

Application Note Please read the Important Notice and Warnings at the end of this document 002-35096 Rev. **

www.infineon.com page 1 of 51 2022-07-14

AN235096

Sensorless field-oriented control (FOC) using

PSoC™ 6 MCU

About this document

Scope and purpose

This application note shows how to control a permanent magnet synchronous motor (PMSM) with the
sensorless field-oriented control (FOC) algorithm, using an Arm® Cortex®-M4-based PSoC™ 6 device.

Intended audience

This application note is intended for designers of motor control systems.

This application note assumes that you are familiar with PSoC™ 6 and the ModusToolbox™. If you are new to
PSoC™ 6, see AN228571 - Getting started with PSoC™ 6 MCU on ModusToolbox™. If you are new to
ModusToolbox™, see the ModusToolbox™ home page.

You should also understand motor control fundamentals; start with “electric motor” on Wikipedia.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 3
1.1 Abbreviations and definitions ... 3

2 Sensorless FOC basics ... 4

3 Code example .. 8

3.1 Features ... 8

3.2 Design overview .. 8

3.3 Firmware .. 9
3.4 CY8CKIT-037 kit ... 10

3.5 Operation ... 11

3.5.1 Step 1 – Configure CY8CKIT-062S4 .. 11
3.5.2 Step 2 – Configure CY8CKIT-037 .. 12

3.5.3 Step 3 – Plug CY8CKIT-037 into CY8CKIT-062S4 .. 13

3.5.4 Step 4 – Connect the power supply and motor ... 13
3.5.5 Step 5 – Build the project and program the PSoC™ 6 device ... 14

3.5.6 Step 6 – Rotate the potentiometer to start motor rotation.. 14

3.6 Performance .. 14

4 Design details ... 17
4.1 Current sampling ... 17

4.2 Transformations .. 19
4.3 Slide mode observer (SMO) .. 20
4.4 PI controllers ... 21
4.5 Generating the SVPWM.. 23

5 Appendix A: PMSM model ... 26

5.1 Slide mode observer (SMO) .. 29

http://www.infineon.com/
https://www.cypress.com/documentation/application-notes/an228571-getting-started-psoc-6-mcu-modustoolbox
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
http://en.wikipedia.org/wiki/Electrical_motor

Application Note 2 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Table of contents

5.2 SVPWM theory ... 30

6 Appendix B: Adapting the design to other motors ... 34

6.1 Tunable parameters .. 36
6.1.1 Hardware parameter setting ... 36

6.1.2 Firmware parameter setting .. 38
6.1.2.1 Motor parameters ... 38

6.1.2.2 ADC sampling parameters .. 38
6.1.2.3 PI regulator parameters .. 39

6.1.2.4 Startup parameters ... 39
6.1.2.5 Closed-loop running parameters ... 40
6.1.2.6 Protection parameters .. 41

6.1.2.7 Other global parameters .. 41

7 Appendix C: Q number format (fixed-point number).. 45

7.1 Characteristics ... 45
7.2 Conversion ... 46
7.3 Math operations .. 46
7.3.1 Addition .. 47

7.3.2 Subtraction ... 47
7.3.3 Multiplication ... 47

7.3.4 Division ... 48

References .. 49

Revision history... 50

Application Note 3 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Introduction

1 Introduction

The FOC algorithm is frequently used in motor control applications because it allows motors to operate with

less noise and more stable torque output than other algorithms. Sensorless FOC adds the advantage of
reducing the cost due to the absence of rotor position sensors. Sensorless FOC is used in many applications
including consumer (air conditioner, refrigerator), industrial (blower, pump), and commercial (elevator,
escalator) products.

Sensorless FOC is calculation-intensive, and thus has been traditionally implemented with expensive digital
signal processing (DSP) devices. However, with 32-bit Arm® Cortex®-M cores, it is possible to implement

sensorless FOC with more cost-effective 32-bit MCUs.

This application note includes a code example to be used with the Infineon CY8CKIT-037 motor control

evaluation kit which includes a 24-V 53-W PMSM motor.

Note: The CY8CKIT-037 kit board can operate at voltages as high as 48 VDC, and some components may
operate at high temperatures. Use this kit with caution to avoid personal injury or equipment
damage.

1.1 Abbreviations and definitions

Table 1 Abbreviations

Abbreviation Meaning

BLDC drum Brushless DC drum

DD drum Direct drive drum

FOC Field-oriented control

SVPWM Space vector pulse width modulation

HVIC High-voltage IC

CW Clockwise

CCW Counterclockwise

PMSM Permanent magnet synchronous motor

http://www.cypress.com/CY8CKIT-037
http://www.cypress.com/CY8CKIT-037

Application Note 4 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Sensorless FOC basics

2 Sensorless FOC basics

This section introduces the hardware structure of a typical sensorless FOC system as well as a firmware
overview of the FOC algorithm. If you are familiar with these concepts, you can skip this section and go to the
Code example section.

Figure 1 shows the diagrams of the two types of the PMSM motor; they differ in how magnets are placed in the

rotor:

• Surface PMSM (SPMSM) – Left

• Interior PMSM (IPMSM) – Right

 Surface PMSM (IPMSM) Interior PMSM (IPMSM)

Figure 1 Rotor structure for SPMSM and IPMSM

SPMSM is widely used due to the ease of manufacture and assembly, while IPMSM has a larger torque output
with the same-sized motor. The sensorless FOC algorithm varies depending on the motor type; this application

note uses SPMSM, referred to as just “PMSM”.

Figure 2 shows the hardware block diagram of a typical sensorless FOC system. It consists of:

• MCU

• Inverter

• PMSM

• Current sampling and signal conditioning circuit to determine the rotor position

• Communication interface

These components can be on the same controller board or separated in the system such as on an MCU board
and an inverter board.

Application Note 5 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Sensorless FOC basics

Power

MCU

Opamps

Communication Interface

R R R

Inverter PMSM

A

B

C

Vbus, VdriverVdd

PWMs

Signal Conditioning

Controller board

Motor

Sensing Resistors

Figure 2 Overview of a typical sensorless FOC system

Figure 3 shows the details of the Inverter block shown in Figure 2. The inverter is composed of gate drivers and

six MOSFETs (two for each motor phase). Turning different MOSFETs ON or OFF changes the current direction

through the motor’s stator windings or phases.

For example, turning on Q1 and Q4 generates a current from phase A to phase B, while turning on Q3 and Q2
reverses the current direction in those phases. Changing the current direction changes the stator flux direction

and makes the rotor rotate.

Gate
Driver

Vbus

AH

AL

BH

BL

CH

CL

AH

AL

PWMAH

PWMAL

AB

C

Q1 Q3 Q5

Q2 Q4 Q6

Gate
Driver

BH

BL

PWMBH

PWMBL
Gate

Driver

CH

CL

PWMCH

PWMCL

Figure 3 Details of inverter block

Application Note 6 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Sensorless FOC basics

Vbus is a higher-voltage DC supply to power the motor. For example, it is 24 V in the CY8CKIT-037 kit.

Note that the pairs of MOSFETs on the same phase (for example, Q1 and Q2) must not be turned ON at the same
time – the resultant low resistance causes high currents that can damage the MOSFETs.

Figure 4 and Figure 5 show diagrams of the sensorless FOC algorithm and its calculation flow. The algorithm
controls either the motor speed or motor torque using a proportional-integral (PI) controller based on a
mathematical model of the PMSM (see Appendix A: PMSM model). The control result is sent to a Space Vector
Pulse Width Modulation (SVPWM) block (see SVPWM theory). The SVPWM block generates three-phase

voltages that change the stator currents.

PI

PI

PI d,q

α ,β

d,q

α ,β

α ,β

a,b,c

3-Phase Inverter

Compressor

Observer

wref

w Park t. Clarke t.

iSq

iSd

iSα

iSβ

VSqref

VSdref

iSqref

iSdref

VSαref

VSβref

Park-1 t.

α ,β

a,b,c

Clarke-1 t.

Va

Vb

Vc

PWM

ia
*

ib
*

U

V

W

Θ

VSα

VSα

SVPWM

Single Shunt

ic
*

PMSM

PWM

PWM

Figure 4 Sensorless FOC control block diagram

Clarke Park PIs
Inverse

Park
Inverse
Clarke

Ia

Ib

Ic

Iα

Iβ

Id

Iq

3-Phase System 2-Phase System 3-Phase System

Ud

Uq

Uα

Uβ

Ua

Ub

Uc

SVPWM

Duty a

Duty b

Duty c

Figure 5 Sensorless FOC calculation flow

The Clarke and Park transformation calculations convert these three sampled motor phase currents into two
values that are used by the PI controller. The Inverse Clarke and Inverse Park transformations are the opposites
of the Clarke and Park transformations, respectively.

Figure 6 shows the Clarke transformation, where the three motor phase currents (𝐢𝐚, 𝐢𝐛, 𝐢𝐜) are converted to 𝐢𝛂

and 𝐢𝛃. The (a, b, c) frame is a three-phase stator reference frame, where the axes are 120° apart from each

other. The transformation method is to project (𝐢𝐚, 𝐢𝐛, 𝐢𝐜) onto the (α, β) axes, which produce the outputs 𝐢𝛂 and
𝐢𝛃.

http://www.cypress.com/CY8CKIT-037

Application Note 7 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Sensorless FOC basics

α

β

iα

iβ

a

b

c

is

ia

ib

ic

Figure 6 Clarke transformation

Figure 7 shows the details of the Park transformation. This transformation converts the current vectors from
the Clarke transformation, 𝐢𝛂 and 𝐢𝛃, to a frame on the rotating part of the motor. The axes of the rotating

frame are called (d, q). The current vectors on these axes are called 𝐢𝐝 and 𝐢𝐪.

𝚿𝐟 is the flux linkage vector of the rotor magnet. The d axis is always aligned with 𝚿𝐟, and the q axis is at 90° to

the d axis. The rotor rotates at an angular speed 𝛚𝐫, and 𝛉𝐫 is the angle between the α and d axes.

In the (d, q) frame, the motor torque is proportional to 𝐢𝐪. You can control 𝐢𝐪 to achieve the desired torque by

using the PI controllers. For details on the Clarke and Park transformations as well as the torque output, see

Appendix A: PMSM model.

dq

id

iq

a

Ψ f

ωr

θr

is

α

β

iα

iβ

Figure 7 Park transformation

The angle 𝛉𝐫 used in the Park transformation is derived from the speed and position estimation. An algorithm

called “Slide Mode Observer” (SMO) uses 𝐢𝛂 and 𝐢𝛃 to derive the 𝛉𝐫 value. Then, the angular speed 𝛚𝐫 is

calculated based on 𝛉𝐫. For more information, see the Slide mode observer (SMO) section.

Application Note 8 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

3 Code example

3.1 Features

• Implements the sensorless FOC algorithm and closed-loop speed control in a multilayer, extensible, binary

library architecture

• Estimates the rotor position with the Slide Mode Observer (SMO) algorithm

• Uses PSoC™ 6 internal opamps and the 1-Msps successive approximation register (SAR) ADC for signal
conditioning and measuring the motor phase current

• Employs open-loop control at startup, which is changed to closed-loop control after the rotor position is

determined

• Supports motor speeds from 500 to 4000 rpm by default. Can support higher speeds in other motors by

modifying the tuning parameters in the code example

• Can adjust the motor speed by using the potentiometer on the kit

• Provides control accuracy 5% over the default speed range. Using high-resolution sensing resistors and
advanced control algorithms can improve the accuracy; this topic is outside the scope of this application

note.

3.2 Design overview

Figure 8 illustrates the sensorless FOC implementation in PSoC™ 6. A 12-bit SAR ADC and two opamps are used
to sample the motor phase currents (only two phase currents need be sampled; the third phase can be

calculated from the other two.) The three TCPWMs generate six PWM outputs applied to the inverter. A serial

communication block (SCB) implements a UART to communicate with the host. See Design details in Chapter

3.

PWM

PWM

PWM

CompressorPMSM

3-Phase Inverter

LPCOMP

iDAC

i<

SCB

SAR ADC

M
U
X

Opamp
UART

Vbus
Potentionmeter

Opamp

Ibus Cortex®-M4
75 MHz

Flash

SRAM

PSoC 6

Figure 8 PSoC™ 6 sensorless FOC implementation

Table 2 shows the PSoC™ 6 resources that are used by this code example:

Application Note 9 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Table 2 Resource usage summary

3.3 Firmware

Figure 9 shows the firmware execution flow. The FOC algorithm requires the PWM duty cycle to be updated

every control cycle. Therefore, FOC calculations must be done in a periodic interrupt service routine (ISR). The
ISR is triggered by the PWM every 100 µs (10-kHz PWM) – this is the control cycle period.

The cycle period can be decreased by increasing the PWM frequency. A shorter control period results in a
higher-bandwidth control system with two benefits:

• Motor can be run faster

• Better response to load changes

The communication and other functions that do not require real-time processing are executed in the main
loop.

Item Used Available Usage

CPU frequency 75 MHz 150 MHz Internal system clock

PWM frequency 10 kHz 5 kHz~20 kHz NA

Flash 37084

bytes

256 KB NA

SRAM 9135 bytes 128 KB NA

Interrupts 3 140 Generates interrupts that system need

TCPWM blocks 4 12 Three TCPWM are used to generate 3-phase signals

to control the PMSM drive.

Another TCPWM is used to generate a trigger pulse

for the ADC for current measurement.

Opamp 1 2 Used to amplify the voltage from the current sense

resistors prior to feeding the voltages to ADC inputs

UART 1 7 Reserved for communication with the host

Low-power

comparators

1 2 Used for overcurrent protection

8-bit current DAC

(IDAC)

1 2 Generates the source current for overcurrent

protection

12-bit SAR ADC

channels

4 16 Used to transfer the phase current sampled value to

digital signals

Other Pins 2 10 Pin_Led: The GPIO to control LED;

Pin_Dir: The GPIO to control the motor running

direction

Application Note 10 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Start

Initialization

Motor Stop
ErrorType ==0&&Target

Speed>0

Y

N

Output

Y

Position Estimate

Speed Loop

Clark,Park

Current Loop

InvPark

SVPWM

Enter PWM ISR

Enter ADC ISR

Get 4 Channels Data

Figure 9 Firmware execution flow

3.4 CY8CKIT-037 kit

The CY8CKIT-037 kit is a motor-driver board designed to support three control algorithms: trapezoidal, FOC,
and microstepping control for stepper motors. It has no MCU; it is a peripheral board to be used with the

CY8CKIT 062 (Figure 11), through the interface compatible with Arduino. For more information, see the

CY8CKIT-037 user guide.

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062s4/
https://www.infineon.com/dgdl/Infineon-CY8CKIT-037_PSoC_4_Motor_Control_Evaluation_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0efa532a1027
https://www.infineon.com/dgdl/Infineon-CY8CKIT-037_PSoC_4_Motor_Control_Evaluation_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0efa532a1027

Application Note 11 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Figure 10 CY8CKIT-037 kit

A PMSM, manufactured by Anaheim Automation, is included in this kit. Table 3 lists the motor parameters. See

Appendix B: Adapting the design to other motors for information on how to change the code example by

changing the motor parameters listed in this table.

Table 3 Parameters for the motor in CY8CKIT-037

Item Parameter

Part number BLY172S-24V-4000

Rated torque (Newton.meter) 1.26

Rated voltage (V) 24

Rated power (watts) 52

Rated speed (RPM) 4000

Torque constant (Newton.meter/A) 0.35

Back EMF voltage (V/kRPM) 3.72

Line-to-line resistance (ohm) 0.8

Line-to-line inductance (mH) 1.2

Rotor inertia (Newton.meter/sec2) 0.000680

"L" length (cm) 6.02

Shaft Single

3.5 Operation

3.5.1 Step 1 – Configure CY8CKIT-062S4

Select 3.3 V as the VDD power at jumper J9 on CY8CKIT-062S4, as Figure 11 shows.

https://www.anaheimautomation.com/products/brushless/brushless-motor-item.php?sID=143&pt=i&tID=96&cID=22

Application Note 12 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Figure 11 CY8CKIT-062S4 configuration

3.5.2 Step 2 – Configure CY8CKIT-037

Configure the board via jumpers J13-J24 as listed in the row “BLDC 2-SHUNT FOC” printed on the board. See

Figure 12 and Figure 13.

Figure 12 CY8CKIT-037 configuration for sensorless FOC motor control

Application Note 13 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Figure 13 Jumper table for CY8CKIT-037

3.5.3 Step 3 – Plug CY8CKIT-037 into CY8CKIT-062S4

• Plug the CY8CKIT-037 into the CY8CKIT-062S4 via connectors compatible with Arduino, as Figure 10 shows.

3.5.4 Step 4 – Connect the power supply and motor

• Connect the BLDC motor to J9 and J10 on CY8CKIT-037. The other motor cable routes the signals from the
sensors inside the motor.

Note: The kit hardware supports sensored BLDC motors and sensored FOC. Because this is a sensorless
example, you do not need to connect this cable. Connect the 24-V power adapter to J7. See

Figure 14.

Figure 14 Connect motor and power supply

Application Note 14 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

3.5.5 Step 5 – Build the project and program the PSoC™ 6 device

1. Open the sensorless FOC motor control code example project provided with this application note in

ModusToolbox™ 2.4 or later.

2. Select Build Sensorless FOC Motor Control application in Quick Panel.

3. When the build is complete, select Generate launches for this project to generate the debug link in Quick

Panel then choose your debug tools for program.

For more information about how to use ModusToolbox™, see to the ModusToolbox™ home page.

3.5.6 Step 6 – Rotate the potentiometer to start motor rotation

1. Rotate the potentiometer R38 to start and change the motor rotation speed (see Figure 15).

2. If the motor does not rotate, it indicates that an error has occurred. If so, first ensure that step 1 through

step 5 have been executed correctly.

3. Then press the Reset button on CY8CKIT-062S4 and rotate the potentiometer R38 again.

If the motor still does not rotate, there must be a problem in the hardware or software. Debug it using a

multimeter or oscilloscope to observe the signals, or set breakpoints to monitor the variables. You can also
contact Infineon for technical support.

Figure 15 Buttons and status LED

3.6 Performance

Figure 16 to Figure 18 show one of the phase currents for different motor speeds using the motor provided in
the kit. Figure 19 shows the phase current during startup.

Reset

LED2

Potentiometer

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

Application Note 15 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Figure 16 Phase current – 600 RPM

Figure 17 Phase current – 2000 RPM

Application Note 16 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Code example

Figure 18 Phase current – 4000 RPM

Figure 19 Phase current at startup

Application Note 17 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

4 Design details

This section presents implementation details for each stage of the sensorless FOC processing listed in the PWM
ISR (Figure 9), including current sampling, Clarke and Park transformations, SMO, PI controller, and SVPWM.

4.1 Current sampling

This section introduces the ADC sampling function in sensorless FOC motor control. In the project associated

with this document, ADC sampling is realized by the internal SAR ADC component; there are several parameters
need to be sampled:

• Phase winding currents: ADC0_Ia and ADC0_Ic

• Bus voltage

• Voltage input from the variable resistor (potentiometer)

Figure 20 and Figure 21 show the SAR ADC configuration with the following features:

• 25-MHz sampling clock for a 1-Msps sampling rate

• Voltage reference as VDDA/2 to obtain a 0-to-VDDA input range

• All channels are single-ended.

• The sampling result is unsigned.

• A hardware trigger starts sampling. After four channels are sampled, the ADC stops and waits for the next
trigger signal. The trigger frequency is 10 kHz. The PWMs provide a common timing for ADC sampling, CPU

interrupt, and MOSFET control.

Figure 20 SAR ADC configuration(a)

Application Note 18 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

Figure 21 SAR ADC configuration(b)

The motor phase current is converted to a voltage by the sensing resistors, as Figure 22 shows. The figure also

shows that because the sum of the three currents must be zero at the sampling point, you can sample just two
of the currents and calculate the third.

The opamp gains and the sensing resistor values are selected so that:

• The voltage stays in the ADC input range when the current is at the rated maximum. Sensing resistors are
typically on the order of milliohms.

• The measurement of low currents is accurate. The sensing resistors have a tolerance of 1%.

Opamp

Opamp

A B C

R RR

Ia

Ib

Ic=-(Ia+Ib)

Figure 22 Dual-shunt current sampling

Figure 23 shows the schematic design for the CY8CKIT-037 kit. The kit board has 30-mΩ sensing resistors (not
shown) and a 2.1-A rated current. Bias resistors (R40, R41) are included to handle positive and negative

currents.

Application Note 19 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

Figure 23 CY8CKIT-037 schematic: Signal conditioning for phase-A current

Due to the reuse of PSoC™ 6 MCU, only one internal opamp of this chip is used; the other opamp is an external
opamp. Figure 24 shows the configuration of the internal opamp.

Figure 24 PSoC™ 6 internal opamp configuration

4.2 Transformations

Four functions are defined to do the transformations. The structures and function prototypes are declared in
the motor control library file (coordinate_transform.h):

Code Listing 1 Clarke and Park transformation structures and function prototypes

/* coordinate_transform.h*/

/* struct definition for coordinate transformation*/

Application Note 20 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

Code Listing 1 Clarke and Park transformation structures and function prototypes

typedef struct

{

 int32_t i32Q8_Xu; /*Phase U variable*/

 int32_t i32Q8_Xv; /*Phase V variable*/

 int32_t i32Q8_Xw; /*Phase W variable*/

}stc_uvw_t;

typedef struct

{

 int32_t i32Q8_Xa; /*Alpha axis variable*/

 int32_t i32Q8_Xb; /*Beta axis variable*/

}stc_ab_t;

typedef struct

{

 int32_t i32Q8_Xd; /*D-axis variable*/

 int32_t i32Q8_Xq; /*Q-axis variable*/

 int32_t i32Q12_Cos; /*Angle sin variable*/

 int32_t i32Q12_Sin; /*Angle cos variable*/

}stc_dq_t;

extern void Clark(stc_uvw_t *pstc_uvw, stc_ab_t *pstc_ab);

extern void InvClark(stc_ab_t *pstc_ab, stc_uvw_t *pstc_uvw);

extern void Park(stc_ab_t *pstc_ab, stc_dq_t *pstc_dq);

extern void InvPark(stc_dq_t *pstc_dq, stc_ab_t *pstc_ab);

Code listing 2 shows how to use these functions:

Code Listing 2 Using Clarke and Park transformation functions

/* motor_ctrl.c */

MotorCtrl_Process

{

 /* Clarke Transformation uvw -> αβ */

 Clark(&MotorCtrl_stcIuvwSensed, &MotorCtrl_stcIabSensed);

 /* Park Transformation αβ -> dq */

 Park(&MotorCtrl_stcIabSensed, &MotorCtrl_stcIdqSensed);

 /* InvPark Transformation dq-> αβ */

 InvPark(&MotorCtrl_stcVdqRef, &MotorCtrl_stcVabRef);

 /* InvClark Transformation αβ -> uvw */

 InvClark(&_2sC_Ref,&pstcPar->_3sC_Ref);

}

4.3 Slide mode observer (SMO)

See Slide mode observer (SMO) for an introduction to the SMO theory. The structure and function prototypes
for the SMO calculation (Code Listing 3) are defined in smo_calculate.h.

Code Listing 3 Clarke and Park transformation structures and function prototypes

/*smo_calculate.h*/

typedef struct stc_SMO_Estimator

{

Application Note 21 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

Code Listing 3 Clarke and Park transformation structures and function prototypes

 int32_t i32Q8_Res; /*the phase resistance*/

 int32_t i32Q8_Lddt; /*q axis inductance digital factor*/

 int32_t i32Q12_LdLq; /*dq Axis Mutual Inductance*/

 int32_t i32Q8_IalphaPre; /*stationary alpha-axis stator current*/

 int32_t i32Q8_IbetaPre; /*stationary beta-axis stator current*/

 int32_t i32Q8_ValphaPre; /*stationary alpha-axis stator voltage*/

 int32_t i32Q8_VbetaPre; /*stationary beta-axis stator voltage */

 int32_t i32Q8_ValphaBemf; /*eistimated alpha Back EMF*/

 int32_t i32Q8_VbetaBemf; /*eistimated beta Back EMF*/

 int32_t i32Q8_ValphaBemfLpf; /*filtered alpha Back EMF for angle

calculate*/

 int32_t i32Q8_VbetaBemfLpf; /*filtered beta Back EMF for angle

calculate*/

 stc_one_order_lpf_t ValphaBemLpfK; /*LPF calculate factor*/

 stc_one_order_lpf_t VbetaBemLpfK; /*LPF calculate factor*/

 int32_t i32Q22_EstimWmHz; /*estimated rotor speed Q22 format*/

 int32_t i32Q8_EstimWmHz; /*estimated rotor speed Q8 format*/

 int32_t i32Q8_EstimWmHzf; /*filtered estimated rotor speed Q8

format*/

 stc_one_order_lpf_t stcWmLpf; /*LPF calculate factor*/

 int32_t i32Q12_Cos;

 int32_t i32Q12_Sin;

 int32_t i32Q12_CosPre;

 int32_t i32Q12_SinPre;

 int32_t i32Q22_Theta; /*estimated rotor angle*/

 int32_t i32Q22_ThetaOld; /*estimated rotor angle old*/

 int32_t i32Q22_Dtheta; /*delta theta of rotor angle for speed

calculate*/

 uint16_t u16_1msCount; /*counter used to calculate motor speed*/

 int32_t i32Q12_MaxLPFK; /*BackEMF voltage's max filter

parameter*/

 int32_t i32Q12_MinLPFK; /*BackEMF voltage's min filter

parameter*/

 int32_t i32Q15_LPFKTS; /*BackEMF filter's calculation factor*/

 uint16_t u161msTimer; /*1ms timer count*/

 int32_t i32SpdCalKts; /*speed calculate factor*/

 uint8_t u8closeLoopFlg; /*closed loop flag*/

}stc_SMO_Estimator_t;

extern void Smo_Estimate(stc_SMO_Estimator_t *pstcEstimPar,stc_ab_t

*pstc2sVol, stc_ab_t *pstc2sCurrent);

extern void Smo_Init(stc_SMO_Estimator_t *SMO_Eistimator_t);

4.4 PI controllers

The PI regulator keeps the output to follow the expected output by comparing the error between the expected
output and the real output. The P-value is to make a fast output response to the comparing error, and the I-
value is to decrease stable output errors. The transfer function can be expressed as shown in Figure 25.

Application Note 22 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

Ki
Outputcommand error

-

+

KP

G(s)
+

+

Figure 25 PI-regulator controller

The PI regulator causes a fluctuating output. The fluctuating amplitude decreases, and after the regulating

period, the output follows the expected output with a very small fluctuation around the expected output value.

Figure 26 PI regulator output

PI regulator formula:

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝜏)
𝑡

0
𝑑𝜏 Equation 1

 Incremental algorithm:

∆𝑢(𝑘) = 𝑘𝑝[𝑒(𝑘) − 𝑒(𝑘 − 1)] + 𝑘𝑖𝑒(𝑘) Equation 2

𝑢(𝑘) = 𝑢(𝑘 − 1) + ∆𝑢(𝑘) Equation 3

Where,

𝑘𝑝: Proportional factor

𝑘𝑖: Integration factor

𝑒(𝑘): error between actual and reference

𝑒(𝑘 − 1): last error

𝑢(𝑘): output value of the PI regulator

Application Note 23 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

𝑢(𝑘 − 1): last output value of the PI regulator

∆𝑢(𝑘): differential value between two output values

 PI output limitation:
 This is to limit the PI output to a regular range:

Ki
Outputcommand error

-

+

KP

G(s)
+

+

Umax

Umin

Figure 27 PI regulator with limitation

Three parameters – motor speed, 𝒊𝒒, and 𝒊𝒅 – are controlled by separate PI controllers. The speed PI controller

uses the error between the calculated rotation speed and a given speed reference to calculate the control
output, which in turn is the reference for the 𝒊𝒒 PI controller. The 𝒊𝒒 and 𝒊𝒅 PI controllers control 𝒖𝒒 and 𝒖𝒅,

respectively, using the errors for 𝒊𝒒 and 𝒊𝒅. See Figure 4.

4.5 Generating the SVPWM

The SVPWM subsystem produces sinusoidal currents on the motor phases by changing the output duty cycles
of the three PWMs (for details, see SVPWM theory). The PWM outputs – two complementary outputs for each
motor phase – turn the MOSFETs ON or OFF (see Figure 3).

Figure 28 shows the SVPWM implementation in PSoC™ 6. A common 75-MHz clock synchronizes the PWM
outputs.

PWMA

PWMB

PWMC

Clock_75M

PWMAH

PWMAL

PWMBH

PWMBL

PWMCH

PWMCL

Figure 28 PI regulator with limitation

Figure 29 shows the timing for all three PWMs as well as the details of PWM_A. In addition to the PWM signals,
PWM_D generates the trigger signals for the PWM interrupt and the ADC trigger signal as well.

Application Note 24 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

The PWM interrupt is triggered on the terminal count of PWMD. The result is that the ISR controls the PWM duty
cycle on every cycle by updating the PWM compare buffer register (Figure 30). The register must be updated

before the next underflow event occurs, or the duty cycle will be incorrect, which in turn causes an increased
motor noise.

Note that each PWM has a different duty cycle.

H

L

ADC Trigger

PWM interrupt PWM interrupt

ADC TRI Timer

 PWM Driver (PWMA(BC))

PWM_compare value

(PWMD)

ADC Trigger ADC Trigger ADC Trigger
PWM interrupt

Figure 29 PWM timing

Figure 30 shows the configuration for PMW_A (phase A); it applies to all three PWM components:

• The alignment mode is “Center align”. This produces the complementary PWM outputs ‘line’ and ‘line_n’.

The outputs turn the MOSFETs of one of the motor phases ON and OFF (such as Q1 and Q2 in Figure 3).

• A deadband time is inserted to avoid turning ON both MOSFETs at the same time, which can damage the
MOSFETs. In this code example, 41 cycles of a 75-MHz clock results in a dead time of 0.55 µs. Deadtime can
also been changed in motor control firmware; set it to 1.0 µs.

• The period value is the clock frequency divided by twice the desired PWM frequency. Here, the desired PWM

frequency is doubled because the count mode is up-down (see Figure 30). For a 75-MHz clock and a desired

PWM frequency of 10 kHz, the period is (75,000,000 / (2 * 10,000)), or 3750.

Application Note 25 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Design details

Figure 30 PWMA configuration

Application Note 26 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

5 Appendix A: PMSM model

This section presents the mathematical model of a permanent magnet synchronous motor (PMSM). To simplify
the model, some assumptions are made:

• The PMSM motor winding connection is the “star” type. “Delta” type connections must be converted to the
“star” type.

• Magnetic saturation is neglected.

• Eddy currents and hysteresis losses are negligible.

Figure 31 illustrates the PMSM motor model in a 3-phase stator reference frame, also called the (a, b, c) frame.
In this frame, the a, b, and c axes are aligned with the currents 𝒊𝒂, 𝒊𝒃, 𝒊𝒄 in the three phases of the PMSM stator,
and are 120° apart from each other. 𝜳𝒇 is the flux linkage vector of the rotor magnet. The rotor rotates with an

angular speed 𝝎𝒓, and 𝜽𝒓 is the angle between 𝜳𝒇 and phase a.

The a, b, and c phases are each called “line”. The connection point of a, b, and c is called the neutral point.

The voltages on the stator windings are represented as:

{

 𝒖𝒂 = 𝑹𝒂 × 𝒊𝒂 +

𝒅 𝜳𝒂

𝒅𝒕

𝒖𝒃 = 𝑹𝒃 × 𝒊𝒃 +
𝒅 𝜳𝒃

𝒅𝒕

𝒖𝒄 = 𝑹𝒄 × 𝒊𝒄 +
𝒅 𝜳𝒄

𝒅𝒕

Where:

𝒖𝒂, 𝒖𝒃, 𝒖𝒄 Stator voltage vector

𝑹𝒂, 𝑹𝒃, 𝑹𝒄 Stator resistance

𝒊𝒂, 𝒊𝒃, 𝒊𝒄 Stator current vector

𝜳𝒂, 𝜳𝒃, 𝜳𝒄 Stator flux linkages

a

b

c

N

S

Ψ f

ωr

θr

is

Figure 31 3-phase stator reference frame

The stator winding flux linkage is the sum of the flux linkages from their own excitation, mutual flux linkages
from other winding currents, and flux linkages from the rotor magnet. Because the current phases on the stator
windings are 120° apart, the stator flux linkages are written as:

Application Note 27 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

{

𝜳𝒂 = 𝑳𝒂𝒂(𝜽𝒓) × 𝒊𝒂 + 𝑴𝒂𝒃(𝜽𝒓) × 𝒊𝒃 + 𝑴𝒂𝒄(𝜽𝒓) × 𝒊𝒄 + 𝜳𝒇 × 𝒄𝒐𝒔𝜽𝒓

𝜳𝒃 = 𝑴𝒃𝒂(𝜽𝒓) × 𝒊𝒂 + 𝑳𝒃𝒃(𝜽𝒓) × 𝒊𝒃 + 𝑴𝒃𝒄(𝜽𝒓) × 𝒊𝒄 + 𝜳𝒇 × 𝒄𝒐𝒔(𝜽𝒓 − 𝟏𝟐𝟎°)

𝜳𝒄 = 𝑴𝒄𝒂(𝜽𝒓) × 𝒊𝒂 + 𝑴𝒄𝒃(𝜽𝒓) × 𝒊𝒃 + 𝑳𝒄𝒄(𝜽𝒓) × 𝒊𝒄 + 𝜳𝒇 × 𝒄𝒐𝒔(𝜽𝒓 + 𝟏𝟐𝟎°)

Where:

 𝑳𝒂𝒂 , 𝑳𝒃𝒃, 𝑳𝒄𝒄 Equivalent inductances of stator phases

𝑴𝒂𝒃, 𝑴𝒂𝒄, 𝑴𝒃𝒂, 𝑴𝒃𝒄, 𝑴𝒄𝒂, 𝑴𝒄𝒃 Mutual equivalent inductances of stator phases

𝜳𝒇 Amplitude of rotor flux linkage

𝜽𝒓 Angle between 𝜳𝒇 and phase a

This model is of a high order, is strongly coupled, and has nonlinearity; analyzing it and controlling the torque

and flux based on it is difficult. Therefore, the (d, q) frame is used to simplify the 3-phase model. The (d, q)
frame defines a rotating 2-phase reference frame where the d axis is aligned with the rotor flux direction.

There are two transformations to convert the (a, b, c) frame to the (d, q) frame. The first one is a Clarke
transformation – it converts the (a, b, c) frame to a 2-phase stationary reference frame (α, β) (Figure 32).

α

β

iα

iβ

a

b

c

is

ia

ib

ic

Figure 32 Clarke transformation

The current vectors in the (α, β) frame are:

{

 𝒊𝜶 =

𝟐

𝟑
× 𝒊𝒂 −

𝟏

𝟑
× 𝒊𝒃 −

𝟏

𝟑
× 𝒊𝒄

𝒊𝜷 =
√𝟑

𝟑
× 𝒊𝒃 −

√𝟑

𝟑
× 𝒊𝒄

For “star” type winding connections, the sum of the currents in the three phases is zero:

𝒊𝒂 + 𝒊𝒃 + 𝒊𝒄 = 𝟎

Therefore, the current vectors in the (a, b, c) frame are transformed to the (α, β) frame as:

{

𝒊𝜶 = 𝒊𝒂

𝒊𝜷 =
√𝟑

𝟑
× 𝒊𝒂 +

𝟐√𝟑

𝟑
× 𝒊𝒃

Application Note 28 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

The Park transformation then converts the (α, β) frame to the (d, q) frame. The (d, q) frame has two axes – direct
and quadrature – that rotate with the same angle speed 𝝎𝒓 as the current vector. The direct axis is aligned with

the rotor flux 𝜳𝒇 (Figure 33). The angle between the d axis and the α axis is 𝜽𝒓.

dq

id

iq

a

Ψ f

ωr

θr

is

α

β

iα

iβ

Figure 33 Park transformation

The current vectors in the (d, q) frame are calculated as:

{

𝒊𝒅 = 𝒊𝜷 × 𝒔𝒊𝒏𝜽𝒓 + 𝒊𝜶 × 𝒄𝒐𝒔𝜽𝒓

𝒊𝒒 = 𝒊𝜷 × 𝒄𝒐𝒔𝜽𝒓 − 𝒊𝜶 × 𝒔𝒊𝒏𝜽𝒓

The voltages in the (d, q) frame are calculated from 𝒊𝒅 and 𝒊𝒒, as:

{

 𝒖𝒅 = 𝑹 × 𝒊𝒅 +

𝒅𝜳𝒅

𝒅𝒕
− 𝝎𝒓 × 𝜳𝒒

𝒖𝒒 = 𝑹 × 𝒊𝒒 +
𝒅𝜳𝒒

𝒅𝒕
+ 𝝎𝒓 × 𝜳𝒅

and:

{

𝜳𝒅 = 𝑳𝒅 × 𝒊𝒅 + 𝜳𝒇

𝜳𝒒 = 𝑳𝒒 × 𝒊𝒒

The torque equation is expressed as:

𝑻𝒆 =
𝟑

𝟐
𝑷𝒏[𝜳𝒇𝒊𝒒 − (𝑳𝒒 − 𝑳𝒅)𝒊𝒅𝒊𝒒] − 𝑻𝑳

Where:

𝑳𝒅 , 𝑳𝒒 Inductances of direct and quadrature axes

𝐏𝐧 Number of pole pairs in rotor

Note that for a SPMSM (Figure 1), 𝑳𝒒 and 𝑳𝒅 are independent of 𝜽𝒓, and 𝑳𝒒 is equal to 𝑳𝒅. Thus, the torque

equation is simplified for SPMSM as:

𝑻𝒆 =
𝟑

𝟐
𝑷𝒏𝜳𝒇𝒊𝒒 − 𝑻𝑳

Application Note 29 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

𝐏𝐧 and 𝜳𝒇 are motor characteristics that are not affected by the motor rotation. Compared to the 3-phase

model, the torque is proportional only to the q-axis current 𝒊𝒒, which is easier to control.

5.1 Slide mode observer (SMO)

Obtaining the position of a rotating rotor is critical for FOC. The Park transformation requires the rotor position
angle 𝜽𝒓 between the rotor flux linkage 𝜳𝒇 and the α axis. Originally, this information came from physical

sensors, such as Hall-effect sensors and optical encoders. These sensors not only increase the system cost, but
they also require maintenance. Later, the sensorless technique was developed to remove the need for sensors.

Some high-precision applications such as robotics still require encoders.

The idea of the sensorless technique is to estimate the angle 𝜽𝒓 based on the BEMF value in the (α, β) frame.

The typical algorithm to do this is called a slide mode observer (SMO). In this algorithm, the 2-phase voltages in

the (α, β) frame is expressed as:

{

 𝒖𝜶 = 𝑹𝒔 × 𝒊𝜶 + 𝑳𝒔 ×

𝒅𝒊𝜶
𝒅𝒕

+ 𝒆𝜶

𝒖𝜷 = 𝑹𝒔 × 𝒊𝜷 + 𝑳𝒔 ×
𝒅𝒊𝜷

𝒅𝒕
+ 𝒆𝜷

Where:

𝑹𝒔 Line-to-neutral resistance

𝑳𝒔 Line-to-neutral inductance

𝒆𝜶, 𝒆𝜷 BEMF on (α, β) axes

In the digital domain, the 𝒖𝜶 equation is changed to:

𝒊𝜶(𝒏 + 𝟏) − 𝒊𝜶(𝒏)

𝑻𝒔
= (−

𝑹𝒔

𝑳𝒔
) 𝒊𝜶(𝒏) +

𝟏

𝑳𝒔
[𝒖𝜶(𝒏) − 𝒆𝜶(𝒏)]

Where:

 𝑻𝒔 Period of PWM on inverter

Solving for 𝒊𝜶:

 𝒊𝜶(𝒏 + 𝟏) = (1 − 𝑻𝒔
𝑹𝒔

𝑳𝒔
)𝒊𝜶(𝒏) +

𝑻𝒔

𝑳𝒔
[𝒖𝜶(𝒏) − 𝒆𝜶(𝒏)]

You can now define two new parameters that are related to motor parameters:

𝑭 = 1 − 𝑻𝒔

𝑹𝒔

𝑳𝒔

𝑮 =
𝑻𝒔

𝑳𝒔

Note that 𝑹𝒔 and 𝑳𝒔 are motor characteristics that can be measured. 𝑻𝒔 is a constant system parameter, 𝒊𝜶(𝒏)

is the sampled result from the last control cycle, and 𝒖𝜶(𝒏) is the calculation result of the last control cycle.
Therefore, if given an estimated 𝒆𝜶

∗ (𝒏), an estimated current value 𝒊𝜶
∗ (𝒏 + 𝟏) can be calculated (“*” indicates

an estimated value).

Comparing 𝒊𝜶
∗ (𝒏 + 𝟏) with the actual current value 𝒊𝜶(𝒏 + 𝟏) sampled by the ADC, the error between these

two values is used to adjust 𝒆𝜶
∗ (𝒏) for a better estimation. Repeat this process until the error between

Application Note 30 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

𝒊𝜶
∗ (𝒏 + 𝟏) and 𝒊𝜶(𝒏 + 𝟏) is small enough to meet the design requirements. Then, the estimated 𝒆𝜶

∗ (𝒏) can
represent the actual BEMF 𝒆𝜶(𝒏). The 𝒆𝜷(𝒏) is obtained in the same manner.

Because 𝒆𝜶(𝒏) and 𝒆𝜷(𝒏) are expressed as:

{

𝒆𝜶(𝒏) = −𝜳𝒇 × 𝝎 × 𝐬𝐢𝐧𝜽

𝒆𝜷(𝒏) = 𝜳𝒇 × 𝝎 × 𝐜𝐨𝐬𝜽

The angle 𝜽 is calculated as:

𝜽(𝒏) = 𝒂𝒓𝒄 𝒕𝒂𝒏
−𝒆𝜶(𝒏)

𝒆𝜷(𝒏)

The angular speed 𝝎𝒓 is calculated by accumulating 𝜽 over m samples and multiplied by the speed
constant 𝑲:

𝝎𝒓 = ∑[𝜽(𝒏) − 𝜽(𝒏 − 𝟏)] ∗ 𝑲

𝒎

𝒏=𝟏

Thus, the position and speed information are calculated from the estimated BEMF.

5.2 SVPWM theory

In Figure 3, Q1, Q3, and Q5 are the upper MOSFETs of the inverter. If you consider the MOSFET ON state as “1”

and the OFF state as “0”, there are eight combinations of ON/OFF states, which lead to eight inverter outputs.

Table 4 lists the ON/OFF state combinations and their corresponding inverter outputs. 𝒖𝒂, 𝒖𝒃, and 𝒖𝒄 are the

phase (line-to-neutral) voltages, while 𝒖𝒂𝒃, 𝒖𝒃𝒄, and 𝒖𝒂𝒄 are the line-to-line voltages. The values in each cell
indicate the voltage as a percentage of the bus voltage, 𝑽𝒃𝒖𝒔. For example, 2/3 means 2/3 of 𝑽𝒃𝒖𝒔.

Table 4 Output combination in 3-phase frame

Q1

(A)

Q3

(B)

Q5

(C)

𝒖𝒂 𝒖𝒃 𝒖𝒄 𝒖𝒂𝒃 𝒖𝒃𝒄 𝒖𝒄𝒂

1 0 0 2/3 -1/3 -1/3 1 0 -1 𝐔𝟎

1 1 0 1/3 1/3 -2/3 0 1 -1 𝐔𝟔𝟎

0 1 0 -1/3 2/3 -1/3 -1 1 0 𝐔𝟏𝟐𝟎

0 1 1 -2/3 1/3 1/3 -1 0 1 𝐔𝟏𝟖𝟎

0 0 1 -1/3 -1/3 2/3 0 -1 1 𝐔𝟐𝟒𝟎

1 0 1 1/3 -2/3 1/3 1 -1 0 𝐔𝟑𝟎𝟎

0 0 0 0 0 0 0 0 0 𝟎𝟎𝟎𝟎

1 1 1 0 0 0 0 0 0 𝟎𝟏𝟏𝟏

The eight combinations can be considered as six non-zero vectors and two zero vectors (000 and 111). As

Figure 34 shows, the non-zero vectors are the axes of a hexagon; the angle between any two adjacent axes is 60
degrees. This divides the hexagon into six sectors (Roman numerals I to VI). The zero vectors are at the origin,
and they generate zero voltage on the three phases. These eight vectors, called “basic space vectors,” are
called 𝑼𝟎, 𝑼𝟔𝟎, 𝑼𝟏𝟐𝟎, 𝑼𝟏𝟖𝟎, 𝑼𝟐𝟒𝟎, 𝑼𝟑𝟎𝟎, 𝟎𝟎𝟎𝟎, and 𝟎𝟏𝟏𝟏. A voltage vector is synthesized by one or two of the six

non-zero basic space vectors.

Application Note 31 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

U0(100)

U60(110)U120(010)

U180(011)

U240(001) U300(101)

O000(000)

O111(111)

I

II

III

IV

V

VI

Figure 34 Basic space vectors

For example, as Figure 35 shows, the voltage vector 𝑼𝒔
⃑⃑ ⃑⃑ ⃑ is in sector I, and the period of the PWM is 𝑻. 𝑻𝟏 is the

duration of 𝑼𝟎; 𝑻𝟐 is the duration of 𝑼𝟔𝟎; and 𝑻𝟎 is the duration of the two zero vectors. The vectors 𝒖𝜶⃑⃑⃑⃑ ⃑ and 𝒖𝜷 ⃑⃑ ⃑⃑ ⃑

compose a voltage vector, 𝑼𝒔 ,⃑⃑ ⃑⃑ ⃑⃑ that can also be composed by basic space vectors 𝑼𝟎 and 𝑼𝟔𝟎.

U0

U60

Sector-I (U0,U60)

θ π/3

α

β

Us

Uα

Uβ

U60 *T2/T

U0 *T1/TT0

Figure 35 Voltage vector in Sector I

𝑼𝒔
⃑⃑ ⃑⃑ can be expressed as:

𝑻 = 𝑻𝟏 + 𝑻𝟐 + 𝑻𝟎

𝑼𝒔
⃑⃑ ⃑⃑ ⃑ = 𝑼𝟔𝟎

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ×
𝑻𝟐

𝑻
+ 𝑼𝟎

⃑⃑⃑⃑⃑⃑ ×
𝑻𝟏

𝑻

Therefore:

|𝑼𝒔 | 𝒄𝒐𝒔𝜽 = |𝑼𝟔𝟎 | ×
𝑻𝟐

𝑻
× 𝒄𝒐𝒔

𝝅

𝟑
+ |𝑼𝟎 | ×

𝑻𝟏

𝑻

|𝑼𝒔 | 𝐬𝐢𝐧𝜽 = |𝑼𝟔𝟎 | ×
𝑻𝟐

𝑻
× 𝒔𝒊𝒏

𝝅

𝟑

Then:

𝑻𝟏 = 𝒎𝑻𝐬𝐢𝐧 (
𝝅

𝟑
− 𝜽)

𝑻𝟐 = 𝒎𝑻𝐬𝐢𝐧𝜽

Application Note 32 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

𝑻𝟎 = 𝑻 − 𝑻𝟏 − 𝑻𝟐 (𝑻𝟎 ≥ 𝟎)

Where:

𝒎 = √𝟑 ×
|𝑼𝒐𝒖𝒕 |

𝑼𝒅𝒄

|𝑼𝒐𝒖𝒕 | = √|𝒖𝜶|2 + |𝒖𝜷|2

Note that all basic space vectors are generated with a specific ON/OFF state of upper MOSFETs; the duration is

actually the time of the PWM being high, or the duty cycle. Thus, generating a 𝑼𝒔
⃑⃑ ⃑⃑ is related to a change in duty

cycle of the PWMs applied to the inverter. In this example, both 𝑼𝟎 and 𝑼𝟔𝟎 require phase A to be turned ON,

and 𝑼𝟔𝟎 requires phase B to be turned ON. Therefore:

𝑫𝒖𝒕𝒚𝑨 =
𝑻𝟏 + 𝑻𝟐

𝑻
, 𝑻𝟏 + 𝑻𝟐 ≤ 𝑻

𝑫𝒖𝒕𝒚𝑩 =
𝑻𝟐

𝑻
, 𝑻𝟐 ≤ 𝑻

𝑫𝒖𝒕𝒚𝟎 =
𝑻 − 𝑻𝟏 − 𝑻𝟐

𝑻

Depending on how you use zero vectors, the SVPWM has two output patterns: a five-phase pattern and a seven-
phase pattern. The five-phase pattern uses only 𝟎𝟎𝟎𝟎 or 𝟎𝟏𝟏𝟏.The seven-phase pattern uses both 𝟎𝟎𝟎𝟎 and

𝟎𝟏𝟏𝟏, and their durations are equal. Figure 37 illustrates these two patterns. Note that in 5-phase SVPWM,

phase A is always on or always off.

Application Note 33 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix A: PMSM model

T

Phase A

Phase B

Phase C

Phase A

Phase B

Phase C

1

0

U0 U0U60 O111 O111 U60

U0 U60 O111 O111 U60 U0O000 O000

5-phase SVPWM

7-phase SVPWM

T1/2 T1/2T2/2 T0/2 T0/2 T2/2

T1/2 T2/2 T1/2 T2/2T0/4 T0/4 T0/4T0/4

Figure 36 5- and 7-phase SVPWM in Sector I

There is no difference in the synthesized voltage vector generated by these two methods. However, the 5-phase

pattern reduces the number of MOSFETs that are switching. This can reduce the switching losses in the power
components, but it creates more harmonics than the seven-phase pattern.

Application Note 34 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

6 Appendix B: Adapting the design to other motors

This appendix helps you to drive other motors with the code example provided with this application note. You
should follow the operation guide step by step. A bold font indicates a mandatory action or critical
information that requires more attention.

Hardware: CY8CKIT-037 or your own motor driver board

Firmware: Sensorless FOC project from the latest version of this application note

Equipment: Oscilloscope, multimeter, PC, USB cable for CY8CKIT-062S4 or J-Link for programming your own
board.

Operation guide:

1. Check the power range and motor type.

a. Power range

CY8CKIT-037 supports a 12-V to 48-VDC supply voltage with up to 2 A input DC current. You should use
the kit only in this power range; using the kit out of this power range may damage it.

b. Motor type

A motor with sinusoidal back electromotive force (BEMF) is recommended. A motor with trapezoidal

BEMF may not rotate or achieve the desired performance with the sensorless FOC project. Figure 37
illustrates these two BEMF types. To measure BEMF, connect the ground of the oscilloscope probe to

one motor phase and the probe to another motor phase. Leave the other motor phases floating. Rotate
the motor either by hand or by using another motor. You should see the BEMF waveform on the

oscilloscope.

The sinusoidal BEMF contains the complete angle information, which can be calculated with the SMO
algorithm. The trapezoidal BEMF is almost flat at the wave crest and trough and therefore is missing

sufficient angle information. As a result, the SMO algorithm cannot reliably retrieve the angle from this

waveform, which may halt the motor rotation.

(a) Sinusoidal BEMF (b) Trapezoidal BEMF

Figure 37 Sinusoidal BEMF versus trapezoidal BEMF

2. Change the parameters in the example project.

a. These parameters are defined as global variables in h03_user\customer_interface.c. You should

change them based on your motor specifications.

int32_t i32_motor_pole_pairs = 4; // the pole pairs of rotor

float32_t f32_motor_ld = 0.6; // the d axis reductance,unit:mh

float32_t f32_motor_lq = 0.6; // the q axis reductance,unit:mh

float32_t f32_motor_res = 0.8; // the resistance between two phases

b. Change the macro definitions for the system parameters.

Application Note 35 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

These macro definitions are related to system parameters, such as the sampling resistor and so on. You
should change them (h03_user\hardware_config.h) if the default values are different from your system.

#define SYS_VDC_FACTOR 20.1 //DC voltage sample resistor factor

#define MOTOR_SHUNT_NUM 2 // The number of shunt used to sense current

#define MOTOR_IUVW_SAMPLE_RESISTOR 0.03 // Iuvw sample resistor (ohm)

#define MOTOR_IUVW_AMPLIFIER_FACTOR 4.16 // Iuvw calculation factor

#define ADC_VOLT_REF 5.0f // Reference voltage for ADC

#define ADC_VALUE_MAX 4096.0f // 12-bits ADC max value

c. Change the parameters for the PI controllers.

You may need to change the PI coefficient parameters in the PI controller if the PI controller does not

work well with your motor. You can change the parameters in h03_user\customer_interface.c. For more

details, see Tunable parameters.

3. Set up the hardware.

If you are using the CY8CKIT-037 kit, you can use the adapter provided with the kit for any motor whose

maximum power is 24 V DC / 2.1 A. If a different voltage (such as 48 V) or current (such as 3 A) is required,

connect the DC voltage source to the J8 connector (yellow marker in Figure 38) instead of the supplied power
adapter.

Figure 38 Setting up the board for a motor with a higher voltage or current

4. Program the CY8CKIT-062S4 kit and observe the performance.

5. Tune the parameters if the motor does not rotate

a. The motor starts up in open-loop control and then switches to closed-loop speed control later. If

switching to the closed loop control fails (motor halts very soon after the rotation starts), you may
need to tune the following parameters. Try the following methods:

▪ Confirm that the motor parameters are set correctly in Step 2.

▪ Change the parameters switch from open-loop to closed-loop in h03_user\customer_interface.c.
uint16_t u16_motor_open_loop_spd_init_hz = 5; //open loop start speed

uint16_t u16_motor_open_loop_spd_end_hz = 10;//open loop end speed

uint16_t u16_motor_open_loop_spd_inc_hz = 10;//acceleration speed of

open loop

uint16_t u16_motor_close_loop_target_spdhz = 10; //target speed when

switching to close loop

Application Note 36 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

▪ Debug with the Back-EMF low-pass filter factors in SMO structure Motor_stcSMO.

▪ If the error occurs when the motor is running, the motor will stop immediately. Check the variable
MotorCtrl_stcRunPar.u32ErroType to find the error. If the error is over/under voltage, confirm the
parameters set in 2.b. You can clear the error by rotating the potentiometer to the smallest value.
If the error occurs more than 10 times, it cannot be cleared, and you should reset the board.

▪ When the motor is running, LED2 will blink according to the motor’s speed. If motor’s speed goes
high, the LED2 will blink more frequently.

b. If the motor rotates with a vibration, try tuning the Kp and Ki parameters in the PI controller. The larger

the Kp value, the faster the system closes in on the reference value; however, it may make the system
unstable. The Ki value can reduce the static error and make the system stable; however, a larger Ki
may make the integration value saturate.

6.1 Tunable parameters

6.1.1 Hardware parameter setting

The hardware parameters should be set according to the kit. If you have your own inverter board, change the
parameters mentioned in Table 5 in the h03_user\hardware_config.h file.

Table 5 Hardware parameter setting

Macro Description Value

SYS_VDC_FACTOR DC voltage sample resistor factor 20.1

MOTOR_SHUNT_NUM Number of shunts used to sense current 2

ADC_VOLT_REF AD reference voltage 3.3 V

ADC_VALUE_MAX AD accuracy set, 12-bit AD is set to ‘0xFFF’ 4096

COMP_ADC_CH_IU ADC channel for U phase current 0

COMP_ADC_CH_IW ADC channel for W phase current 1

SYS_ADC_CH_VDC ADC channel for VBUS 2

MOTOR_SPEED_VR ADC channel for potentiometer voltage 3

MOTOR_IUVW_SAMPLE_RESISTOR Iuvw sample resistor 0.03 Ω

MOTOR_IUVW_AMPLIFIER_FACTOR Iuvw calculation factor 4.16

Especially, in the Table 5,

• SYS_VDC_FACTOR: The factor for calculating Vbus, which is determined by the input protection circuit in
the following diagram. Here, SYS_VDC_FACTOR = (R9 + R10) / R10.

Application Note 37 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

Figure 39 Input protection circuit

• MOTOR_SHUNT_NUM: Number of shunts used to sense current, which is dependent on your circuit of motor
current detection.

• ADC_VOLT_REF: ADC sampling reference voltage of the system.

• ADC_VALUE_MAX: Depends on the accuracy of the ADC; the accuracy of the internal ADC is 12-bits, thus the
maximum ADC value is 4096. You need to change the value according to your own schematic.

• COMP_ADC_CH_IU: ADC channel number for motor U phase current sense, that is channel 0.

• COMP_ADC_CH_IW: ADC channel number for motor W phase current sense, that is channel 1.

• SYS_ADC_CH_VDC: ADC channel number for bus voltage sense, that is channel 2.

• MOTOR_SPEED_VR: ADC channel number for potentiometer input sense, that is channel 3.

The four parameters (COMP_ADC_CH_IU, COMP_ADC_CH_IW, SYS_ADC_CH_VDC, MOTOR_SPEED_VR) are set by
the design.modus file, and the motor phase current sense depends on the circuit for current detection. In

CY8CKIT-037, the circuit detects the current of U and W phase. If the order of ADC channels in Figure 40 is
changed, for example, if OP_Ia_Vout_Filt and VR-In are interchanged, the COMP_ADC_CH_IU parameter

should set to 3, and MOTOR_SPEED_VR should set to 0.

Figure 40 ADC channel number set

• MOTOR_IUVW_SAMPLE_RESISTOR: Value of the sample resistor in the current detection circuit.

• MOTOR_IUVW_AMPLIFIER_FACTOR: Amplification factor in the amplification circuit.

ADC Channel 0~3

Application Note 38 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

6.1.2 Firmware parameter setting

The firmware parameters are defined for motor running. The firmware parameters include motor parameters,
motor carry frequency, PI parameters, and motor start-up parameters, which are in the

s03_user\customer_interface.c file.

6.1.2.1 Motor parameters

Motor parameters include the motor pole pairs, phase current, and phase inductance. Table 6 lists the details
of these parameters.

Table 6 Motor parameters

Variable Description

i32_motor_pole_pairs Motor’s pole pairs

f32_motor_ld Phase inductance of d axis. Unit: mH.

f32_motor_lq Phase inductance of q axis. Unit: mH.

f32_motor_res Resistance between two phases. Unit: Ω.

Motor parameters are dependent on the motor that you choose.

The motor pole pair is usually labeled in the motor nameplate. The phase inductance of d/q axis and the phase
resistor can be detected by the RLC measuring instrument.

6.1.2.2 ADC sampling parameters

These parameters are defined for ADC sampling. The value of the sample resistor is related to the circuit.

Table 7 lists the details of these parameters.

Table 7 ADC sampling parameters

Variable Description

i32_motor_iuvw_offset_normal Middle value of 12-bits ADC: 4096/2=2048

i32_motor_iuvw_offset_range ADC offset range of Iuvw sampling. If the error of the

ADC checked value is out of this range, the system will

raise the AD_MIDDLE_ERROR fault.

i32_motor_iuvw_offset_check_times Iuvw ADC sample offset check times

f32_motor_dead_time_micro_sec Dead time (µs) of the PWM

u16_motor_carrier_freq Motor carry frequency (Hz)

• i32_motor_iuvw_offset_normal: The middle value of 12-bits ADC. For example: if your system has 3.3

VDDA, the maximum ADC input is 3.3 V and the normal offset value is 1.65 V. Thus, the ADC normal offset

output is 2048.

• i32_motor_iuvw_offset_range: The range of current offset check. If the offset check result is out of this
range, the system will raise the AD_MIDDLE_ERROR fault. Do not set a higher value for this parameter

because the motor current will fluctuate a lot if there is something wrong with the current detection circuit.
This parameter can be set to a value of 150~200.

• i32_motor_iuvw_offset_check_times: Iuvw ADC sample offset check times. The offset check result is
an average value of the sum of those check values. You can set this value based on your requirement.
However, the value should not exceed 256.

Application Note 39 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

• f32_motor_dead_time_micro_sec: The dead time of the PWM expressed in µs. This parameter is set
according to the inverter circuit or the IPM blocks that you use.

• u16_motor_carrier_freq: This parameter should be set based on the MCU and the FOC execute time.
You should set it according to your own MCU and load (motor). However, if this parameter is set to a higher

value, the inverter service life will be reduced.

6.1.2.3 PI regulator parameters

Table 8 PI regulator parameters

Variable Description

f32_motor_dki d axis current PI regulator integral constant

f32_motor_dkp d axis current PI regulator proportion constant

f32_motor_qki q axis current PI regulator integral constant

f32_motor_qkp q axis current PI regulator proportion constant

f32_motor_low_speed_ki Speed PI regulator integral constant at low speed

f32_motor_low_speed_kp Speed PI regulator proportion constant at low speed

f32_motor_ski Speed PI regulator integral constant at high speed

f32_motor_skp Speed PI regulator proportion constant at high speed

u16_motor_change_pi_spdhz PI parameters change at this speed

These parameters are set for the current and speed PI loop. You should change the values according to your

own motor and prior experience.

6.1.2.4 Startup parameters

Table 9 Motor startup parameters

Variable Description

u8_motor_run_level Motor run stage: 1 → orientation, 2 → open-loop

running, 3 → closed-loop running, 4 → change

speed enable

i16q8_motor_orient_end_iqref Orientation current when motor in orient stage.

Unit: A.

i16q8_motor_orient_init_iqref Orientation start current. Unit: A.

f32q8_motor_orient_iqref_inc_aps Reference vary step in orient stage

f32q8_motor_orient_time Orientation time. Unit: s.

u16_motor_open_loop_spd_init_hz Open-loop start speed. Unit: Hz.

u16_motor_open_loop_spd_end_hz Open-loop end speed; this value should be the same
as the speed when the motor changes to closed-

loop. Unit: Hz.

u16_motor_open_loop_spd_inc_hz Open-loop acceleration. Unit: Hz.

i16q8_motor_open_loop_init_iqref q axis current reference in open loop. Unit: A.

i16q8_motor_open_loop_end_iqref q axis current reference in open loop. Unit: A.

f32_motor_open_loop_iqref_inc_aps q axis current reference vary step in open loop

Application Note 40 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

• u8_motor_run_level: This parameter is used to set the motor running stage. Set this parameter to 4 if you
need to change the speed while the motor is running.

• i16q8_motor_orient_end_iqref, i16q8_motor_orient_init_iqref,
f32q8_motor_orient_iqref_inc_aps, and f32q8_motor_orient_time: These parameters are

explained in Figure 42.

Iq(A)

1

2

Orient Time

0.5
T(s)

i16q8_motor_orient_init_iqref

i16q8_motor_orient_end_iqref

Slope = f32q8_motor_orient_iqref_inc_aps

Figure 41 q-axis current set in orient stage

• Parameters 6 to 11 are similar to the parameters shown in Figure 41.

• The values of parameters i16q8_motor_open_loop_init_iqref and
i16q8_motor_open_loop_end_iqref should be the same as parameter 2.

6.1.2.5 Closed-loop running parameters

The parameters when the motor enters the closed-loop stage are defined in Table 10; these mainly include the
target speed when the motor switches to closed-loop from open-loop, max and min speed, and acceleration
when motor is running.

Table 10 Closed-loop running parameters

Variable Description

u16_motor_close_loop_target_spdhz Target speed when switching to closed-loop. Unit: Hz.

u8_motor_running_direction Motor run direction 0: CW, 1: CCW

i16q8_motor_close_loop_is_max Maximum torque current when motor running. Unit: A.

i16q8_motor_close_loop_iqref_max Maximum value of q axis current reference in closed-loop.

Unit: A.

u16_motor_spdmax Motor run maximum speed. Unit: rpm.

u16_motor_spdmin Motor run minimum speed. Unit: rpm.

f32_motor_spd_acceleration_hz Acceleration. Unit: Hz.

Application Note 41 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

f32_motor_spd_deceleration_hz Deceleration. Unit: Hz.

• u16_motor_close_loop_target_spdhz: Motor switches to closed-loop stage when the motor reaches

this speed.

• u8_motor_running_direction: Determines the rotate direction of the motor when you first start the
motor. If the direction of rotation does not suit the situation, change it to counter-clockwise.

• i16q8_motor_close_loop_is_max and i16q8_motor_close_loop_iqref_max: Limit the maximum
current when the motor is running.

• u16_motor_spdmax and u16_motor_spdmin: Limit the motor speed. The values are set according to the

motor’s rated speed.

• f32_motor_spd_acceleration_hz, f32_motor_spd_deceleration_hz: Set for the
acceleration/deceleration speed when the motor speed is changed. This value should not set too large. You

can set it according to your needs.

6.1.2.6 Protection parameters

Table 11 Protection parameters

Variable Description

i16q8_motor_current_max Motor phase current peak. Unit: A.

u16_motor_vbus_max Maximum DC voltage. Unit: V.

u16_motor_vbus_min Minimum DC voltage. Unit: V.

• i16q8_motor_current_max: Specifies the peak of motor phase current when the motor is running. If the

motor current exceeds this value, the system will enter software overcurrent protection process, and
MotorCtrl_stcRunPar.u32ErroType will be set to SW_OVER_CURRENT fault.

• u16_motor_vbus_max / u16_motor_vbus_min: Specifies the maximum/minimum value of the bus
voltage. If the bus voltage that the ADC sampled is out of this range, the system will enter voltage protection

process, and the MotorCtrl_stcRunPar.u32ErroType will be set to OVER_VOLTAGE /UNDER_VOLTAGE
fault.

6.1.2.7 Other global parameters

Table 12 Other global parameters

Variables in project Structure member Comments

Name:
motor_contrl_iq_pid_reg

Type: stc_pid_t

Location: motor_ctrl.h

Comments:

PID controller for Iq

int32_t i32q15_kp p coefficient for PID

calculation

int32_t i32q15_ki i coefficient for PID

calculation

int32_t i32q15_kd d coefficient for PID

calculation

int32 i_cnt Counter for PI regulator

Out calculation

int32_t i_timer Cycle for PI regulator

Out calculation

int32 i32_p_out Output: Item P

int32 i32_i_out Output: Item I

int32 i32_d_out Output: Item D

Application Note 42 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

Variables in project Structure member Comments

int32 i32_out Output: PID regulator

int32 i32_outPre Last output: PID

regulator

int32 i32_qn_Iout Output: Item I QN

format

int32 i32_out_max Output upper limitation

int32 i32_out_min Output lower limitation

int32 i32_error_0 Input error

int32 i32_errot_1 Last input error

int32 i32_error0_max Input error max limit

int32 i32_errot0_Min Input error min limit

Name:
motor_control_id_pid_reg

Type: stc_pid_t

Location: motor_ctrl.h

Comments:

PID controller for Id

Same as PID_Iq Same as PID_Iq

Name:
motor_control_spd_pid_reg

Type: stc_pid_t

Location: motor_ctrl.h

Comments:

PID controller for speed

Same as PID_Iq Same as PID_Iq

Name: motor_control_run_par

Type: stc_motor_run_t

Location: motor_ctrl.h

Comments:

Structure for motor control

int32_t i32_target_speed_rpm Motor target speed

int32_t i32_motor_speed_lpf Motor max target speed

int32_t

i32_target_speed_rpm_max
Controller output

int32_t

i32_target_speed_rpm_min
Motor min target speed

int32_t i32q8_estmi_wm_hz Motor speed Hz

int32_t i32q8_estmi_wm_hzf Motor speed Hz Lpf

uint8_t u8status Motor running status

uint32_t u32_error_type Motor running error

type

int32_t i32q8_vbus Sampled bus voltage

int32_t i32q8_vr Sampled VR value

int32_t i32q22_delta_theta_ts Delta theta

int32_t

i32q22_delta_theta_kts
Delta theta calculation

factor

int32_t

i32q8_target_speed_wm_hz
Motor target speed Hz

format

int32_t

i32Q22_TargetSpeedWmHz
Motor target speed Hz

format

Application Note 43 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

Variables in project Structure member Comments

int32_t

i32Q22_TargetWmIncTs
Motor target speed

acceleration

int32_t

i32q22_target_speed_wm_hz
Motor target speed

deceleration

int32_t i32q22_elec_angle Motor target electric

angle

uint8_t u8_speed_pi_enable Speed PI enable or

disable flag

uint8_t

u8_startup_complete_flag
Startup complete flag

uint8_t u8_running_stage Motor running stage

uint8_t u8_running_level Motor running level

uint8_t u8_close_loop_flag Enter closed-loop or not

flag

uint8_t

u8_change_speed_enable
Speed change flag

Name: motor_stc_iuvw_sensed

Type: stc_uvw_t

Location: motor_ctrl.h

Comments:

Structure for motor current

sampling results

int32_t i32q8_xu Phase-a variable

int32_t i32q8_xv Phase-b variable

int32_t i32q8_xw Phase-c variable

Name: motor_stc_iab_sensed

Type: stc_ab_t

Location: motor_ctrl.h

Comments:

Structure for alpha-beta axis

current

int32_t i32q8_xa Alpha variable of fixed

2-phase

int32_t i32q8_xb Beta variable of fixed 2-

phase

Name: motor_stc_idq_sensed

Type: stc_dq_t

Location: motor_ctrl.h

Comments:

Structure for d-q axis current

int32_t i32q8_xd d-axis variable

int32_t i32q8_xq q-axis variable

int32_t i32q12_cos Cosine value with angle

int32_t i32q12_sin Sine value with angle

Name: motor_control_idq_ref

Type: stc_dq_t

Location: motor_ctrl.h

Comments:

Structure for d-q axis reference

current

int32_t i32q8_xd d-axis variable

int32_t i32q8_xq q-axis variable

int32_t i32q12_cos Cosine value with angle

int32_t i32q12_sin Sine value with angle

Name: motor_contrl_vdq_ref

Type: stc_dq_t

Location: motor_ctrl.h

Comments:

int32_t i32q8_xd d-axis variable

int32_t i32q8_xq q-axis variable

int32_t i32q12_cos Cosine value with angle

int32_t i32q12_sin Sine value with angle

Application Note 44 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix B: Adapting the design to other motors

Variables in project Structure member Comments

Structure for d-q axis reference

current

Application Note 45 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix C: Q number format (fixed-point number)

7 Appendix C: Q number format (fixed-point number)

The Q number format is a well-known method to store and process floating-point numbers. It enables faster
floating-point operations done by the CPU, so that a separate floating-point unit is not needed. However, some
accuracy may be lost by using floating-point.

The example project provided in this application note uses the Q number format. Although understanding the

Q number format is not mandatory, gaining a fundamental knowledge of it will help you master the example
code faster.

An introduction to the Q number format can be found in Wikipedia. This appendix contains a copy of the “Q
(number format)” page from the Wikipedia site, if you are not able to connect to the Internet but need to know
about the Q number format when reading this application note.

The following content is from Wikipedia. Infineon does not maintain this content for accuracy, nor guarantee

that it is up to date. If you have access to the Internet, go to the Wikipedia website to read the latest version by
clicking the following link or entering it in your browser.

This material from Wikipedia is reproduced under the Creative Commons Attribution-ShareAlike 3.0 Unported

License, which you can view at the following URL: http://creativecommons.org/licenses/by-sa/3.0/. For more

information, please see Wikipedia’s licensing statement at
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-

ShareAlike_3.0_Unported_License. Your rights to this Wikipedia material are governed by the foregoing
license.

From Wikipedia, the free encyclopedia:

Q (number format) on Wikipedia: http://en.wikipedia.org/wiki/Q_%28number_format%29

Q is a fixed point number format where the number of fractional bits (and optionally the number of integer
bits) is specified. For example, a Q15 number has 15 fractional bits; a Q1.14 number has 1 integer bit and 14

fractional bits. Q format is often used in hardware that does not have a floating-point unit and in applications
that require constant resolution.

7.1 Characteristics

Q format numbers are (notionally) fixed point numbers (but not actually a number itself); that is, they are stored
and operated upon as regular binary numbers (i.e. signed integers), thus allowing standard integer
hardware/ALU to perform rational number calculations. The number of integer bits, fractional bits and the
underlying word size are to be chosen by the programmer on an application-specific basis—the programmer's

choices of the foregoing will depend on the range and resolution needed for the numbers.

Some DSP architectures offer native support for common formats, such as Q1.15. In this case, the processor can
support arithmetic in one step, offering saturation (for addition and subtraction) and renormalization (for

multiplication) in a single instruction. Most standard CPUs do not. If the architecture does not directly support

the particular fixed point format chosen, the programmer will need to handle saturation and renormalization
explicitly with bounds checking and bit shifting.

There are 2 conflicting notations for fixed point. Both notations are written as Qm.n, where:

• Q designates that the number is in the Q format notation—the "Q" being reminiscent of the standard symbol
for the set of rational numbers.

• m. (optional, assumed to be zero or one) is the number of bits set aside to designate the two's complement

integer portion of the number, exclusive or inclusive of the sign bit (therefore if m is not specified it is taken
as zero or one).

http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wikipedia.org/wiki/Q_%28number_format%29
http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Fraction_%28mathematics%29
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Rational_number
http://en.wikipedia.org/wiki/Rational_number

Application Note 46 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix C: Q number format (fixed-point number)

• n is the number of bits used to designate the fractional portion of the number, i.e. the number of bits to the
right of the binary point. (If n = 0, the Q numbers are integers—the degenerate case).

One convention includes the sign bit in the value of m, and the other convention does not. The choice of
convention can be determined by summing m+n. If the value is equal to the register size, then the sign bit is
included in the value of m. If it is one less than the register size, the sign bit is not included in the value of m.

In addition, the letter U can be prefixed to the Q to indicate an unsigned value, such as UQ1.15, indicating
values from 0.0 to +1.99997.

Signed Q values are stored in 2's complement format, just like signed integer values on most processors. In 2's

complement, the sign bit is extended to the register size.

For a given Qm.n format, using an m+n+1 bit signed integer container with n fractional bits:

• its range is

• its resolution is

For a given UQm.n format, using an m+n bit unsigned integer container with n fractional bits:

• its range is

• its resolution is

For example, a Q14.1 format number:

• requires 14+1+1 = 16 bits

• its range is [-214, 214 - 2−1] = [-16384.0, +16383.5] = [0x8000, 0x8001 … 0xFFFF, 0x0000, 0x0001 … 0x7FFE,

0x7FFF]

• its resolution is 2−1 = 0.5

• Unlike floating point numbers, the resolution of Q numbers will remain constant over the entire range.

7.2 Conversion

Float to Q

To convert a number from floating point to Qm.n format:

1. Multiply the floating point number by 2n

2. Round to the nearest integer

Q to float

To convert a number from Qm.n format to floating point:

1. Convert the number to floating point as if it were an integer

2. Multiply by 2−n

7.3 Math operations

Q numbers are a ratio of two integers: the numerator is kept in storage, the denominator is equal to 2n.

Consider the following example:

The Q8 denominator equals 28 = 256

1.5 equals 384/256

384 is stored, 256 is inferred because it is a Q8 number.

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/IEEE_754

Application Note 47 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix C: Q number format (fixed-point number)

If the Q number's base is to be maintained (n remains constant) the Q number math operations must keep the
denominator constant. The following formulas shows math operations on the general Q numbers and .

Because the denominator is a power of two the multiplication can be implemented as an arithmetic shift to the

left and the division as an arithmetic shift to the right; on many processors shifts are faster than multiplication

and division.

To maintain accuracy the intermediate multiplication and division results must be double precision and care
must be taken in rounding the intermediate result before converting back to the desired Q number.

Using C the operations are (note that here, Q refers to the fractional part's number of bits):

7.3.1 Addition

signed int a, b, result;

result = a + b;

With saturation

signed int a, b, result;

signed long int tmp;

tmp = a + b;

if (tmp > 0x7FFFFFF) tmp = 0x7FFFFFFF;

if (tmp < -1 * 0x7FFFFFFF) tmp = -1 * 0x7FFFFFFF;

result = (signed int) tmp;

7.3.2 Subtraction

signed int a, b,result;

result = a - b;

7.3.3 Multiplication

// precomputed value:

#define K (1 << (Q-1))

signed int a, b, result;

signed long int temp;

temp = (long int)a * (long int)b; // result type is operand's type

// Rounding; mid values are rounded up

temp += K;

// Correct by dividing by base

result = temp >> Q;

http://en.wikipedia.org/wiki/Arithmetic_shift
http://en.wikipedia.org/wiki/Rounding
http://en.wikipedia.org/wiki/C_%28programming_language%29

Application Note 48 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Appendix C: Q number format (fixed-point number)

7.3.4 Division

signed int a, b, result;

signed long int temp;

// pre-multiply by the base (Upscale to Q16 so that the result will be in Q8

format)

temp = (long int)a << Q;

// So the result will be rounded ; mid values are rounded up.

temp += b/2;

result = temp/b;

Text is available under the Creative Commons Attribution-ShareAlike License.

http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

Application Note 49 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

References

References

[1] ModusToolbox™ home page

[2] AN228571 - Getting started with PSoC™ 6 MCU on ModusToolbox™ software

[3] CY8CKIT-037 motor control evaluation kit

[4] CY8CKIT-062S4

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software
https://www.infineon.com/dgdl/Infineon-AN228571_Getting_started_with_PSoC_6_MCU_on_ModusToolbox_software-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d36de1f66d1
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-037/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062s4/

Application Note 50 of 51 002-35096 Rev. **

 2022-07-14

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU

Revision history

Revision history

Document

version

Date of release Description of changes

** 2022-07-14 Initial release

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-14

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this

document?

Go to www.infineon.com/support

Document reference

002-35096 Rev. **

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

http://www.infineon.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Abbreviations and definitions

	2 Sensorless FOC basics
	3 Code example
	3.1 Features
	3.2 Design overview
	3.3 Firmware
	3.4 CY8CKIT-037 kit
	3.5 Operation
	3.5.1 Step 1 – Configure CY8CKIT-062S4
	3.5.2 Step 2 – Configure CY8CKIT-037
	3.5.3 Step 3 – Plug CY8CKIT-037 into CY8CKIT-062S4
	3.5.4 Step 4 – Connect the power supply and motor
	3.5.5 Step 5 – Build the project and program the PSoC™ 6 device
	3.5.6 Step 6 – Rotate the potentiometer to start motor rotation

	3.6 Performance

	4 Design details
	4.1 Current sampling
	4.2 Transformations
	4.3 Slide mode observer (SMO)
	4.4 PI controllers
	4.5 Generating the SVPWM

	5 Appendix A: PMSM model
	5.1 Slide mode observer (SMO)
	5.2 SVPWM theory

	6 Appendix B: Adapting the design to other motors
	6.1 Tunable parameters
	6.1.1 Hardware parameter setting
	6.1.2 Firmware parameter setting
	6.1.2.1 Motor parameters
	6.1.2.2 ADC sampling parameters
	6.1.2.3 PI regulator parameters
	6.1.2.4 Startup parameters
	6.1.2.5 Closed-loop running parameters
	6.1.2.6 Protection parameters
	6.1.2.7 Other global parameters

	7 Appendix C: Q number format (fixed-point number)
	7.1 Characteristics
	7.2 Conversion
	7.3 Math operations
	7.3.1 Addition
	7.3.2 Subtraction
	7.3.3 Multiplication
	7.3.4 Division

	References
	Revision history

