- 7ns)	300 V/ns	✓	Active shutdown, reinforced isolation IEC 60747-17, UL 1577	DSO-8, 300 mil
	1ED32xxMC12H	10/18 A	35 V	12.5/10.4 V	110 ns (+/- 15 ns)	200 V/ns	✓	Two-level slew-rate control, Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-8, 300 mil
	Short-circuit	protect you	ır CoolS	iC™: take ad\	antage of the fast	t and accu	rate DESA	T protection	
EiceDRIVER™ 1ED-F3 1-channel family	1ED332xMC12N	3/6 A	35 V	12.6/10.4 V 13.6/12.6 V	85 ns	300 V/ns	✓	Miller clamp, short circuit protection, soft-off, reinforced isolation, UL 1577 and VDE-11	DSO-16, 300 mil
EiceDRIVER™ X3 Analog 1-channel family	1ED34x1MC12M	3/6/9 A	35 V	12.6/10.4 V	244 ns (+/- 30 ns)	200 V/ns	✓	Analog configurable, fast and accurate short circuit protection and soft turn-off Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-16, 300 mil
EiceDRIVER™ X3 Digital 1-channel family	1ED38x0MC12M	3/6/9 A	35 V	12.6/10.4 V default, but adjustable		200 V/ns	✓	Digital configurable (I ² C), fast and accurate short circuit protection, rich monitoring functionality (predictive maintenance) Miller clamp, reinforced isolation, UL 1577 and VDE-11	DSO-16, 300 mil
EiceDRIVER™ 2ED-F2 2-channel family	2ED020I12-F2	2 A	28 V	12.6/10.4 V	170 ns	50 V/ns	✓	Miller clamp, short circuit protection	DSO-36, 300mil


EiceDRIVER™ non-isolated low-side gate drivers

1ED4417x, 1-ch, low-side drivers with integrated protection features

EiceDRIVER™ 1ED4417x family are 25 V, 1-channel low-voltage, non-inverting, low-side gate drivers designed for groundreferenced applications such as power-factor correction (PFC) circuits. Typically, overcurrent protection (OCP) is implemented by a current measurement with a comparator and multiple resistors and capacitors. The 1ED44176N01F, 1ED44175N01B, and 1ED44173N01B provides up to 20 percent cost and 50 percent space savings by integrating a fast and accurate OCP. The new family of low-side gate drivers utilize Infineon's proprietary latch immune CMOS technologies to enable a rugged monolithic construction while realizing best-in-class fault reporting accuracy with OCP threshold tolerance of +/-5 percent. In addition, Infineon's IC technology enables a tiny PG-SOT23 package (or DSO-8 for 1ED44176N01) by combining the fault output and enable functions into a single pin.

The family also includes 1ED44171N01B, a cost-effective, simple driver with enable and fault reporting functions. With a single PCB layout, 1ED44171N01B can be used as a second source option for the popular IRS44273L. Enabling a singlesupplier, dual sourcing strategy for fast-reacting supply flexibility.

Simplified application diagram

Part Number	Package	I _{0±} [A]	UVLO [V]	V _{остн} [mV]	T _{on/off} [ns]	Ground pins	Feature	
1ED44171N01B	SOT23-5	2.6/2.6 A	11.9/11.4 V	N/A	50/50 ns	СОМ	Enable, Fault, cost-effective	
1ED44173N01B	SOT23-6	2.6/2.6 A	8/7 V	-250 mV	34/34 ns	СОМ	OCP (negative current sensing),	
1ED44175N01B	SOT23-6	2.6/2.6 A	11.9/11.4 V	-250 mV	50/50 ns	СОМ	Enable, Fault	
1ED44176N01F	DSO-8	0.8/1.75 A	11.9/11.4 V	500 mV	50/50 ns	V _{ss} /COM	OCP (positive current sensing), Enable, Fault, Programmable fault clear time	

Evaluation and reference board

- > EVAL-1ED44176N01F
- EVAL-1ED44175N01B
- EVAL-1ED44173N01B
- **EVAL-PFC5KIKWWR5SYS**
- REF-SHA35WRC2SYS
- REF-AIRCON-C302A-IM564

www.infineon.com/gatedriver www.infineon.com/driver-gan

2EDN EiceDRIVER™ family

Rugged, fast, dual-channel low-side 4 A/5 A gate driver ICs

EiceDRIVER™ 2EDN family overview

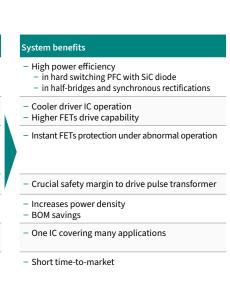
Dual-channel driver ICs are the crucial link between control ICs and powerful MOSFET, wide band gap (WBG) switching devices. Driver ICs enable high system level efficiencies, excellent power density, and consistent system robustness.

EiceDRIVER™ 2EDN family: Fast, precise, and compatible

- Highly efficient SMPS enabled by 19 ns propagation delay and 2 ns channel-to-channel mismatch precision for fast MOSFET and WBG switches
- Diversified applications driven by strong output current 4 A/5 A per channel
- Unique designs are supported by the availability of numerous packages

Applications

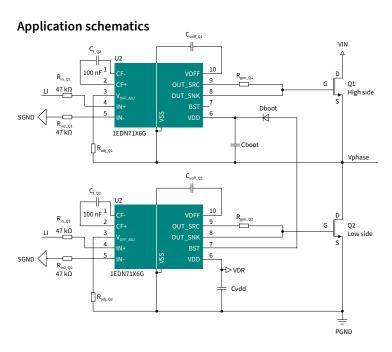
- Server
- Telecom
- DC-DC Converters
- Power tools
- Industrial SMPS
- Low speed electrical vehicles
- Solar power inverter
- LED lighting


EiceDRIVER™ 2EDN family: The new reference in ruggedness and low power dissipation

- 4 V and 8 V UVLO (undervoltage lock out) options for instant FETs protection under abnormal conditions, further improved with active output voltage
- -10 V robustness of control and enable inputs provides crucial safety margin when driving pulse transformers or driving FETs in various packages
- 5 A reverse output current robustness eliminates the need for Schottky switching diodes and reduces bill-of-material
- Cool driver ICs from true rail-to-rail low impedance output stages

Key features
 5 A source/sink current 2 ns channel-to-channel mismatch 10 ns minimum input pulse width
- True rail-to-rail low impedance output stages
 4 V and 8 V UVLO options, with active output voltage clamping 19 ns propagation delay for both control and enable
10 V robustness of control and enable inputs
– 5 A reverse output current robustness
- 2 independent channels
- Industry standard pinout and packages

Product benefits
Fast Miller plateau transitionPrecise timing
– Low power dissipation in driver IC
Fast and reliable FETs turn-off, independent of control IC
- Increased GND-bounce robustness
– Saves switching diodes
 Option to increase drive current by truly concurrent switching of 2 channels
Straight forward design upgrades



EiceDRIVER™ 1EDN71x6G/U family

200 V 1-ch gate drivers with truly differential input (TDI)

The 1EDN71x6G/U is a 1-channel gate driver family optimized for Infineon CoolGaN™ Schottky-gate (SG) HEMTs, and also compatible with other GaN SG HEMTs and silicon MOSFETs. The TDI feature eliminates the risk of false triggering due to ground bounce in low-side applications and enable 1EDN71x6G/U to address even high-side applications. The TDI feature works by controlling the gate driver output state exclusively by the voltage difference between the two inputs, completely independent of the driver's reference (ground) potential as long as the common-mode voltage is below 150 V (static) and 200 V (dynamic).

Features and benefits

Product features	Product benefits
- Truly differential logic input (TDI)	High-side driving and low-side ground bounce immunity
- Four driving strengths	 Optimize switching speed without external gate resistors
- Active Miller clamp	- Prevent induced turn-on
- Optional negative charge pump	– Additional induced turn-on immunity
– Active bootstrap capacitor	No overcharging the bootstrap capacitor during deadtime

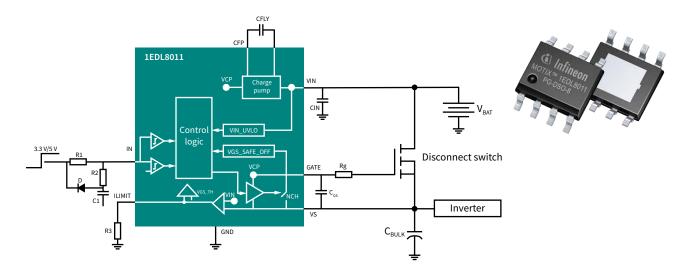
Product family

Product	Ourput current	Source/sink resistance	Input pulse blanking time	Package
1EDN7116G	2 A	0.8 Ω	20 ns	VSON-10
1EDN7126G	1.5 A	1.0 Ω	40 ns	VSON-10
1EDN7136G	1 A	1.5 Ω	60 ns	VSON-10
1EDN7146G	0.5 A	3.0 Ω	80 ns	VSON-10
1EDN7116U	2 A	0.8 Ω	20 ns	TSNP-7
1EDN7126U	1.5 A	1.0 Ω	40 ns	TSNP-7
1EDN7136U	1 A	1.5 Ω	60 ns	TSNP-7
1EDN7146U	0.5 A	3.0 Ω	80 ns	TSNP-7

Click here to learn more:

www.infineon.com/gatedriver www.infineon.com/driver-gan www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

EiceDRIVER™ 1EDL8011, 135 V high-side driver


Integrated high-side driver with strong gate drive and integrated charge pump

Infineon's upcoming EiceDRIVER™ 1EDL8011 high-side gate driver provides a simple and highly robust solution to drive a disconnect switch to protect battery operated systems during potential short conditions. 1EDL8011 enables fast turn on/off control of high side N-channel MOSFETs due to the powerful internal gate sourcing and sinking current capabilities. It consists of an integrated charge pump with an external capacitor to provide support for strong start-up and turn-off and scalable FETs in parallel application scenarios. The internal charge pump provides proper MOSFET gate voltage during low operating input voltage conditions. High-side protection avoids faulty shorting conditions in the load and the dangerous presence of in-rush currents for battery-powered applications.

1EDL8011 features include OCP protection, the adjustable current setting threshold, time delay, as well as a safe start-up mechanism with flexible blanking during MOSFET turn-on transition. Input voltage under-voltage lockout (UVLO) avoids operation under hazardous conditions and ensures the right level of gate voltage to fully enhance the MOSFET.

The 1EDL8011 gate driver addresses two main use cases in battery operated systems:

- In-rush current control: allows controlled turn-on of the disconnect switch by using an external R_g combined with a safe start-up and blanking mechanism.
- Short circuit protection: whenever a short occurs at the load side, it allows disconnecting the load from the source by quickly turning off the disconnect switch. This is made possible by the strong pull-down inside the 1EDL8011, therefore protecting the whole system.

Features and benefits

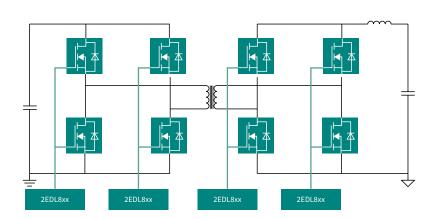
Product features	Product benefits
− Operating voltage: 7 − 135 V	— Wide voltage operating range
– Powerful gate sinking current up to 1 A	– Fast turn-off for proper protection
– Off-mode quiescent current 1 μA	– Efficiency and long battery life

Product family

Product	Package	Voltage [A]
1EDL8011*	DSO-8	7 – 135 V

Click here to learn more:

www.infineon.com/gatedriver www.infineon.com/driver-gan


www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

EiceDRIVER™ 2EDL8x2x family

120 V, 3/4 A, junction-isolated high- and low-side gate drivers

The 2EDL8x2x is a family of high- and low-side gate drivers designed for advanced switching DC-DC converters. The 2EDL802x takes in independent inputs, while 2EDL812x takes in differential inputs, both of which have built-in hysteresis for enhanced noise immunity. The gate driver family comes in two packages: VDSON-8 4x4 mm and VSON-10 3x3 mm.

Application schematics

Features and benefits

Product features	Product benefits
– 120 V integrated boot-strap diode with 10 ns reverse recovery time	Drive strength for fast Miller plateau transition
- 2 to 4 A output source currents	- Fast and robust
6 A output sink currents	Immunity against false triggering from ground bounce
8 V/+ 15 V differential input robustness	No need for Schottky clamping diodes
– 5 A reverse current output robustness	
- ±1 ns (tvp.) channel-to-channel delay matching	

Product family

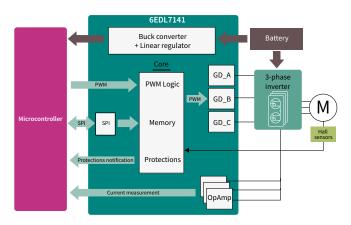
Part nu	Input	Source current	Sink current	Min. input pulse width	Propagation delay (typ.)	Matching delay (typ)	ESD	Package
2EDL8123G	Differential	3 A						VDSON-8
2EDL8124G		4 A						4x4 mm
2EDL8023G	Independent	3 A						
2EDL8024G		4 A						
2EDL8123G3C	Differential	3 A	6 A	40 ns	45 ns	2 ns	2 kV	VSON-10 3x3 mm
2EDL8124G3C		4 A						
2EDL8023G3C	Independent	3 A						
2EDL8024G3C		4 A						

Evaluation board:

EVAL_HB_2EDL8x2xG* REF_600W_FBFB_QB*

Click here to learn more:

www.infineon.com/gatedriver www.infineon.com/driver-gan www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git


MOTIX™ 6EDL7141 high performance motor control

Next-generation fully programmable three-phase gate driver

6EDL7141, Infineon's latest three-phase motor control gate driver IC allows our customers to develop their next generation of high performance battery operated products using BLDC or PMSM motors. Ideal applications include cordless power tools, gardening products, and automated guided vehicles. With over 50 fully programmable parameters using built-in digital SPI interface, 6EDL7141 is fully configurable to drive a wide range of MOSFET's to yield the best possible system efficiency. The integrated buck regulator provides the power for both the microcontroller and the Hall sensors in the motor, further reducing peripheral components and required PCB area. In addition, with a full suite of system protection features such as OCP, UVLO, overtemperature, and locked rotor detection, this dedicated motor controller will increase reliability and robustness in severe operating fault conditions.

Block diagram

Three-phase BLDC battery-powered motor control

Features and benefits

Key features	Key benefits
- Integrated power supply	Reduced external components and PCB area
- Programmable slew rate	Optimized efficiency and EMI
- Programmable gate drive supply	Maximum flexibility to use different inverter FETs
- 3x current shunt amplifier	Highly accurate current sense while saving external components
– ADC ref. of 5 V	Higher dynamic range to increase signal resolution
- Complete dedicated motor control protection suite	- Improve reliability and fault detection

EVAL_6EDL7141_TRAP_1SH

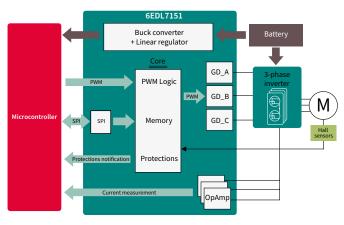
BC 1 shunt evaluation board

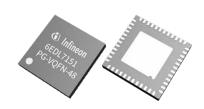
Parallel 40 V OptiMOS™5 PQFN

XMC1404 MCU

On-board programming dongle

Featured module IC: 6EDL7141




www.infineon.com/driver-gan

MOTIX™ 6EDL7151 3-phase smart gate drive controller IC

Three-phase motor control gate driver IC for battery supplied BLDC motor control

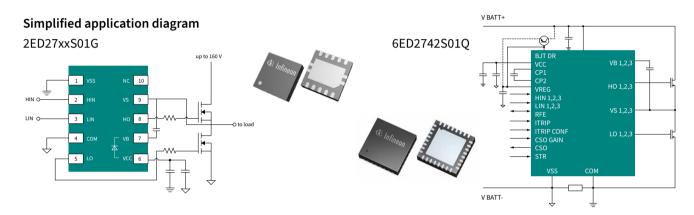
The 6EDL7151 is Infineon's latest 3-phase gate driver which includes added V_s sensor to allow additional hardware system protection for battery supplied motor control products. Ideal applications include cordless power tools, gardening products, and automated guided vehicles. With over 50 programmable parameters using built-in digital SPI interface, 6EDL7151 is fully configurable to drive a wide range of MOSFET's to yield the best possible system efficiency. 6EDL7151 is also designed for maximum performance. Features include programmable deadtime delays for preventing current shoot through between HS and LS switches in normal operation and separate charge pumps for low and high side gate drivers support 100 percent duty cycle and low voltage supply operation. Supplies for the gate drivers are programmable to one of the following levels: 7 V, 10 V, 12 V, or 15 V. Additionally, the slew rate of the driving signal can be programmed with fine granularity to reduce EMI emissions. An integrated synchronous buck converter provides an efficient supply of current to the rest of the system. The 6EDL7151 also integrates a linear voltage regulator (up to 300 mA), powered by the buck converter to supply the MCU and other sensitive components in the system. 6EDL7151 includes three current sense amplifiers for accurate current measurements that support bi directional low side current sensing with programmable gain. R_{DS(on)} sensing is supported through internal connection of the phase nodes to the current sense amplifiers inputs. Temperature compensation if needed shall be provided by the user application. 6EDL7151 also includes highly programmable $V_{\rm ps}$ sensors for inverter MOSFET protection. In addition, 6EDL7151 provides numerous protections features for improving application robustness during adverse conditions like monitoring of power supply voltages and system parameters. The failure behavior, threshold voltages, and filter times of the supervisions of the device are adjustable via SPI. Monitored aspects include inverter currents, gate drive voltages and currents, device temperature, and rotor locked.

Features and benefits

Product features	Product benefits
- Integrated power supplies	Reduced external component count and PCB area
– Adjustable slew rate	Lower voltage overshoots and EMI reduction
– 3x current shunt amplifier	Maximum flexibility to use different inverter MOSFET's
- Complete dedicated motor control protection suite	Highly accurate integrated current sense saves external components
– V _{ps} sensing	Improved reliability and fault detection

Product family

Product	Package		Voltage [V]		DVDD regul	ator outpu	t [V]
6EDL7151*	VQFN 48 7mm x 7mm	5.5 – 70 V			5.0 V			
		ı	Power tools	City Report to als	Multicopter	Service robots	eBike	Vacuum cleaner


www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

MOTIX™ 160 V SOI gate driver family

2ED27xxS01G half-bridge and high- and low-side gate driver family with integrated bootstrap diode

6ED2742S01Q three-phase driver with charge pump, current sense amplifier, OCP, and bootstrap diode

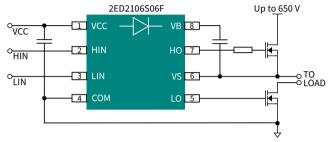
MOTIX[™] 160 V SOI gate driver family is designed for the BLDC motor drive applications. The SOI technology enables integrated bootstrap diodes, which can be used to supply the external high-side bootstrap capacitor. The output drivers feature a high-pulse current buffer stage designed for minimum driver cross-conduction. MOTIX[™] 2ED27xxS01G family consists of three half-bridge and three high- and low-side 160 V SOI gate drivers. The UVLO protection is on both V_{CC} and V_B pins. Fast propagation delays (50 ns) are suitable for motor drive and power conversion applications in VSON-10 (3x3 mm) package with exposed ground pad. MOTIX[™] 6ED2742S01Q is a 160 V three-phase SOI gate driver, which supports 100 percent duty cycle operation by a trickle charge pump. Protection features include UVLO, OCP with configurable threshold, fault, and automatic fault clear. A current sense operational amplifier (CSA) with selectable gain is integrated between the V_{SS} and COM.

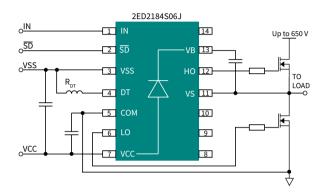
Product	t	Package	Output current	Configuration	Deadtime	Propagation delay
2ED2732S01G	NEW	VSON-10 3x3 mm	1/2 A	High- and low-side	None	50 ns
2ED2734S01G*			2/4 A	(HS+LS)		65 ns
2ED2738S01G	NEW		4/8 A			65 ns
2ED2742S01G	NEW		1/2 A	Half-bridge	50 ns	50 ns
2ED2744S01G*			2/4 A			65 ns
2ED2748S01G	NEW		4/8 A			65 ns
6ED2742S01Q		VQFN-32 5x5 mm	1/2 A	Three-phase	100 ns	100 ns
2ED772S01G*		VSON-10 3x3 mm	1/2 A	Half-bridge	30 ns	50 ns
2ED2778S01G*		VSON-10 3x3 mm	4/8 A	Half-bridge	30 ns	65 ns

Applications for MOTIX[™] 160 V SOI gate driver family

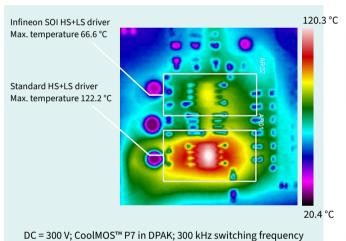
- Servo/stepper drives in robotics and factory automation
- General purpose low-voltage drives
- Battery-operated small home appliances (SHA)
- Professional and consumer service robotics
- Logistics vehicles (e-forklifts, autonomous warehouse robotics)
- Commercial and agricultural drones
- Hand-held battery-operated power tools
- Garden or outdoor power equipment (OPE) tools
- e-scooters, e-bikes, and other e-vehicles that do not require automotive qualification (LSEV)

6ED2742S01Q key features


- Integrated power management with charge pump and preregulator supports wide input voltage range of 6 to 140 V
- Integrated overcurrent protection comparator for singleshunt low side operation with programmable
 +/-5% reference threshold
- Integrated current sense amplifier with programmable voltage gain and ability to read output voltage offset during zero phase current
- Always positive output voltage offset to reduce need for +/- V_{REF} for downstream ADC in microcontroller.
- Integrated, per phase, high-side trickle charge pumps to enable 100% duty cycle operation
- Integrated, multi-function RFE pin combines FAULT,
 FAULT Clear, and Enable functionality


EiceDRIVER™ 650 V level-shift SOI gate driver family

2ED2101/3/4 and 2ED2110: EiceDRIVER™ fast level-shift SOI family with 90 ns prop delay 2ED2106/8/9 and 2ED2181/2/3/4: EiceDRIVER™ general purpose SOI family


EiceDRIVER™ 650 V SOI is a family of high-voltage, high-speed MOSFET and IGBT gate drivers. Based on Infineon's SOI technology, this family features an integrated, ultrafast, low R_{DS(on)} bootstrap diode and offers excellent ruggedness and noise immunity with tolerance to negative transient voltages of up to -100 V. The absence of parasitic thyristor structures ensures superior latch up immunity. The level-shift loss is significantly reduced on the EiceDRIVER™ SOI gate drivers compared to other technologies.

Simplified application diagrams

Power dissipation of Infineon SOI

Evaluation board

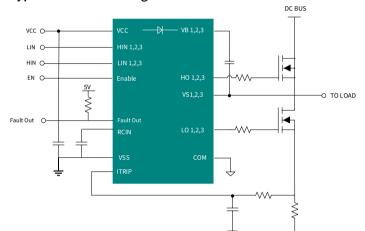
EVAL-M1-2ED2106S EVAL-2ED2101 HB-LLC

Product family	Part number	Output current	Prop. delay	Input logic	Configuration	Package
EiceDRIVER™	2ED2101S06F	0.29/0.7 A	90 ns	HIN, LIN	High- and low-side	DSO-8
fast level-shift SOI	2ED2103S06F			HIN, LIN	Half-bridge	
	2ED2104S06F			IN, SD	Half-bridge	
	2ED2388S06F	0.29/0.7 A		HIN, LIN	Half-bridge	
	2ED2110S06M	2.5/2.5 A		HIN, LIN	High- and low-side	DSO-16 WB
EiceDRIVER™	2ED2106S06F	0.29/0.7 A	200/200 ns	HIN, LIN	High- and low-side	DSO-8
general purpose SOI	2ED21064S06J			HIN, LIN		DSO-14
	2ED2108S06F		740/200 ns	HIN, LIN	Half-bridge	DSO-8
	2ED21084S06J			HIN, LIN		DSO-14
	2ED2109S06F			IN, SD		DSO-8
	2ED21094S06J			IN, SD		DSO-14
	2ED21091S06F			IN, DT/SD		DSO-8
	2ED2181S06F	2.5/2.5 A	200/200 ns	HIN, LIN	High- and low-side	DSO-8
	2ED21814S06J			HIN, LIN		DSO-14
	2ED2182S06F			HIN, LIN	Half-bridge	DSO-8
	2ED21824S06J			HIN, LIN		DSO-14
	2ED2183S06F			HIN, LIN		DSO-8
	2ED21834S06J			HIN, LIN		DSO-14
	2ED2184S06F		600/200 ns	IN, SD		DSO-8
	2ED21844S06J			IN, SD		DSO-14

29

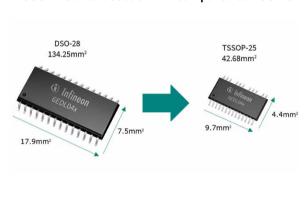
New EiceDRIVER™ 650 V and 300 V 6ED family in TSSOP-25

6EDL04I065NR, 6EDL04I065PR, 6EDL04N065PR, 6EDL04N03PR


Infineon's next generation 6ED family is now available in compact TSSOP-25 package. Compared to standard DSO-28 3-phase gate drivers, the TSSOP-25 package offers a 65 percent reduction in footprint size enabling PCB space and cost saving. Two pins are removed to support a sufficient creepage distance of 1 mm.

The EiceDRIVER™ 6ED family of high voltage gate driver ICs are designed to drive power MOSFETs or IGBTs in 3-phase motor drive applications such as home appliances, fans, pumps, and much more. The new 6-channel family offers a higher maximum blocking voltage up to +650 V compared to industry-standard competition and source/sink current +0.165 A/-0.375 A.

Because the 6ED family utilizes Infineon's unique silicon-on-insulator (SOI) technology, they offer excellent ruggedness on transient voltages. No parasitic thyristor structures are present in the device. Hence, no parasitic latch-up may occur at all temperatures and voltage conditions. Infineon's SOI technology also enables the integration of ultrafast, low ohmic bootstrap diode (40Ω).


The 6ED family offers additional integrated protection features such as undervoltage lockout (UVLO), accurate overcurrent protection, programmable fault communication, and signal interlocking of every phase to prevent cross-conduction.

Typical Connection Diagram

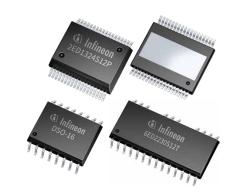
Package Comparison:

TSSOP-25 offers 65% shrink compared to DSO-28

Sales name	Breakdown voltage	Control Logic	lo +/- (typ.)	UVLO (typ.)	Deadtime	Integrated bootstrap diode
6EDL04I065NR	650 V	Negative		11.71/10.01/		
6EDL04I065PR	650 V	Positive	+0.165 A /	11.7 V / 9.8 V	240	((10.0)
6EDL04N065PR	650 V	Positive	-0.375 A	0.1/.0.4.1/	310 ns	√ (40 Ω)
6EDL04N03PR	300 V	Positive		9 V / 8.1 V		

Full Featured Evaluation Board: EVAL-iSSI30R12H

EVAL-6EDL04I065PR is intended to drive a brushless direct current (BLDC) motor by connecting it to an external controller board such as iMOTION™ EVAL-M1-101T. Evaluation board is coming soon for the device. The board is designed to evaluate the 650 V SOI three-phase gate driver 6EDL04I065PR along with six Trenchstop™ IGBTS IKD06N60RC2.



EiceDRIVER™ 1200 V level-shift SOI gate driver family

6ED223x: 1200 V three-phase SOI driver with OCP, bootstrap diode 2ED132x: 1200 V half-bridge and high- and low-side SOI driver with OCP, Miller clamp and bootstrap diode

The 6ED2231S12T is a 1200-V three-phase SOI gate driver, with 0.35 A/0.65 A current in DSO-24 package (DSO-28 with 4 pins removed). The 2ED132x family consists of four 1200 V SOI gate drivers, in half-bridge or high- and low-side configurations. 2ED132x family offers 2.3 A output current in high creepage (8 mm)/clearance DSO-20 wide body package or higher sink option (4.6 A) in DSO-16 wide body package. Both 6ED2231S12T and the 2ED132x family integrates ultrafast overcurrent protection (OCP) with \pm 5% accuracy, and bootstrap diode. In addition, the 2ED132x family also integrates active Miller clamp.

Space savings
Cost savings
Easy to design
Higher reliability
Faster time-to-market

Current solutions

6 x opto-isolated drivers + 3 x 1200 V bootstrap diodes

New 6ED2231S12T

Integrates 6x gate driver functionality and 3x boot-strap diodes Overcurrent protection IGBT/SiC MOSFET UVLOs

6ED2231S12T easily fits within EasyPIM™ 1B module footprint

EVAL-M1-6ED2231-B1

Features and benefits

Key features

- Leading negative VS immunity
- > 50% lower level-shift switching losses
- Integrated bootstrap diode
- 1200 V breakdown voltage
- Integrated input filters

Kov bonofit

- Increased robustness and reliability resulting in reduced manufacturing and field failures
- Reduced power dissipation, lower temperature
- Faster frequency switching
- Smaller PCB footprints
- Reduced BOM costs
- Improved noise sensitivity
- Latch-up immunity

Customor value

- Increased profitability from lower lifecycle costs
- Faster time-to-market for higher share capture
- Enables new applications
- Increased flexibility
- Increased reliability

Product Name	:	Configuration	Package	Output current	Key features	Deadtime	T _{on} /T _{off}
6ED2231S12T	NEW	Three-phase	DSO-24 (DSO-28 with 4 pins removed)	0.35/0.65 A	OCP, RFE	460 ns	700/650 ns
2ED1324S12P	NEW	Half-bridge	DSO-20WB (20 fine pitch leads)	2.3/2.3 A	OCP, SOFF, AMC, RFE	380 ns	500 ns
2ED1323S12P	NEW	HS+LS	DSO-20WB (20 fine pitch leads)	2.3/2.3 A	OCP, SOFF, AMC, RFE	None	350 ns
2ED1322S12M	NEW	Half-bridge	DSO-16WB (300mil)	2.3/4.6 A	OCP, SOFF, RFE	400 ns	500 ns
2ED1321S12M	NEW	HS+LS	DSO-16WB (300mil)	2.3/4.6 A	OCP, SOFF, RFE	None	350 ns

www.infineon.com/1200VHVIC

2EDi EiceDRIVER™ family

Fast, robust, dual-channel galvanic isolated gate-river ICs

Galvanic isolated EiceDRIVER™ family overview

The 2EDi is a family of dual-channel isolated gate driver ICs designed to drive Si MOSFETS, SiC MOSFETs, and GaN power switches. Isolation is achieved by means of Infineon's coreless transformer (CT) technology which guarantees robust operation and industry benchmark common-mode rejection (CMTI). The high propagation delay accuracy and low channel-to-channel mismatch makes the product ideal for use in fast-switching power system. In addition, high CMTI, high reverse current capability and fast clamping of the output below UVLO guarantees reliable operation in the application.

2EDi Gen 2: What is new?

- New DSO-8 4x4 package
- DSO-14 packages with increased channel-to-channel creepage to easier the layout easier or enable the use with higher working voltages or worst pollution layout
- Fulfills the latest component standard for magnetic couplers (IEC 60747-17)
- Programmable deadtime and shoot-through functionality

Applications

- Server
- Telecom
- DC-DC converters
- Power tools
- Industrial SMPS
- Low speed electrical vehicles
- Solar power inverter

- LED lighting
- Home appliances air conditioner
- Motor driver
- Battery charger
- EV chargers
- OBC-DCDC
- Microinverters

Features and benefits

Key features

- Fast power switching with accurate timing
- 5 A/9 A source/sink currents
- Propagation delay typ. 38 ns with 6 ns channel-to-channel precision
- Optimized for area and system BOM
- < 1 Ω source and sink output resistance
- Output stages with 5 A reverse current capability
- Robust
- CMTI >150 V/ns
- Undervoltage lockout function for switch protection
- Deadtime control and shoot through protection
- Output-to-output channel isolation
- Functional level galvanic isolation
- Input-to-output channel isolation
- Functional, basic, and reinforced galvanic isolation

Key benefits

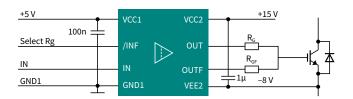
- Efficiency gain and lower losses
- Strong driving enables reduced switching losses
- Accurate timing enables deadtime optimiza tion or synchronized driving in case of parallel MOSFETs
- Improved thermal behavior at smaller form factor Most of the driving power is dissipated externally
- with reduced thermal stress on the driver
- Eliminates two costly protection diodes on the gate driver outputs
- Protection and safe operation
- Reliable driver operation against fast switching transients
- MOSFET is protected from thermal stress in abnormal conditions
- Protection against noise and spurious pulses
- Flexible configurations
- High-side + low-side, high-side + high-side, lowside + low-side
- Regulatory safety
- Functional for level-shifting and ground bounce immunity
- Reinforced for control of primary-side MOSFETs from secondary-side controller

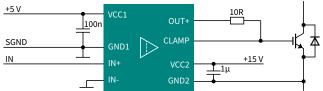
Customer value

- Enabling higher system efficiency and higher power density designs
- Improving long term competitive cost position, integration and mass manufacturability
- Extending end-product lifetime
- by improving safe operation of power switches in normal and abnormal field (grid) conditions
- Lower EMI by ground isolation
- Simplified safety approval
- through component standards (UL1577, IEC60747-17) and system standards (IEC62368) certificates

www.infineon.com/gatedriver www.infineon.com/driver-gan www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

EiceDRIVER™ X3 Compact and 2L-SRC Compact


5.7 kV, 18 A, 1-ch, isolated drivers with Miller clamp and two-level slew rate control


The EiceDRIVER™ X3 Compact family (1ED31xx) provides Miller clamp or separate output options with up to 14 A current, in DSO-8 150 mil and 300 mil package. The EiceDRIVER™ 2L-SRC Compact family (1ED32xx) provides Miller clamp or two-level slew rate control options with up to 18 A current, in DSO-8 300 mil package. The Miller clamp function is highly recommended for SiC MOSFET 0 V turn-off and TRENCHSTOP™ IGBT7 against parasitic turn-on. The two-level slew rate control function allows customers to change the output current on the fly. It is highly recommend for industrial drives application, where customer suffer from the EMI and switching loss optimization. Both EiceDRIVER™ X3 Compact and 2L-SRC Compact families are rated up to 2300 V functional isolation and 200 kV/µs CMTI. They are ideal for IGBTs, Si MOSFETs, and SiC MOSFETs in applications like solar inverter, EV-charging, industrial drives, CAC, industrial induction cooking, CAV, UPS, server and telecom SMPS, etc.

Simplified application diagram

Two-level slew rate control (1ED3241MC12H)

Active Miller clamp (1ED3122MC12H)

Evaluation board

 EVAL-1ED3121MX12H
 EVAL-1ED3241MC12H

 EVAL-1ED3122MX12H
 EVAL-1ED3251MC12H

 EVAL-1ED3124MX12H
 REF-22K-GPD-INV-EASY3B

Family	Part number Typ. output Feature Prop. delay Input filter UVLO		Prop.delay matching	Package	Isolation rating				
EiceDRIVER™	1ED3127MU12F	10 A	Miller clamp	90 ns	30 ns	12 V	7 ns	DSO-8 150 mil	UL 1577:
X3 Compact	1ED3125MU12F	10 A				10.5 V			VISO = 3 kV _{RMS}
	1ED3140MU12F	6.5 A	Separate output	45 ns	15 ns	8.5 V			
	1ED3141MU12F	6.5 A				11 V			
	1ED3142MU12F	6.5 A				12.5 V			
	1ED3124MU12F	14 A		90 ns	30 ns	10.5 V			
	1ED3141MC12H*	6.5 A		45 ns	15 ns	11 V		DSO-8 300 mil	UL 1577:
	1ED3142MC12H*	6.5 A		45 ns	15 ns	12.5 V			$V_{\rm ISO} = 5.7 \text{kV}_{\rm rms}$
	1ED3143MC12H*	6.5 A	UVLO2 refers GND2	45 ns	15 ns	11 V			IEC 60747-17 V _{IORM} = 1.767 kVrms
	1ED3144MC12H*	6.5 A		45 ns	15 ns	12.5 V			
	1ED3145MC12H*	6.5 A	UVLO2 adjustable	45 ns	15 ns	Adjustable			
	1ED3122MC12H	10 A	Miller clamp	90 ns	30 ns	8 V			UL 1577:
	1ED3123MC12H	14 A	Separate output			8 V			$V_{ISO} = 5.7 \text{ kV}_{RMS}$
	1ED3124MC12H	14 A				10.5 V			VDF 0004 11
EiceDRIVER™	1ED3240MC12H	10 A	Turn-on and turn-off slew	110 ns	30 ns	10.5 V	15 ns		VDE 0884-11: V _{IORM} = 1767 V
2L-SRC	1ED3241MC12H	18 A	rate control			10.5 V			(reinforced)
Compact	1ED3250MC12H	10 A	Turn-on slew rate control			10.5 V			, , , , , , , ,
	1ED3251MC12H	18 A	and Miller clamp			10.5 V			

www.infineon.com/driver-gan

www.infineon.com/driver-gan-sg www.infineon.com/driver-gan-git

EiceDRIVER™ X3 Compact Gen 2 product family

Single channel isolated gate driver for functional or reinforced isolation

1ED3140MU12F, 1ED3141MU12F, 1ED3142MU12F, 1ED3141MC12H 1ED3142MC12H, 1ED3143MC12H, 1ED3144MC12H, 1ED3145MC12H

The EiceDRIVER™ Compact 1ED314x products are high-performance single-channel galvanically isolated gate driver ICs. This family is available in either a 150 mil DSO-8 package with 4 mm creepage and clearance or in a 300 mil DSO-8 package with 8 mm creepage and clearance suitable for most industrial applications. The creepage and clearance offered by these packages meet the requirements for fulfilling the functional or reinforced isolation in applications. The excellent part-to-part propagation delay matching of only 7 ns reduces the required deadtime during switching and the strong output stage provides driving currents up to 6.5 A. These features enable high-efficiency power conversion when using IGBTs or SiC MOSFETs in high switching frequency applications. The best-in-class common mode transient immunity (CMTI) rating of 300 kV/µs ensures smooth operation of the gate driver and the system even under very fast switching conditions. The high absolute maximum rating of the output supply voltage enables the straightforward driving of SiC MOSFET and IGBT with both unipolar and bipolar voltage configurations. Undervoltage lockout (UVLO) options in the 1ED314x family cater to the driving voltage requirements of silicon MOSFETs, IGBTs, and SiC MOSFETs. The isolation capabilities of the gate drivers are planned to be certified under both UL 1577 and IEC 60747-17. The 1ED314x product family is an excellent choice for applications such as electric vehicle charging station, solar inverter, energy storage system, uninterruptible power supply, high voltage air-conditioner, switched-mode power supply, and industrial drives.

Features

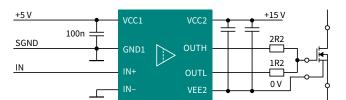
Product features
- 35 V absolute maximum output supply voltage
– 6.5 A peak output driving current
– Very short propagation delay (40 ns) and part-to-part tolerance (7 ns
– UVLO options for Si MOSFETs, IGBTs, and SiC MOSFETs
– Active shutdown
– 150 mil and 300 mil DSO 8-pin standard packages
- Certified according to UL 1577 and IEC 60747-17 (planned) standards

DSO-8 150 mil package

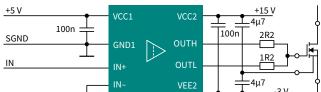
DSO-8 300 mil package

150 mil product family

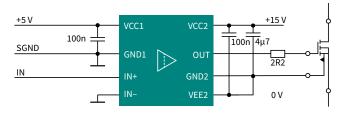
Product Name	Package Information			Typical UVLO2	UVLO Ref.	Output Type	Certification	Isolation Voltage
	Туре	сті	CLR / CPG	(VUVLOL2 / VUVLOH2)	OVLO Rei.	Output Type	Certification	isolation voltage
1ED3140MU12F	DSO-8, 150 mil	400	4 mm / 4 mm	8.5 V / 9.3 V	VEE2	Separate	UL 1577	V _{ISO} = 3000 V (rms)
1ED3141MU12F				11.0 V / 12.0 V				
1ED3142MU12F				12.5 V / 13.6 V				

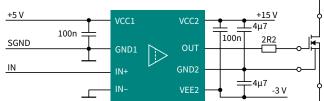

300 mil product family

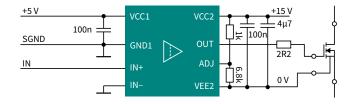
•	,							
Product Name	Package Information			Typical UVLO2	UVLO Ref.	Output Type	Certification	Isolation Voltage
	Type	СТІ	CLR / CPG	(VUVLOL2 / VUVLOH2)				
1ED3141MC12H	DSO-8, 300 mil	600	8 mm / 8 mm	11.0 V / 12.0 V	VEE2	Separate	UL 1577 (pending)	V _{ISO} = 5700 V (rms)
1ED3142MC12H				12.5 V / 13.6 V	VEE2	Separate	IEC 60747-17 (planned)	V _{IORM} = 1767 V (pk)
1ED3143MC12H				11.0 V / 12.0 V	GND2	Combined		
1ED3144MC12H				12.5 V / 13.6 V	GND2	Combined		
1ED3145MC12H				Adjustable	VCC2	Combined		

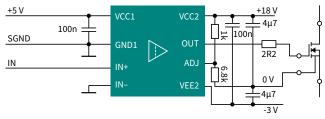


Typical Application Schematic


Separate output for unipolar driving, UVLO2 referred to VEE2


Separate output for bipolar driving, UVLO2 referred to VEE2


Combined output for unipolar driving, UVLO2 referred to GND2


Combined output for bipolar driving, UVLO2 referred to GND2

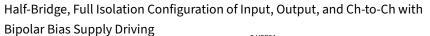
Combined output for unipolar driving, UVLO2 adjustable

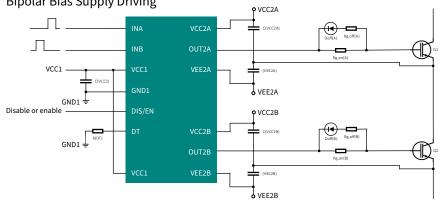
Combined output for bipolar driving, UVLO2 adjustable

EiceDRIVER™ X3 Compact 2ED314xMC12H

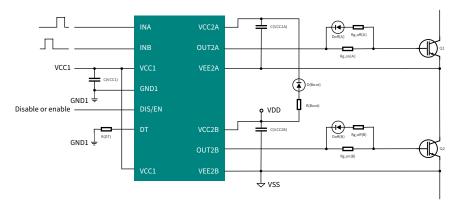
Dual channel isolated gate driver with reinforced isolation

2ED3140MC12L, 2ED3141MC12L, 2ED3142MC12L, 2ED3143MC12L, 2ED3144MC12L, 2ED3145MC12L, 2ED3146MC12L, 2ED3147MC12L

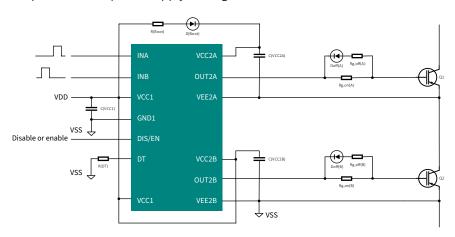

The EiceDRIVER™ Compact 2ED314x products are high-performance dual-channel galvanically isolated gate driver ICs. The 300 mil DSO-14 package offers an input-to-output creepage and clearance of 8 mm and an output channel-to-channel distance of 3.3 mm. The reinforced isolation between input and output and the functional isolation between the outputs meet the requirements of most industrial applications. With only a 39 ns propagation delay and 8 ns channel-to-channel mismatch, the gate drivers support all high frequency switching applications. The 6.5 A output current allows using these ICs with many IGBT and SiC MOSFETs in discrete and power module packages. The deadtime control pin (DT) enables the dual-channel or the half-bridge mode. In half-bridge mode, the gate driver implements a shoot-through protection with configurable dead-time. The established coreless transformer isolation technology offers high common mode transient immunity (CMTI) for robust signal transmission in high dV/dt application conditions. The maximum output supply rating of 35 V is optimized to drive SiC MOSFET and IGBT with unipolar or bipolar gate voltages. The 2ED314x has UVLO options for Si MOSFETs, IGBTs, and SiC MOSFETs. The products are planned with UL 1577 and IEC 60747-17 certification to support a broad range of applications, such as electric vehicle charge station, solar inverter, energy storage system, uninterruptible power supply, high voltage air-conditioner, and switched-mode power supply.


Features

Product features
– 35 V absolute maximum output supply voltage
- 6.5 A peak output driving current
- Short propagation delay (39 ns) and part-to-part tolerance (8 ns)
 UVLO options for Si MOSFETs, IGBTs, and SiC MOSFETs
- Active shutdown
Output enable or disable logic control pin
– Selectable dual-channel (non-interlocked) or half-bridge (interlocked) mode
- Shoot-through protection with configurable deadtime in half-bridge mode
- 300 mil DSO-14 package
- UL1577 (pending) and IEC 60747-17 certified (planned)

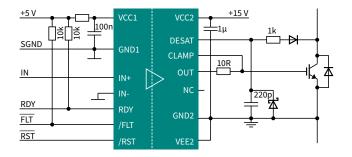

Product family

Product Name	Package Information		Typical UVLO2		Output Type	Certification	Isolation Voltage		
Product Name	Type	сті	CLR / CPG	(VUVLOL2 / VUVLOH2)	UVLO Ref.	Output Type	Certification	isolation voltage	
2ED3140MC12L	DSO-14, 300 mil	400	8 mm / 8 mm	3.3 mm / 3.3 mm	8.5 V / 9.3 V	DIS	UL 1577 (pending)	V _{ISO} = 5700 V (rms)	
2ED3141MC12L					11.0 V / 12.0 V	DIS		IEC 60747-17 (planned)	V _{IORM} = 1767 V (pk)
2ED3142MC12L					12.5 V / 13.6 V	DIS	(planned)		
2ED3143MC12L					14.7 V / 16.0 V	DIS			
2ED3144MC12L					8.5 V / 9.3 V	EN			
2ED3145MC12L					11.0 V / 12.0 V	EN			
2ED3146MC12L					12.5 V / 13.6 V	EN			
2ED3147MC12L					14.7 V / 16.0 V	EN			



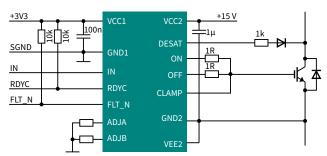
Half-Bridge, Isolation Configuration of Input and Output only, Ch-to-Ch with Unipolar Bootstrap Bias Supply Driving

Half-Bridge, Non-isolation Configuration of Input, Output, and Ch-to-Ch with Unipolar Bootstrap Bias Supply Driving


EiceDRIVER™ Enhanced 1ED-F3 and X3 Analog

5.7 kV, 9 A, 1-ch, isolated drivers with DESAT, Miller clamp and soft-off

The EiceDRIVER™ Enhanced 1ED-F3 family (1ED332x) provides DESAT, Miller clamp and soft-off features with up to 6 A current, in DSO-16 300 mil package. The EiceDRIVER™ Enhanced X3 Analog family (1ED34xx) provides Miller clamp, resistor configurable DESAT, and soft-off function with up to 9 A current, in DSO-16 300 mil fine pitch package. The 1ED-F3 family (1ED332x) is pin-to-pin with our previous generation 1ED020I12-F2 (1ED-F2), with higher current, shorter propagation delay, higher isolation ratings, and additional soft-off function. The X3 Analog family (1ED34xx) offers bestin-class DESAT protection accuracy with the resistor configurability on DESAT filter and leading edge blanking time and soft-off current. Both EiceDRIVER™ Enhanced 1ED-F3 and X3 Analog families are rated up to 2300 V functional isolation and 200 kV/µs CMTI. They are ideal for IGBTs, Si MOSFETs, and SiC in applications like solar inverter, EV-charging, industrial drives, CAC, industrial induction cooking, CAV, UPS, server and telecom SMPS, etc.


Simplified application diagram

1ED-F3 (1ED332x)

X3 Analog (1ED34xx)

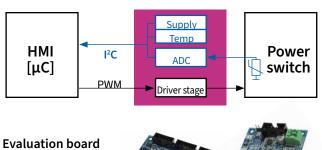
Evaluation board

EVAL-1ED3321MC12N EVAL-1ED3491MX12M

Family	Part number	Typ. output current	Feature	Prop. delay	Input filter	UVLO	Prop.delay matching	Package	Isolation rating
EiceDRIVER™ Enhanced 1ED-F3	1ED3320MC12N	3/6 A	Miller clamp, DESAT, soft-off Miller clamp, DESAT	80 ns	ns 35 ns	10.5 V	15 ns	DSO-16 300mil	UL 1577: V _{ISO} = 5.7 kV _{RMS} VDE 0884-11: V _{IORM} = 1767 V (reinforced)
	1ED3321MC12N	6/8.5 A				10.5 V			
	1ED3322MC12N	6/8.5 A				12 V			
	1ED3323MC12N	6/8.5 A				10.5 V			
EiceDRIVER™ Enhanced X3 Analog	1ED3431MC12M	3 A	Miller clamp, resistor adjus- table DESAT and soft-off	236 ns	100 ns	10.5 V	30 ns	DSO-16 300mil fine pitch	
	1ED3461MC12M	6 A	Clamp driver, resistor adjustable DESAT and soft-off			10.5 V			
	1ED3491MC12M	9 A				10.5 V			

Click here to learn more:

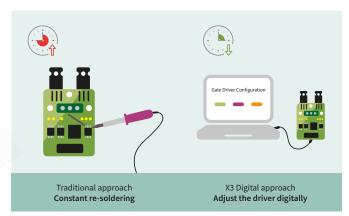
www.infineon.com/gdenhanced www.infineon.com/gatedriver

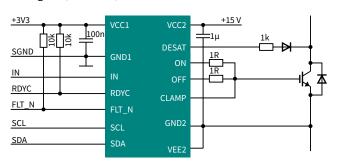

EiceDRIVER™ Enhanced X3 Digital

5.7 kV, 9 A, 1-ch, isolated drivers with I²C configurability for DESAT, Miller clamp, soft-off and many more

The EiceDRIVER™ Enhanced X3 Digital family (1ED38xx) provides I²C configurability for DESAT, soft-off, UVLO, Miller clamp, two-level turn-off (TLTO), and fault function to simplify the design of highly reliable systems. All adjustments are done from the input side via the I²C interface (pin SDA and SCL). The 1ED38xx offers up to 9 A current, in DSO-16 300 mil fine-pitch package. The EiceDRIVER™ Enhanced X3 Digital family is rated up to 2300 V functional isolation and 200 kV/µs CMTI. They are ideal for IGBTs, Si MOSFETs, and SiC MOSFETs especially due to the configurability of DESAT and UVLO. This family is recommended in applications like solar inverter, EV-charging, industrial drives, CAC, industrial induction cooking, CAV, UPS, server and telecom SMPS, etc. Two noticeable advantages of the digitally configurable approach for customers are predictive maintenance in sophisticated industrial systems and rapid prototyping for fast solution development.

Predictive maintenance


Using the I²C interface, the 1ED38xx is able to register the counts of UVLO spikes, monitor the supply voltage and temperature increase. With the long-term analysis of the collected data, customers are able to decide when is the best time to schedule a maintenance cycle before the system fails.


Rapid prototyping

The I²C interface enables rapid prototyping without hardware changes. Using a traditional gate driver, customers have to first design an initial PCB board, and then adjust and replace the components on the board during evaluation. However, with the 1ED38xx I²C interface, customers can configure up to 27 parameters to optimize the board without replacing the components. This feature extremely shortens the development flow.

Simplified application diagram

X3 Digital (1ED38xx)

Family	Part Number	Typ. output current	Feature	Isolation rating
EiceDRIVER™ Enhanced X3 Digital	1ED3830MC12M	3 A	I ² C configurabili- ty, Miller clamp, DESAT, soft-off,	UL 1577: VISO = 5.7 kV _{RMS}
	1ED3860MC12M	6 A	two-level turn- off, integrated ADC	VDE 0884-11: VIORM = 1767 V (reinforced)
	1ED3890MC12M	9 A		

www.infineon.com/gatedriver

EiceDRIVER™ Full-Bridge Transformer Driver

Isolated power supply for IGBT and SiC MOSFET gate driver supply

2EP100R, 2EP101R, 2EP110R, 2EP130

The 2EP is a full-bridge transformer driver to enable customers to build an isolated gate driver power supply. The highly integrated and resistor configurable 2EP reduces the external component count. The open-loop controller drives the integrated full-bridge power MOSFETs and is therefore also able to offer various protection features. These features include overcurrent protection, thermal shutdown, and a ready signal. The adjustable duty cycle and switching frequency allow customers to customize the operation to the gate voltage requirements of various power switches like IGBT and SiC MOSFETs. The EiceDRIVER™ Power 2EP products come in a small TSSOP-8 package with an exposed pad for optimized thermal behavior. The small footprint additionally allows for space saving PCB designs in area constrained applications. The broad frequency range of up to 695 kHz together with the output power capability of 5 W or more enable isolated gate driver supply designs for a wide range of discrete and power modules. This flexibility allows the product to be used many applications such as uninterruptible power supply, solar inverter, energy storage system, electric vehicle charge station, and motor drive inverters.

Features

Product features	
– Wide input voltage range 4.5 to 20 V	
– Wide range of switching frequency from 50 to 695 kHz	
- Higher accuracy duty cycle adjustment from 10% to 50%	
- Peak-current controlled soft start	
- Overcurrent and overtemperature protection	
Ready signal to indicate successful completion of soft start	
- 3v3 mm² TSSOP-8 nackage with exposed nad	

Product Family

Product name	Package	Switching frequency	Duty cycle	Bypass mode	Overcurrent protection
2EP100R	TSSOP-8	65 kHz, 103 kHz	33%, 50%	No	Fixed
2EP101R	TSSOP-8	50 kHz, 65 kHz	12%, 17%	No	Fixed
2EP110R	TSSOP-8	50 kHz, 65 kHz	10% to 50%	No	Fixed
2EP130R	TSSOP-8	50 kHz to 695 kHz	10% to 50%	Yes	Adjustable

Application schematic

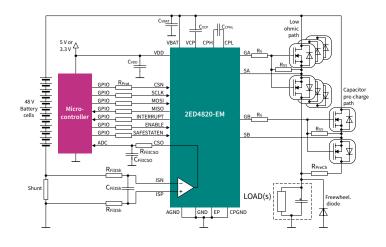
EiceDRIVER™ APD 2ED4820-EM

48 V smart high-side MOSFET gate driver with SPI for automotive applications

The EiceDRIVER™ 2ED4820-EM is a smart high side N-channel MOSFET gate driver with two outputs controlled via SPI. The integrated powerful charge pump allows external MOSFETs to stay continuously on. Thanks to the enhanced turn-on and turn-off ability of the driver, the number of MOSFETs could be easily scaled up to manage large currents in the order of several hundred amps, while ensuring fast switch on and off. The MOSFETs could be controlled in a back to back configuration either common mode or common source. The integrated current sense amplifier supports high-side and even load-side current measurement with a dedicated monitoring output. The 2ED4820-EM comes along with several latching failure detections, to implement protections for the external MOSFETs, the load and the power source. Parameters can be adjusted by SPI; monitoring data, configuration, warning and failure detection registers can be read.

Summary of features

- Extended supply voltage range: 20 70 V
- Two independent high-side gate driver outputs with
 1 A pull down, 0.3 A pull up for fast switch off/on
- Low supply current in sleep mode IBAT_Q < 5 μA
- Device control, configuration, and diagnostic via SPI
- Configurable overcurrent/short circuit protection
- Configurable Drain-Source overvoltage protection
- Gate undervoltage lockout (V_{GS})
- Ground loss detection
- AEC-Q100 qualification



Benefits

- Supports back-to-back MOSFET topologies (common drain or common source)
- SAFESTATEN input to trigger safe state mode in case of μC failure
- One bidirectional high or low side analog current sense interface with configurable gain to optimize power losses
- Robust against V_{bat} voltages up to 105 V and V_{source} voltages versus V_{bat} of -90 V

Potential applications

- Battery protection switch
- Input protection switch
- Static load and supply switch for high currents

Products and evaluation boards

Product	Description	Ordering code	Package
2ED4820-EM	48 V smart high-side MOSFET gate driver with SPI	SP005629911	PG-TSDSO-24
2ED4820 EB2 2HSV48	2ED4820 dual high-side switch – 48 V evaluation board	SP005353778	BOARD
R 48V BATT Switch10	48 V battery disconnect switch - reference design	SP005595834	BOARD

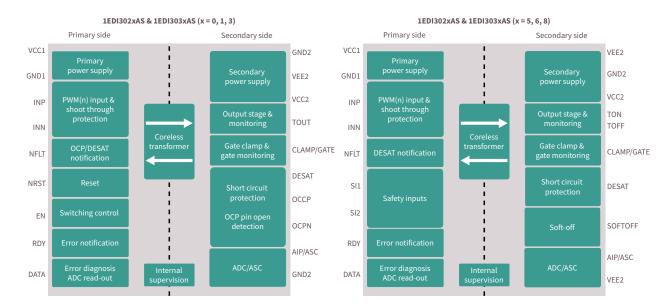
Click here to learn more:

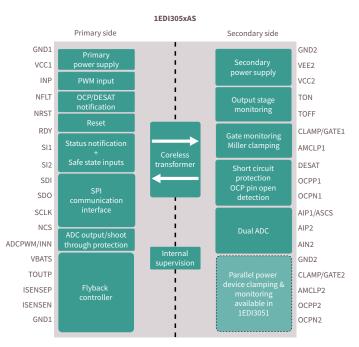
EiceDRIVER™ 1EDI302x/1EDI303x/1EDI305xAS

1200 V galvanically isolated automotive gate driver IC family

EiceDRIVER™ 1EDI302xAS, 1EDI303xAS, and 1EDI305xAS are automotive-qualified single-channel high-voltage gate drivers optimized for IGBT and SiC technologies. They are galvanically isolated using Infineon coreless transformer (CT) technology. Comprehensive safety features and ISO 26262 compliance enable ASIL-D classification on the system level. Accompanying safety documents ease and speed-up FMEDA analysis in the application.

The EiceDRIVER™ 1EDI302x/1EDI303xAS product family offers a compact package design, and its high level of feature integration save valuable PCB space and system cost, while the pre-configured settings reduce design efforts. Pincompatible product variants make switching between variants easy and swiftly adjusting ECUs to different application needs (i.e., SiC MOSFET vs. IGBT).


1EDI305xAS offers full configurability via SPI, which enables platform development. The integrated high-accuracy flyback controller can optimize the supply architecture and reduce conduction losses in power devices.


Potential applications

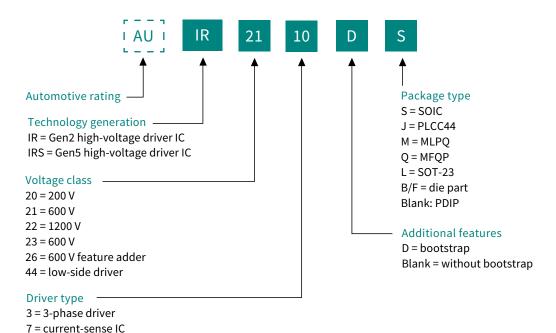
- Traction inverters for HEV and EV
- Auxiliary inverters for HEV and EV
- High-power DC-DC converters

Product feature	1EDI302xAS & 1EDI303xAS (x=0,1,3)	1EDI302xAS & 1EDI303xAS (x=5,6,8)	1EDI305xAS (x=0,1)
Isolation and & CMTI		Reinforced 6.8 kV, CMTI >150V/ns	
Interface	Fast pins and PV	/M data stream	Fast pins and SPI
Power technology	Pre-configured variants either	for IGBT (302x) or SiC (303x)	SPI to configure for SiC or IGBT
Drive stage strength	20 A	20 A (15 A for 1EDI3028/38)	20 A
Drive stage	TOUT (ext. diode needed to separate $R_{\rm off}$)	Split output (TON and TOFF)	Split output (TON and TOFF)
Active miller clamp	Yes, internal	Yes, internal	Yes, internal and external
STP1 and deadtime	Ye	s	Yes, configurable via SPI
SC detection	DESAT and OCP	DESAT (incl. BIST)	DESAT & OCP (both incl. BIST)
SC reaction	Internal soft-off ramp	Soft-off pin	Internal soft-off ramp
ISO 26262-compliant		Yes, ASIL B (D)	
Safe state pin (ASC)	Yes, on secondary side (1EDI3031 & 1EDI3021)	Yes, on primary and secondary side	Yes, on primary and secondary side
Integrated flyback	No)	Yes, with 2% accuracy
ADC	Yes, 12-bit DS-ADC (1EDI3020/3 & 1EDI3030/3)	Yes, 12-bit DS-ADC (except 1EDI3038)	Yes, 12-bit DS-ADC, 2 ext. channels
Package	DSO-20 (10.3 n	nm x 6.4 mm)	DSO-36 (10.3 mm x 10.3 mm)

Block diagrams

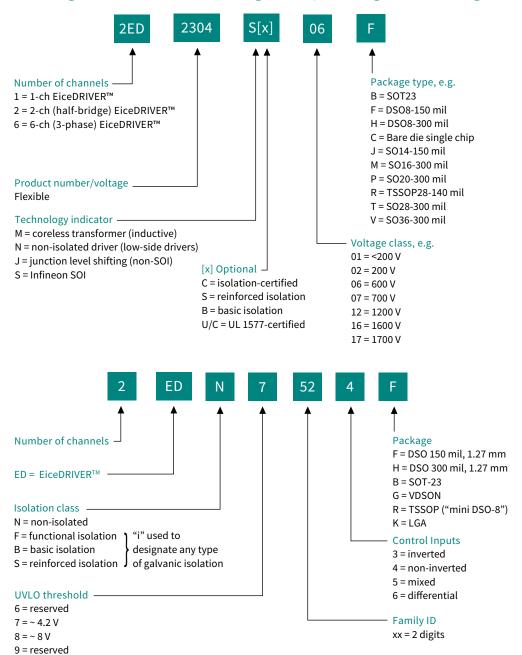
The following evaluation boards are available:

Available evaluation boards	For the following products
1EDI302xAS EVALBOARD	high side: 1EDIS020AS low side: 1EDIS021A5
1EDI303xAS EVALBOARD	high side: 1EDIS031AS low side: 1EDIS033A5
1EDI302ZYAS EVALBOARD	high side: 1EDI3025A5 low side: 1EDIS026AS
1EDI3028 EVALBOARD	1EDI3028AS
1EDI303YAS EVALBOARD	1EDI3035AS
1EDI3038 EVALBOARD	1EDI3038AS
1EDI3050 EVALBOARD	1EDI3050AS
1EDI3051 EVALBOARD	1EDI3051AS

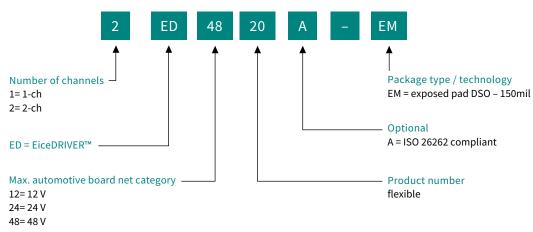

Click here to learn more:


www.infineon.com/eicedriver-xEV www.infineon.com/gatedriver

Nomenclature


Other: half-bridge, high-side/low-side, etc.

Naming convention for existing families of gate driver ICs



Naming convention for existing and upcoming families of gate driver ICs

Naming convention for existing and upcoming families of gate driver ICs

Infineon support for gate driver ICs

Useful links and helpful information

Further information, datasheets and documents

www.infineon.com/200vhvic
www.infineon.com/700vhvic
www.infineon.com/1200vhvic
www.infineon.com/soi
www.infineon.com/JI
www.infineon.com/gdsic
www.infineon.com/gdsic-cn (CN)
www.infineon.com/gdcompact
www.infineon.com/gdlowside

Gate driver IC community FAQs www.infineon.com/gdforum

Gate driver simulation (SPICE) models www.infineon.com/gdmodel

www.infineon.com/gdenhanced www.infineon.com/src www.infineon.com/src-cn (CN) www.infineon.com/1ED4417x www.infineon.com/1EDN www.infineon.com/2EDN www.infineon.com/7DI www.infineon.com/2EDL8 www.infineon.com/gatedriver

Gate driver selection tools www.infineon.com/gdfinder

Cross reference tool www.infineon.com/crs

www.infineon.com/gatedriver-cn (CN) www.infineon.com/ifxdesigner www.infineon.com/gdevalboards www.infineon.com/gdlowside www.infineon.com/eicedriver-xEV www.infineon.com/eicedriver-apd

Support

Evaluation board

Tools

Where to Buy

Infineon distribution partners and sales offices: www.infineon.com/WhereToBuy

Service Hotline

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

0800 951 951 951 (German/English) Germany China, mainland 4001 200 951 (Mandarin/English) India 000 800 4402 951 (English) USA 1-866 951 9519 (English/German) Other countries 00* 800 951 951 951 (English/German)

Direct access +49 89 234-0 (interconnection fee, German/English)

* Please note: Some countries may require you to dial a code other than "00" to access this international number, please visit www.infineon.com/service for your country!

Published by Infineon Technologies AG Am Campeon 1-15, 85579 Neubiberg Germany

© 2024 Infineon Technologies AG. All rights reserved.

Public

Date: 06/2024

Stay connected!

Scan QR code and explore offering www.infineon.com

Please note!

This Document is for information purposes only and any information given herein shall in no event be regarded as a warranty, guarantee or description of any functionality, conditions and/or quality of our products or any suitability for a particular purpose. With regard to the technical specifications of our products, we kindly ask you to refer to the relevant product data sheets provided by us. Our customers and their technical departments are required to evaluate the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given herein at any time.

Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.