

Sensor Solutions for Condition Monitoring and Predictive Maintenance - Introduction

Pasi Myllymäki EMEA AMS Marketing and Application EBV webinar

Agenda

Predictive maintenance

Predictive Maintenance (PdM) enables cost savings over time-based preventive maintenance.

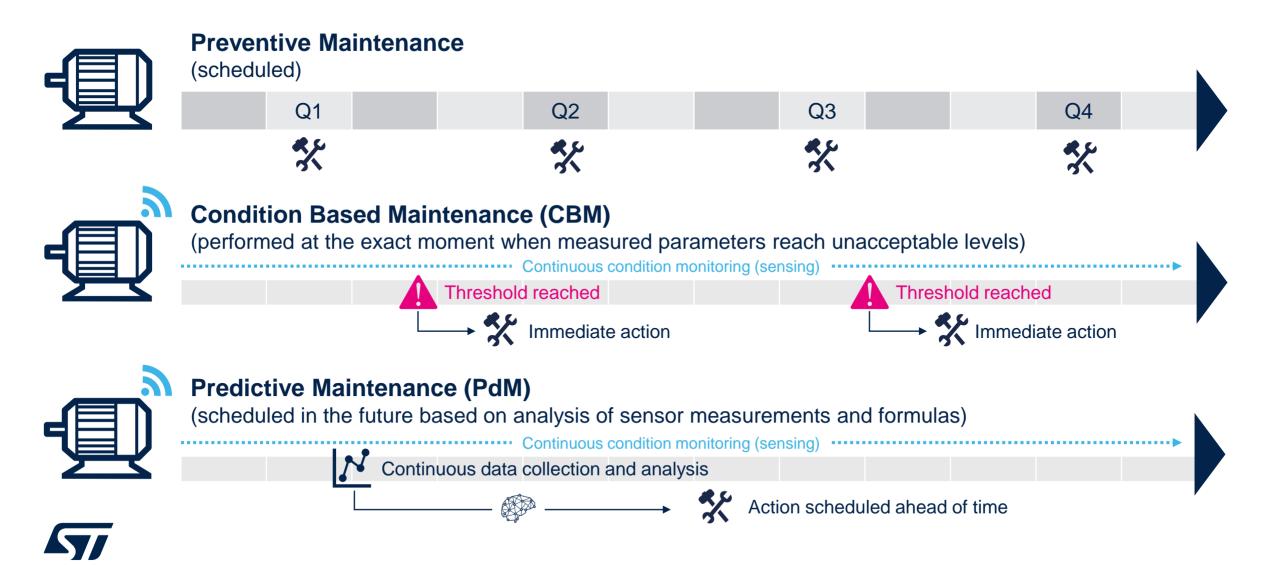
The maintenance tasks are performed while machine is running using:

- condition based monitoring with sensors
- local processing
- cloud analytics

ST provides solutions that will help you create Predictive Maintenance applications.

For more information, visit our pages on <u>Condition Monitoring</u> <u>and Predictive Maintenance</u>

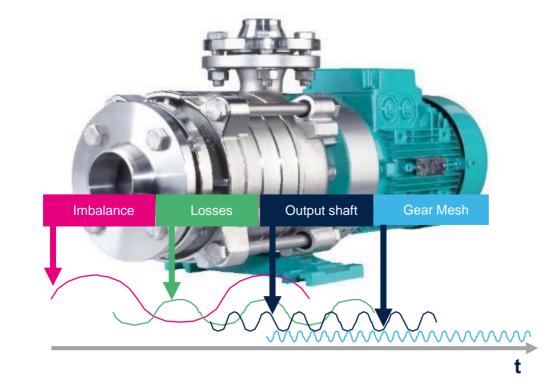
Market and applications split main market segmentation

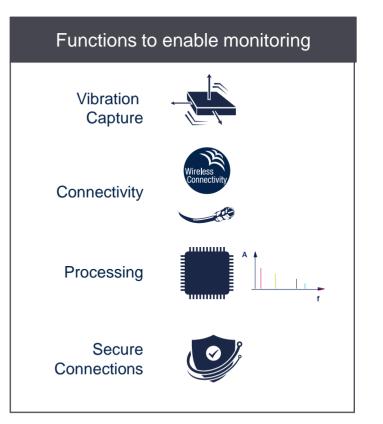

- Rotating equipment and related parts (i.e. motors, fans, pumps, bearings, spindles)
- Elevators, escalators, ...
- Electric equipment (i.e. circuit breakers)
- Chemical industry
- Structural monitoring (i.e. bridges, railways)
- Automotive (i.e. electrical motors and parts bearings, battery management)
- Consumer Industrial (i.e. HVAC)

Focus on

Vibration monitoring Temperature and Environmental Ultrasound detection

Preventive, condition monitoring and predictive what's different

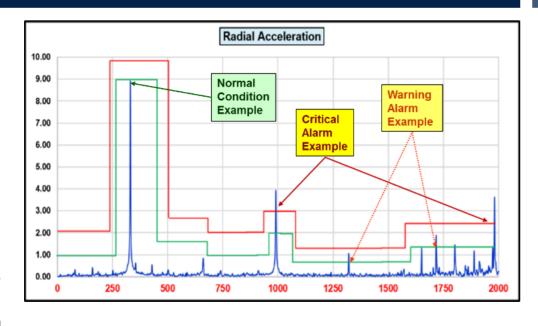


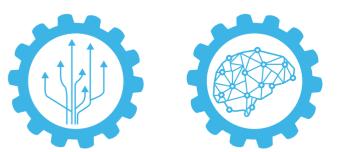

Typical use case industrial motor monitoring

Any parameter deviation is an indicator of potential failure

Mechanical vibration

- Displacement
- Speed
- Acceleration
- Acoustic noise
- Angular speed
- Torque

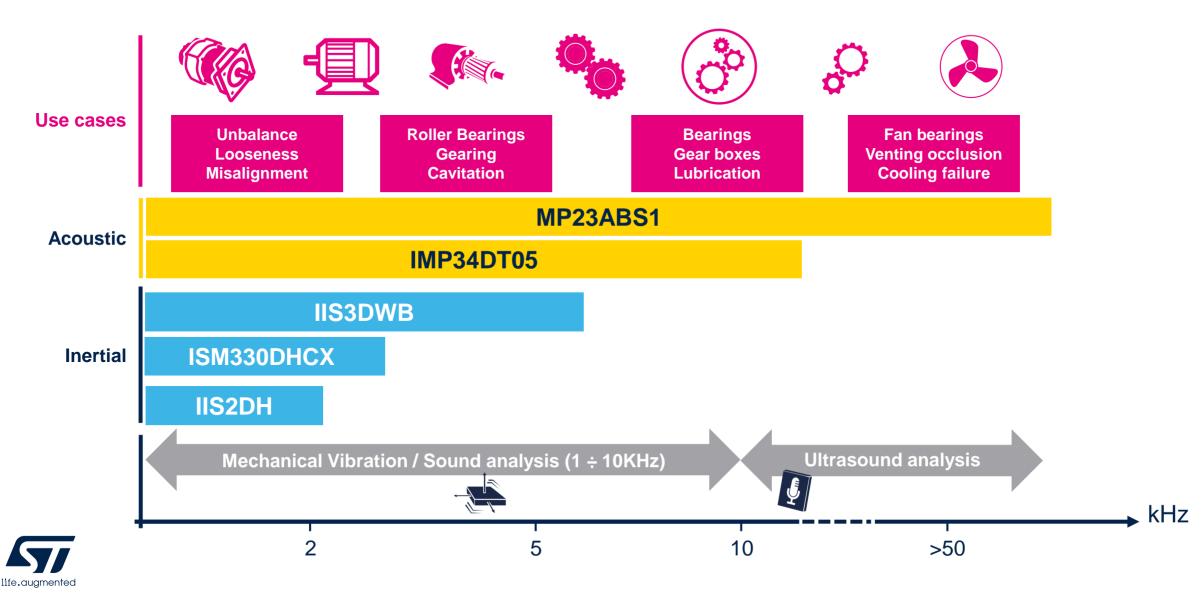




Processing at the edge from FFT to machine learning

While FFT thresholds are widely used, Machine Learning and AI can enable new scenarios

- Embedded FFT analysis at the sensor can isolate vibration
- Thresholds are based on human based features extraction
- Alarm can be set according to specific threshold to detect potential defects.
- Machine and Deep Learning can be used to automatically extract features with several benefits
- Machine and Deep Learning techniques and acquisition strategies can be differentiated according to the use case
- Both can now run in a MCU



Industrial sensors for vibration analysis sensors and defects over bandwidth

IIS3DWB 3-axis digital vibration sensor ultra-wide bandwidth and low-noise

KPI for vibration monitoring

- Wide & flat measurement bandwidth
- Flat freq. response, sharp out of band roll-off, no aliasing
- Freq. response and low noise levels
- Stable thermal behavior over extended temperature range
- Power consumption suitable for wireless sensor node
- Operating temperature range

Pin2pin compatible with ISM330x/LSM6DSx devices

Parameter	Value	
N. of axis	3-axis	
Full Scale [g]	±2/±4/±8/±16	
Output i/f	Digital: SPI, I2C (single axis or debug mode)	
Bandwidth (-3dB) [kHz]	6.3	
ODR [kHz]	26.7	
Noise Density [µg/√Hz]	90 (65 in single axis)	
Current Consumption [mA]	1.1	
Features	FIFO (3kbyte) Programmable HP Filter Interrupts Temp. Sensor Embedded Self Test	
Operating Temp [°C]	-40 to +105	
Operating Voltage [V]	2.1 ÷ 3.6	
Package [mm3]	LGA 2.5x3x0.83 14Lead	

Industrial sensors for CBM and PdM

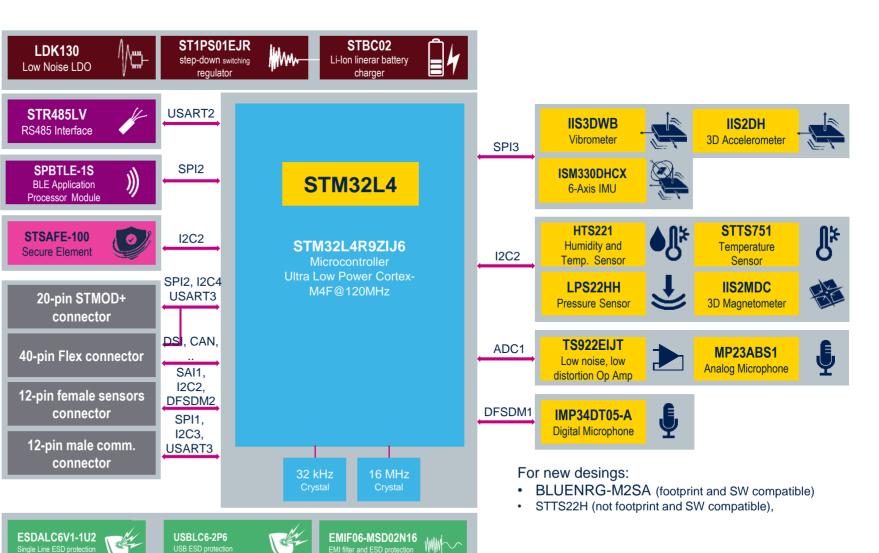
Function	IC	Description	Package	Feature	es
	IIS3DWB	Ultra-wide bandwidth (up to 6kHz), low- noise 3-axis digital vibration sensor	LGA-14, 2.5x3 mm	 3D Accelerometer – 16g Full Scale Ultra low noise + up to 105°C operating T° 	Digital OutputUltra Wide Bandwidth (up to 6.3kHz)
Vibration	ISM330DLC ISM330DHCX	Wide bandwidth accelerometer + gyroscope	SM3300LC	 3D Accelerometer + 3D Gyro - Digital Output 3 kHz bandwidth accelerometer 	Ultra Low Power + Smart Features
Toración	IIS2DH	Wide bandwidth, ultra-low-power accelerometer	LGA-12, 2x2 mm	 3D Accelerometer – Digital Output Up to 2.3 kHz bandwidth	Ultra Low Power – Ultra Compact
	IIS2MDC	Low-noise, low power magnetometer	IIS2DH	 3D Magnetometer – Digital Output AMR Technology - Up to 50 Gauss Full Scale	Ultra Low Noise, Low Power
	MP23ABS1TR	Analog differential microphone	RHLGA metal cap 5-L, 3.5x2.65x0.98 mm	Bottom port MicrophoneWide Acoustic Bandwidth (up to 80 kHz)	 Wide Dynamic Range (AOP up to 130 dBSPL)
Acoustic	IMP34DT05-A	Digital top port microphone	3x4x1 mm	Top port Microphone with Digital OutputWide dynamic range (AOP up to 122 dBSPL)	ESD up to ±15kVolt
	LPS22HH	High accuracy – Compact size absolute pressure sensor	HLGA-10-L, 2x2x0.76 mm Ultra Compact full molded	 260 to 1260 hPa Range - Digital Output High Accuracy (±1 hPa) 	Low noise (0.75 Pa RMS)
Environmental	LPS27HHW LPS33HW	Water-resistant absolute pressure sensor	2.7x2.7x1.7 mm 3.3x3.3x2.9 mm	 260 to 1260 hPa Range - Digital Output High Accuracy (±2.5 hPa) 	Low noise (0.8 Pa RMS)Water resistant up to 10 atm
	STTS22H	Digital temperature sensor	2 x 2 x 0.50 mm 6-lead UDFN	 Operating temperature -40 °C to +125 °C Accuracy: ±0.5 °C max (-10 °C to +60 °C) 	Programmable threshold, One-shot mode
	STLM20	Analog temperature sensor	SOT323-5L, UDFN-4L	• Accuracy ±0.5 °C (typ.)	• Operating Temp –55 °C to +130 °C

Wireless connectivity changes the game STEVAL-STWINKT1 is the answer

SensorTile Wireless Industrial node

STEVAL-STWINKT1 kit includes:

- Hardware Board
- Battery + plastic case for field testing
- STLink-V3MINI + cable for programming



STEVAL-STWINKT1 block diagram, ICs and features in one slide

- Power supply: Li-Po battery or ext. 5 V
- Best-in-class industrial-grade sensors (i.e. ultrasound detection, to vibration analysis)
- Smart power to increase battery life
- Multiple algorithms running on the STM32L4+
- Secure connection and authentication with STSAFE-100 (footprint)
- BLE connectivity

STM32

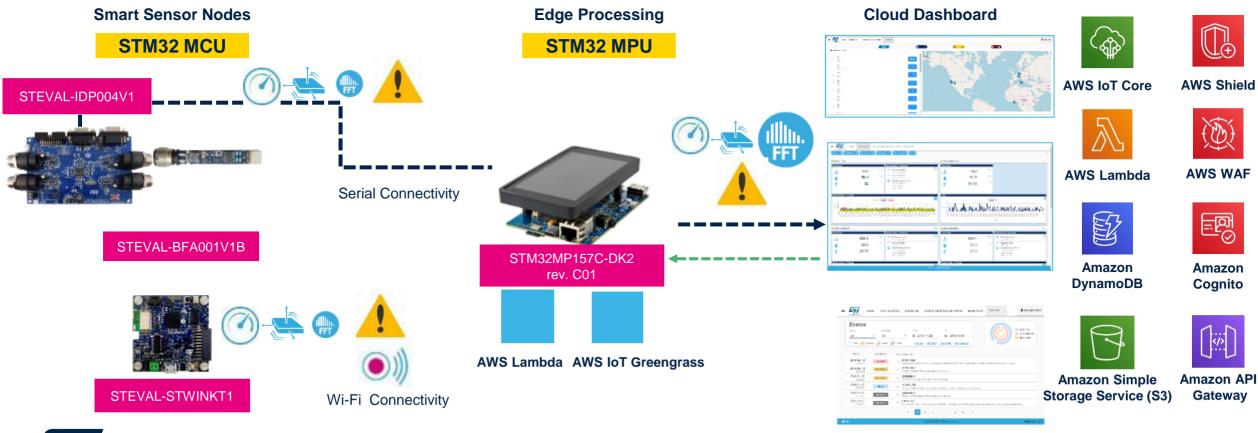
- Connectivity and sensor expansions
 support
- USB and SD-card holder

STEVAL-STWINKT1 software support

STEVAL-STWINKT1 software platform for industrial IoT solution development

Custom Ap	plications	Ultrasound BLE Wi-Fi	Vibration Connectivity LTE USB	Audio LoRa	Environmental Cloud Artificial Intelligence	
Application Libraries		ODE Function Packs			STSW	
		STM32Cube middleware				
STM32 Cube	STM32Cube Hardware Abstraction Layer					
Hardware	Microphone coupon	RF coupon	Add-on connectivity expansions			
			STWIN			

• STSW-STWINKT01:


- set of source code example implementations of functionalities of the STWIN platform
- Predictive Maintenance + AWS Dashboard:
 - FP-IND-PREDMNT1
 - STSW-STWINCELL
- Cloud Function Pack for IoT telemetry and device control
 - FP-CLD-AZURE1: Microsoft Azure Cloud

Condition-based & predictive maintenance edge processing enabling end-to-end

Ultrasound, vibration, environmental monitoring and anomaly detection

life.gugmented

VALUATI	ON TOOL SOFTWARE		
Picture	Part number 🌲	Manufacturer ≑	Description 💠
	STSW-STWINKT01	ST	Firmware for STEVAL-STWINKT1 evaluation kit for predictive maintenance, smart industry, IoT and remote monitoring applications

High-speed datalog STSW-STWINKT01

High-speed MicroSD logging run the demo

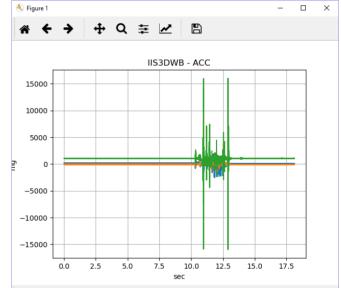
1. Program STWIN

with HS DataLog.bin from STSW-STWINKT01 be sure you have SD card inserted Same BINARY file used for USB logging

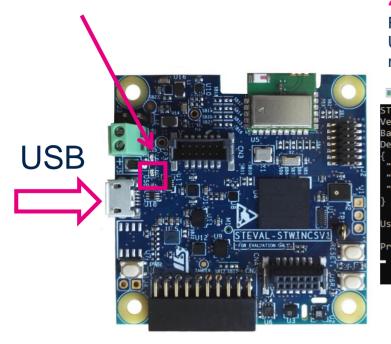
BT > This PC > 👝 STLINK_V3M (D:) > 💣 Network LED blinks areen STEVAL-STWINCSV while logging OR EVALUATION ONLYS HERE

2. Log data

green LED blinks while logging


Press USR button to start and stop logging.

3. Enjoy demo


After finish of logging, data can be read/converted on PC from the microSD card by MATLAB script found in Utilities\HS DataLog\ subdirectory or a Python script Install first Anaconda Python environment: https://www.anaconda.com/distribution/

Python script available in STSW-STWINKT01 v1.3.1

Orange LED blinks during USB logging

High-speed USB logging Run the demo 3. Enjoy demo 2. Log data After finish of logging, copy folder with data to From STSW-STWINKT01 VX.X.X Utilities\HS DataLog\cli example\bin Utilities\HS DataLog\pvthon and run run cli example.exe and follow instructions ReadSensorData.py to plot the data > This PC > Downloads > STSW-STWINKT01 V1.3.1 > Utilities > HS Datalog > python > ~ O C:\Users\klara pacalova\Downloads\STSW-STWINKT01 V1.3.1\Utilities\HS DataLog\cli example\bin\cli example\bi TWIN Command Line Interface example Manag Date modified Type Size ersion: 1.1.0 Based on : ST USB Data Log 1.1.0 03032020 17 51 42 3/3/2020 5:55 PM File folder Device information: 03032020 17 52 15 3/3/2020 5:55 PM File folder readme.txt 2/26/2020 12:02 PM Text Document 3 KB "alias": "STWIN 001". PY File 8 KB ReadSensorData.pv 2/26/2020 3:36 PM "nSensor": 9. 'serialNumber": "PN3K33 0190001800024" - n x N Figure 10 + Q ≅ ∠ 🕒 Using default configuration LPS22HH - TEMP Press any key to start logging 30.1 30.0 C:\Users\klara pacalova\Downloads\STSW-STWINKT01 V1.3.1\Utilities\HS DataLog\cli example\bin\cli example.exe 29.9 HS DataLog acquiring from the board named :"STWIN 001", seri ※ ← → ⊕ Q 至 // 問 Received 3339000 total bytes from IIS3DWB Received 2160 total bytes from HTS221 MP23ABS1 - MIC - 🗆 X Received 177600 total bytes from IIS2DH Received 12600 total bytes from IIS2MDC + Q = 🗹 🗎 400 Received 2007040 total bytes from IMP34DT05 Received 1671168 total bytes from ISM330DHCX 200 IIS2MDC - MAG Received 30400 total bytes from LPS22HH 100 Received 8036352 total bytes from MP23ABS1 Received 352 total bytes from STTS751 -100 Elapsed time: 21.955 seconds -400 -200 press ESC to exit! -600 -300 -400 4 -500

17

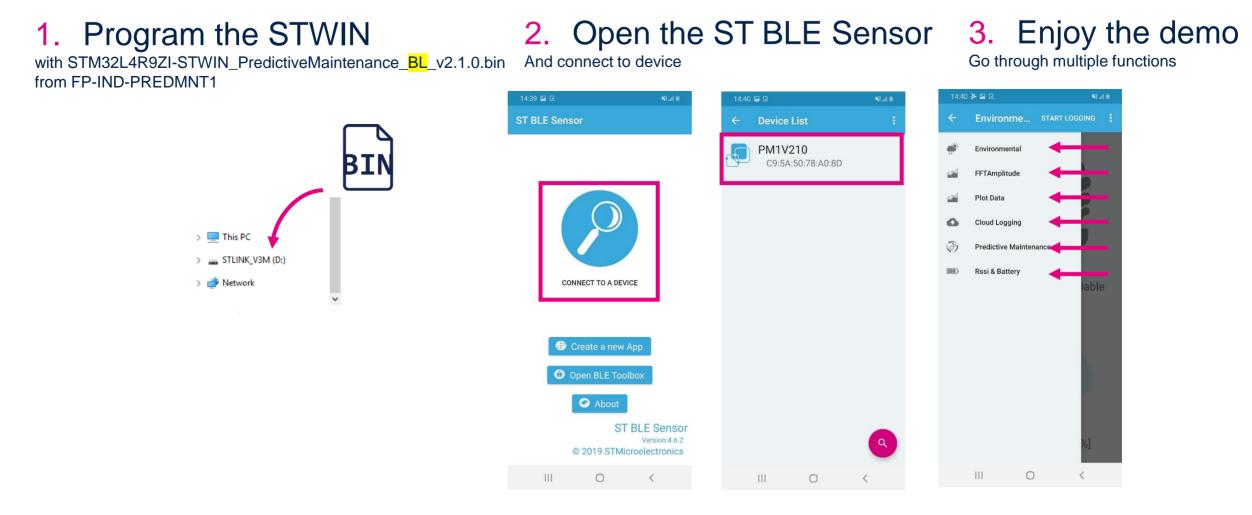
15.0

17.5

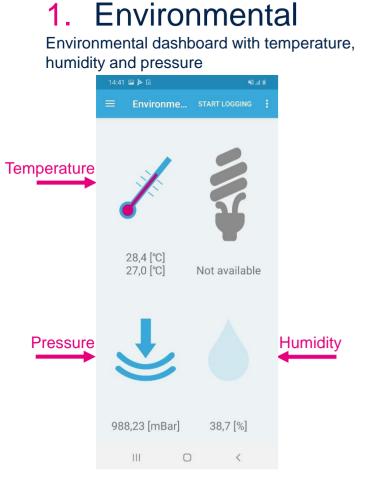
10.0 12.5

0.0 2.5 5.0 7.5

MCU & MPU EMBEDDED SOFTWARE			
Picture	Part number 🌲	Manufacturer 👙	Description 🔶
	FP-IND-PREDMNT1	ST	STM32Cube function pack for multi sensors node with signal processing to enable predictive maintenance



Run the demo (1/3)

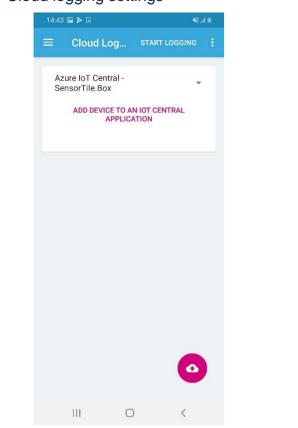


Note: Use above binary with Bootloader to copy-paste the image. See <u>Quick Start</u> for details.

Run the demo (2/3)

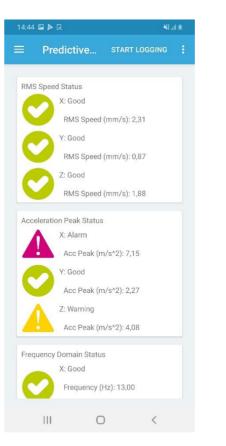
Data visualization of various sensors 14:43 🖬 🔈 🖬 E Plot Data Sensor selection Accelerometer Start/Stop 1 800 1 600 1.400 1 200 1.000 800 60 40 Raw data -60 -80 -1.00 -1 200 -1 400 -1 600 -1.800 elerometer: Timestamp: 476992 Data: (X: 0 Y: -28 Z: 1019 -2 000 X X 7 111

3. Plot data



Note: For faster response, recommendation to use 500ms acquisition time

Run the demo (3/3)


4. Cloud logging Settings

5. Predictive maintenance


Interactive set of information for predictive maintenance

3 levels of classification – good, warning, alarm (*)

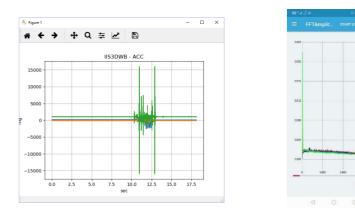
6. RSSI & Battery

Device, signal strength and battery information

(*) 3 levels of classification – thresholds can be changed only by recompiling the project (MotionSP_Threshold.h)

Device name can be changed in

Condition Monitoring summary


- Condition Monitoring applications based on accelerometer vibration analysis with FFT and measuring ultrasound with microphones.
- New IIS3DWB sensor with 6 kHz of bandwidth now available
- New STWIN development kit with latest industrial sensors and SW examples available with BLE and Cloud connectivity
- STWIN includes also best components for power, connectivity and protection.

IIS3DWB

Data logging and PREDMNT1 FFT DEMO

Thank you

Thank You! For more information, please visit st.com for <u>Predictive Maintenance</u>

© STMicroelectronics - All rights reserved. The STMicroelectronics corporate logo is a registered trademark of the STMicroelectronics group of companies. All other names are the property of their respective owners.

