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Sensorless field-oriented control (FOC) using 

PSoC™ 6 MCU 

About this document 

Scope and purpose 

This application note shows how to control a permanent magnet synchronous motor (PMSM) with the 
sensorless field-oriented control (FOC) algorithm, using an Arm® Cortex®-M4-based PSoC™ 6 device. 

Intended audience 

This application note is intended for designers of motor control systems. 

This application note assumes that you are familiar with PSoC™ 6 and the ModusToolbox™. If you are new to 
PSoC™ 6, see AN228571 - Getting started with PSoC™ 6 MCU on ModusToolbox™. If you are new to 
ModusToolbox™, see the ModusToolbox™ home page.  

You should also understand motor control fundamentals; start with “electric motor” on Wikipedia. 
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1 Introduction 

The FOC algorithm is frequently used in motor control applications because it allows motors to operate with 

less noise and more stable torque output than other algorithms. Sensorless FOC adds the advantage of 
reducing the cost due to the absence of rotor position sensors. Sensorless FOC is used in many applications 
including consumer (air conditioner, refrigerator), industrial (blower, pump), and commercial (elevator, 
escalator) products. 

Sensorless FOC is calculation-intensive, and thus has been traditionally implemented with expensive digital 
signal processing (DSP) devices. However, with 32-bit Arm® Cortex®-M cores, it is possible to implement 

sensorless FOC with more cost-effective 32-bit MCUs. 

This application note includes a code example to be used with the Infineon CY8CKIT-037 motor control 

evaluation kit which includes a 24-V 53-W PMSM motor. 

Note: The CY8CKIT-037 kit board can operate at voltages as high as 48 VDC, and some components may 
operate at high temperatures. Use this kit with caution to avoid personal injury or equipment 
damage. 

1.1 Abbreviations and definitions 

Table 1 Abbreviations 

Abbreviation Meaning 

BLDC drum Brushless DC drum 

DD drum Direct drive drum 

FOC Field-oriented control 

SVPWM Space vector pulse width modulation 

HVIC High-voltage IC 

CW Clockwise 

CCW Counterclockwise 

PMSM Permanent magnet synchronous motor 

 

http://www.cypress.com/CY8CKIT-037
http://www.cypress.com/CY8CKIT-037
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2 Sensorless FOC basics  

This section introduces the hardware structure of a typical sensorless FOC system as well as a firmware 
overview of the FOC algorithm. If you are familiar with these concepts, you can skip this section and go to the 
Code example section. 

Figure 1 shows the diagrams of the two types of the PMSM motor; they differ in how magnets are placed in the 

rotor: 

• Surface PMSM (SPMSM) – Left 

• Interior PMSM (IPMSM) – Right  
 

 
                                 Surface PMSM (IPMSM)                            Interior PMSM (IPMSM)   

Figure 1 Rotor structure for SPMSM and IPMSM 

SPMSM is widely used due to the ease of manufacture and assembly, while IPMSM has a larger torque output 
with the same-sized motor. The sensorless FOC algorithm varies depending on the motor type; this application 

note uses SPMSM, referred to as just “PMSM”. 

Figure 2 shows the hardware block diagram of a typical sensorless FOC system. It consists of: 

• MCU 

• Inverter 

• PMSM 

• Current sampling and signal conditioning circuit to determine the rotor position 

• Communication interface 

These components can be on the same controller board or separated in the system such as on an MCU board 
and an inverter board. 
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Figure 2 Overview of a typical sensorless FOC system 

Figure 3 shows the details of the Inverter block shown in Figure 2. The inverter is composed of gate drivers and 

six MOSFETs (two for each motor phase). Turning different MOSFETs ON or OFF changes the current direction 

through the motor’s stator windings or phases. 

For example, turning on Q1 and Q4 generates a current from phase A to phase B, while turning on Q3 and Q2 
reverses the current direction in those phases. Changing the current direction changes the stator flux direction 

and makes the rotor rotate. 
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Figure 3 Details of inverter block 
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Vbus is a higher-voltage DC supply to power the motor. For example, it is 24 V in the CY8CKIT-037 kit. 

Note that the pairs of MOSFETs on the same phase (for example, Q1 and Q2) must not be turned ON at the same 
time – the resultant low resistance causes high currents that can damage the MOSFETs. 

Figure 4 and Figure 5 show diagrams of the sensorless FOC algorithm and its calculation flow. The algorithm 
controls either the motor speed or motor torque using a proportional-integral (PI) controller based on a 
mathematical model of the PMSM (see Appendix A: PMSM model). The control result is sent to a Space Vector 
Pulse Width Modulation (SVPWM) block (see SVPWM theory). The SVPWM block generates three-phase 

voltages that change the stator currents. 
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Figure 4 Sensorless FOC control block diagram 
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Figure 5 Sensorless FOC calculation flow 

The Clarke and Park transformation calculations convert these three sampled motor phase currents into two 
values that are used by the PI controller. The Inverse Clarke and Inverse Park transformations are the opposites 
of the Clarke and Park transformations, respectively. 

Figure 6 shows the Clarke transformation, where the three motor phase currents (𝐢𝐚, 𝐢𝐛, 𝐢𝐜) are converted to 𝐢𝛂 

and 𝐢𝛃. The (a, b, c) frame is a three-phase stator reference frame, where the axes are 120° apart from each 

other. The transformation method is to project (𝐢𝐚, 𝐢𝐛, 𝐢𝐜) onto the (α, β) axes, which produce the outputs 𝐢𝛂 and 
𝐢𝛃. 

http://www.cypress.com/CY8CKIT-037
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Figure 6 Clarke transformation 

Figure 7 shows the details of the Park transformation. This transformation converts the current vectors from 
the Clarke transformation, 𝐢𝛂 and  𝐢𝛃, to a frame on the rotating part of the motor. The axes of the rotating 

frame are called (d, q). The current vectors on these axes are called 𝐢𝐝 and  𝐢𝐪. 

𝚿𝐟  is the flux linkage vector of the rotor magnet. The d axis is always aligned with  𝚿𝐟, and the q axis is at 90° to 

the d axis. The rotor rotates at an angular speed  𝛚𝐫, and 𝛉𝐫  is the angle between the α  and  d  axes. 

In the (d, q) frame, the motor torque is proportional to 𝐢𝐪. You can control 𝐢𝐪 to achieve the desired torque by 

using the PI controllers. For details on the Clarke and Park transformations as well as the torque output, see 

Appendix A: PMSM model. 
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Figure 7 Park transformation 

The angle 𝛉𝐫 used in the Park transformation is derived from the speed and position estimation. An algorithm 

called “Slide Mode Observer” (SMO) uses 𝐢𝛂  and  𝐢𝛃 to derive the  𝛉𝐫 value. Then, the angular speed  𝛚𝐫 is 

calculated based on  𝛉𝐫. For more information, see the Slide mode observer (SMO) section. 
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3 Code example 

3.1 Features 

• Implements the sensorless FOC algorithm and closed-loop speed control in a multilayer, extensible, binary 

library architecture 

• Estimates the rotor position with the Slide Mode Observer (SMO) algorithm 

• Uses PSoC™ 6 internal opamps and the 1-Msps successive approximation register (SAR) ADC for signal 
conditioning and measuring the motor phase current  

• Employs open-loop control at startup, which is changed to closed-loop control after the rotor position is 

determined 

• Supports motor speeds from 500 to 4000 rpm by default. Can support higher speeds in other motors by 

modifying the tuning parameters in the code example 

• Can adjust the motor speed by using the potentiometer on the kit 

• Provides control accuracy 5% over the default speed range. Using high-resolution sensing resistors and 
advanced control algorithms can improve the accuracy; this topic is outside the scope of this application 

note. 

3.2 Design overview 

Figure 8 illustrates the sensorless FOC implementation in PSoC™ 6. A 12-bit SAR ADC and two opamps are used 
to sample the motor phase currents (only two phase currents need be sampled; the third phase can be 

calculated from the other two.) The three TCPWMs generate six PWM outputs applied to the inverter. A serial 

communication block (SCB) implements a UART to communicate with the host. See Design details in Chapter 

3. 
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Figure 8 PSoC™ 6 sensorless FOC implementation  

Table 2 shows the PSoC™ 6 resources that are used by this code example: 
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Table 2 Resource usage summary 

3.3 Firmware 

Figure 9 shows the firmware execution flow. The FOC algorithm requires the PWM duty cycle to be updated 

every control cycle. Therefore, FOC calculations must be done in a periodic interrupt service routine (ISR). The 
ISR is triggered by the PWM every 100 µs (10-kHz PWM) – this is the control cycle period. 

The cycle period can be decreased by increasing the PWM frequency. A shorter control period results in a 
higher-bandwidth control system with two benefits: 

• Motor can be run faster 

• Better response to load changes 

The communication and other functions that do not require real-time processing are executed in the main 
loop. 

Item Used Available Usage 

CPU frequency 75 MHz 150 MHz Internal system clock 

PWM frequency 10 kHz 5 kHz~20 kHz NA 

Flash 37084 

bytes 

256 KB NA 

SRAM 9135 bytes 128 KB NA 

Interrupts 3 140 Generates interrupts that system need 

TCPWM blocks 4 12 Three TCPWM are used to generate 3-phase signals 

to control the PMSM drive.  

Another TCPWM is used to generate a trigger pulse 

for the ADC for current measurement. 

Opamp 1 2 Used to amplify the voltage from the current sense 

resistors prior to feeding the voltages to ADC inputs 

UART 1 7 Reserved for communication with the host  

Low-power 

comparators 

1 2 Used for overcurrent protection 

8-bit current DAC 

(IDAC) 

1 2 Generates the source current for overcurrent 

protection 

12-bit SAR ADC 

channels 

4 16 Used to transfer the phase current sampled value to 

digital signals 

Other Pins 2 10 Pin_Led: The GPIO to control LED; 

Pin_Dir: The GPIO to control the motor running 

direction 
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Figure 9 Firmware execution flow 

3.4 CY8CKIT-037 kit 

The CY8CKIT-037 kit is a motor-driver board designed to support three control algorithms: trapezoidal, FOC, 
and microstepping control for stepper motors. It has no MCU; it is a peripheral board to be used with the 

CY8CKIT 062 (Figure 11), through the interface compatible with Arduino. For more information, see the 

CY8CKIT-037 user guide.  

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062s4/
https://www.infineon.com/dgdl/Infineon-CY8CKIT-037_PSoC_4_Motor_Control_Evaluation_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0efa532a1027
https://www.infineon.com/dgdl/Infineon-CY8CKIT-037_PSoC_4_Motor_Control_Evaluation_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0efa532a1027


  

 

Application Note 11 of 51 002-35096 Rev. **  

  2022-07-14 

Sensorless field-oriented control (FOC) using PSoC™ 6 MCU 
  

Code example 

  

 

 

Figure 10 CY8CKIT-037 kit 

A PMSM, manufactured by Anaheim Automation, is included in this kit. Table 3 lists the motor parameters. See 

Appendix B: Adapting the design to other motors for information on how to change the code example by 

changing the motor parameters listed in this table. 

Table 3 Parameters for the motor in CY8CKIT-037 

Item Parameter 

Part number BLY172S-24V-4000 

Rated torque (Newton.meter) 1.26 

Rated voltage (V) 24 

Rated power (watts) 52 

Rated speed (RPM) 4000 

Torque constant (Newton.meter/A) 0.35 

Back EMF voltage (V/kRPM) 3.72 

Line-to-line resistance (ohm) 0.8 

Line-to-line inductance (mH) 1.2 

Rotor inertia (Newton.meter/sec2) 0.000680 

"L" length (cm) 6.02 

Shaft Single 

3.5 Operation 

3.5.1 Step 1 – Configure CY8CKIT-062S4 

Select 3.3 V as the VDD power at jumper J9 on CY8CKIT-062S4, as Figure 11 shows. 

https://www.anaheimautomation.com/products/brushless/brushless-motor-item.php?sID=143&pt=i&tID=96&cID=22
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Figure 11 CY8CKIT-062S4 configuration 

3.5.2 Step 2 – Configure CY8CKIT-037 

Configure the board via jumpers J13-J24 as listed in the row “BLDC 2-SHUNT FOC” printed on the board. See 

Figure 12 and Figure 13. 
 

 

Figure 12 CY8CKIT-037 configuration for sensorless FOC motor control 
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Figure 13 Jumper table for CY8CKIT-037 

3.5.3 Step 3 – Plug CY8CKIT-037 into CY8CKIT-062S4 

• Plug the CY8CKIT-037 into the CY8CKIT-062S4 via connectors compatible with Arduino, as Figure 10 shows. 

3.5.4 Step 4 – Connect the power supply and motor 

• Connect the BLDC motor to J9 and J10 on CY8CKIT-037. The other motor cable routes the signals from the 
sensors inside the motor.  

Note: The kit hardware supports sensored BLDC motors and sensored FOC. Because this is a sensorless 
example, you do not need to connect this cable. Connect the 24-V power adapter to J7. See  

Figure 14. 

 

 

Figure 14 Connect motor and power supply 
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3.5.5 Step 5 – Build the project and program the PSoC™ 6 device 

1. Open the sensorless FOC motor control code example project provided with this application note in 

ModusToolbox™ 2.4 or later.  

2. Select Build Sensorless FOC Motor Control application in Quick Panel.  

3. When the build is complete, select Generate launches for this project to generate the debug link in Quick 

Panel then choose your debug tools for program.  

For more information about how to use ModusToolbox™, see to the ModusToolbox™ home page. 

3.5.6 Step 6 – Rotate the potentiometer to start motor rotation 

1. Rotate the potentiometer R38 to start and change the motor rotation speed (see Figure 15).  

2. If the motor does not rotate, it indicates that an error has occurred. If so, first ensure that step 1 through 

step 5 have been executed correctly.  

3. Then press the Reset button on CY8CKIT-062S4 and rotate the potentiometer R38 again.  

If the motor still does not rotate, there must be a problem in the hardware or software. Debug it using a 

multimeter or oscilloscope to observe the signals, or set breakpoints to monitor the variables. You can also 
contact Infineon for technical support. 

 

 

Figure 15 Buttons and status LED 

3.6 Performance 

Figure 16 to Figure 18 show one of the phase currents for different motor speeds using the motor provided in 
the kit. Figure 19 shows the phase current during startup.  

Reset 

LED2 

Potentiometer 

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
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Figure 16 Phase current – 600 RPM 

 

 

Figure 17 Phase current – 2000 RPM 
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Figure 18 Phase current – 4000 RPM 

 

 

Figure 19 Phase current at startup 
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4 Design details 

This section presents implementation details for each stage of the sensorless FOC processing listed in the PWM 
ISR (Figure 9), including current sampling, Clarke and Park transformations, SMO, PI controller, and SVPWM.  

4.1 Current sampling 

This section introduces the ADC sampling function in sensorless FOC motor control. In the project associated 

with this document, ADC sampling is realized by the internal SAR ADC component; there are several parameters 
need to be sampled: 

• Phase winding currents: ADC0_Ia and ADC0_Ic 

• Bus voltage 

• Voltage input from the variable resistor (potentiometer) 

Figure 20 and Figure 21 show the SAR ADC configuration with the following features: 

• 25-MHz sampling clock for a 1-Msps sampling rate 

• Voltage reference as VDDA/2 to obtain a 0-to-VDDA input range 

• All channels are single-ended. 

• The sampling result is unsigned. 

• A hardware trigger starts sampling. After four channels are sampled, the ADC stops and waits for the next 
trigger signal. The trigger frequency is 10 kHz. The PWMs provide a common timing for ADC sampling, CPU 

interrupt, and MOSFET control. 
 

 

Figure 20 SAR ADC configuration(a) 
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Figure 21 SAR ADC configuration(b) 

The motor phase current is converted to a voltage by the sensing resistors, as Figure 22 shows. The figure also 

shows that because the sum of the three currents must be zero at the sampling point, you can sample just two 
of the currents and calculate the third. 

The opamp gains and the sensing resistor values are selected so that: 

• The voltage stays in the ADC input range when the current is at the rated maximum. Sensing resistors are 
typically on the order of milliohms. 

• The measurement of low currents is accurate. The sensing resistors have a tolerance of 1%. 
 

Opamp

Opamp
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R RR
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Figure 22 Dual-shunt current sampling 

Figure 23 shows the schematic design for the CY8CKIT-037 kit. The kit board has 30-mΩ sensing resistors (not 
shown) and a 2.1-A rated current. Bias resistors (R40, R41) are included to handle positive and negative 

currents. 
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Figure 23 CY8CKIT-037 schematic: Signal conditioning for phase-A current 

Due to the reuse of PSoC™ 6 MCU, only one internal opamp of this chip is used; the other opamp is an external 
opamp. Figure 24 shows the configuration of the internal opamp. 
 

 

Figure 24 PSoC™ 6 internal opamp configuration 

4.2 Transformations 

Four functions are defined to do the transformations. The structures and function prototypes are declared in 
the motor control library file (coordinate_transform.h): 

Code Listing 1 Clarke and Park transformation structures and function prototypes 

/* coordinate_transform.h*/ 

/* struct definition for coordinate transformation*/ 
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Code Listing 1 Clarke and Park transformation structures and function prototypes 

typedef struct 

{ 

    int32_t i32Q8_Xu;   /*Phase U variable*/ 

    int32_t i32Q8_Xv;   /*Phase V variable*/ 

    int32_t i32Q8_Xw;   /*Phase W variable*/ 

}stc_uvw_t; 

typedef struct 

{ 

    int32_t i32Q8_Xa;   /*Alpha axis variable*/ 

    int32_t i32Q8_Xb;   /*Beta axis variable*/ 

}stc_ab_t; 

typedef struct 

{ 

    int32_t i32Q8_Xd;   /*D-axis variable*/ 

    int32_t i32Q8_Xq;   /*Q-axis variable*/ 

    int32_t i32Q12_Cos; /*Angle sin variable*/ 

    int32_t i32Q12_Sin; /*Angle cos variable*/ 

}stc_dq_t;  

extern void Clark(stc_uvw_t *pstc_uvw, stc_ab_t *pstc_ab); 

extern void InvClark(stc_ab_t *pstc_ab, stc_uvw_t *pstc_uvw); 

extern void Park(stc_ab_t *pstc_ab, stc_dq_t *pstc_dq); 

extern void InvPark(stc_dq_t *pstc_dq, stc_ab_t *pstc_ab); 

Code listing 2 shows how to use these functions: 

Code Listing 2 Using Clarke and Park transformation functions 

/* motor_ctrl.c */ 

 

MotorCtrl_Process 

{ 

    /* Clarke Transformation uvw -> αβ */ 

    Clark(&MotorCtrl_stcIuvwSensed, &MotorCtrl_stcIabSensed); 

 

    /* Park Transformation αβ -> dq */ 

    Park(&MotorCtrl_stcIabSensed, &MotorCtrl_stcIdqSensed); 

 

    /* InvPark Transformation dq-> αβ */ 

    InvPark(&MotorCtrl_stcVdqRef, &MotorCtrl_stcVabRef); 

 

    /* InvClark Transformation αβ -> uvw */ 

    InvClark(&_2sC_Ref,&pstcPar->_3sC_Ref); 

} 

4.3 Slide mode observer (SMO) 

See Slide mode observer (SMO) for an introduction to the SMO theory. The structure and function prototypes 
for the SMO calculation (Code Listing 3) are defined in smo_calculate.h. 

Code Listing 3 Clarke and Park transformation structures and function prototypes 

/*smo_calculate.h*/        

typedef struct stc_SMO_Estimator  

{ 
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Code Listing 3 Clarke and Park transformation structures and function prototypes 

    int32_t i32Q8_Res;    /*the phase resistance*/        

    int32_t i32Q8_Lddt;   /*q axis inductance digital factor*/ 

    int32_t i32Q12_LdLq;  /*dq Axis Mutual Inductance*/ 

    int32_t i32Q8_IalphaPre; /*stationary alpha-axis stator current*/

   

    int32_t i32Q8_IbetaPre;  /*stationary beta-axis stator current*/  

    int32_t i32Q8_ValphaPre; /*stationary alpha-axis stator voltage*/

  

    int32_t i32Q8_VbetaPre;  /*stationary beta-axis stator voltage */ 

    int32_t i32Q8_ValphaBemf;    /*eistimated alpha Back EMF*/ 

    int32_t i32Q8_VbetaBemf;     /*eistimated beta Back EMF*/ 

    int32_t i32Q8_ValphaBemfLpf; /*filtered alpha Back EMF for angle 

calculate*/ 

    int32_t i32Q8_VbetaBemfLpf;  /*filtered beta Back EMF for angle 

calculate*/ 

    stc_one_order_lpf_t ValphaBemLpfK; /*LPF calculate factor*/ 

    stc_one_order_lpf_t VbetaBemLpfK;  /*LPF calculate factor*/ 

    int32_t i32Q22_EstimWmHz;   /*estimated rotor speed Q22 format*/ 

    int32_t i32Q8_EstimWmHz;    /*estimated rotor speed Q8 format*/ 

    int32_t i32Q8_EstimWmHzf;   /*filtered estimated rotor speed Q8 

format*/ 

    stc_one_order_lpf_t stcWmLpf; /*LPF calculate factor*/ 

    int32_t i32Q12_Cos;    

    int32_t i32Q12_Sin; 

    int32_t i32Q12_CosPre; 

    int32_t i32Q12_SinPre; 

    int32_t i32Q22_Theta;     /*estimated rotor angle*/ 

    int32_t i32Q22_ThetaOld; /*estimated rotor angle old*/ 

    int32_t i32Q22_Dtheta;    /*delta theta of rotor angle for speed 

calculate*/ 

    uint16_t u16_1msCount;    /*counter used to calculate motor speed*/ 

    int32_t i32Q12_MaxLPFK;   /*BackEMF voltage's max filter 

parameter*/ 

    int32_t i32Q12_MinLPFK;   /*BackEMF voltage's min filter 

parameter*/ 

    int32_t i32Q15_LPFKTS;    /*BackEMF filter's calculation factor*/ 

    uint16_t u161msTimer; /*1ms timer count*/ 

    int32_t i32SpdCalKts; /*speed calculate factor*/ 

    uint8_t u8closeLoopFlg;   /*closed loop flag*/ 

}stc_SMO_Estimator_t;  

extern void Smo_Estimate(stc_SMO_Estimator_t *pstcEstimPar,stc_ab_t 

*pstc2sVol, stc_ab_t *pstc2sCurrent); 

extern void Smo_Init(stc_SMO_Estimator_t *SMO_Eistimator_t); 

4.4 PI controllers 

The PI regulator keeps the output to follow the expected output by comparing the error between the expected 
output and the real output. The P-value is to make a fast output response to the comparing error, and the I-
value is to decrease stable output errors. The transfer function can be expressed as shown in Figure 25. 
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Figure 25 PI-regulator controller 

The PI regulator causes a fluctuating output. The fluctuating amplitude decreases, and after the regulating 

period, the output follows the expected output with a very small fluctuation around the expected output value. 
 

 

Figure 26 PI regulator output 

PI regulator formula: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝜏)
𝑡

0
𝑑𝜏                                                                    Equation 1 

 

 Incremental algorithm: 

∆𝑢(𝑘) = 𝑘𝑝[𝑒(𝑘) − 𝑒(𝑘 − 1)] + 𝑘𝑖𝑒(𝑘)                                                        Equation 2 

 

 
𝑢(𝑘) = 𝑢(𝑘 − 1) + ∆𝑢(𝑘)                                                                      Equation 3 

Where, 

𝑘𝑝: Proportional factor 

𝑘𝑖: Integration factor 

𝑒(𝑘): error between actual and reference 

𝑒(𝑘 − 1): last error 

𝑢(𝑘): output value of the PI regulator 
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𝑢(𝑘 − 1): last output value of the PI regulator 

∆𝑢(𝑘): differential value between two output values 

 PI output limitation: 
 This is to limit the PI output to a regular range: 
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Outputcommand error
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+
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Figure 27 PI regulator with limitation 

Three parameters – motor speed, 𝒊𝒒, and 𝒊𝒅 – are controlled by separate PI controllers. The speed PI controller 

uses the error between the calculated rotation speed and a given speed reference to calculate the control 
output, which in turn is the reference for the 𝒊𝒒 PI controller. The 𝒊𝒒 and 𝒊𝒅 PI controllers control 𝒖𝒒 and 𝒖𝒅, 

respectively, using the errors for  𝒊𝒒 and 𝒊𝒅. See Figure 4. 

4.5 Generating the SVPWM  

The SVPWM subsystem produces sinusoidal currents on the motor phases by changing the output duty cycles 
of the three PWMs (for details, see SVPWM theory). The PWM outputs – two complementary outputs for each 
motor phase – turn the MOSFETs ON or OFF (see Figure 3). 

Figure 28 shows the SVPWM implementation in PSoC™ 6. A common 75-MHz clock synchronizes the PWM 
outputs. 
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Figure 28 PI regulator with limitation 

Figure 29 shows the timing for all three PWMs as well as the details of PWM_A. In addition to the PWM signals, 
PWM_D generates the trigger signals for the PWM interrupt and the ADC trigger signal as well. 
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The PWM interrupt is triggered on the terminal count of PWMD. The result is that the ISR controls the PWM duty 
cycle on every cycle by updating the PWM compare buffer register (Figure 30). The register must be updated 

before the next underflow event occurs, or the duty cycle will be incorrect, which in turn causes an increased 
motor noise. 

Note that each PWM has a different duty cycle. 
 

H

L

ADC Trigger

PWM interrupt PWM interrupt 

ADC TRI Timer

 PWM Driver (PWMA(BC))

PWM_compare value

(PWMD)

ADC Trigger ADC Trigger ADC Trigger
PWM interrupt

 

Figure 29 PWM timing  

Figure 30 shows the configuration for PMW_A (phase A); it applies to all three PWM components: 

• The alignment mode is “Center align”. This produces the complementary PWM outputs ‘line’ and ‘line_n’. 

The outputs turn the MOSFETs of one of the motor phases ON and OFF (such as Q1 and Q2 in Figure 3). 

• A deadband time is inserted to avoid turning ON both MOSFETs at the same time, which can damage the 
MOSFETs. In this code example, 41 cycles of a 75-MHz clock results in a dead time of 0.55 µs. Deadtime can 
also been changed in motor control firmware; set it to 1.0 µs. 

• The period value is the clock frequency divided by twice the desired PWM frequency. Here, the desired PWM 

frequency is doubled because the count mode is up-down (see Figure 30). For a 75-MHz clock and a desired 

PWM frequency of 10 kHz, the period is (75,000,000 / (2 * 10,000)), or 3750. 
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Figure 30 PWMA configuration 
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5 Appendix A: PMSM model 

This section presents the mathematical model of a permanent magnet synchronous motor (PMSM). To simplify 
the model, some assumptions are made: 

• The PMSM motor winding connection is the “star” type. “Delta” type connections must be converted to the 
“star” type. 

• Magnetic saturation is neglected. 

• Eddy currents and hysteresis losses are negligible. 

Figure 31 illustrates the PMSM motor model in a 3-phase stator reference frame, also called the (a, b, c) frame. 
In this frame, the a, b, and c axes are aligned with the currents 𝒊𝒂,  𝒊𝒃,   𝒊𝒄 in the three phases of the PMSM stator, 
and are 120° apart from each other. 𝜳𝒇 is the flux linkage vector of the rotor magnet. The rotor rotates with an 

angular speed  𝝎𝒓, and 𝜽𝒓 is the angle between  𝜳𝒇 and phase a. 

The a, b, and c phases are each called “line”. The connection point of a, b, and c is called the neutral point.  

The voltages on the stator windings are represented as: 

{
  
 

  
 𝒖𝒂 =  𝑹𝒂 × 𝒊𝒂 +

𝒅 𝜳𝒂

𝒅𝒕
 

𝒖𝒃 = 𝑹𝒃 × 𝒊𝒃 +
𝒅 𝜳𝒃

𝒅𝒕
 

𝒖𝒄 = 𝑹𝒄 × 𝒊𝒄 +
𝒅 𝜳𝒄

𝒅𝒕

 

Where: 

𝒖𝒂, 𝒖𝒃,   𝒖𝒄 Stator voltage vector 

𝑹𝒂,  𝑹𝒃, 𝑹𝒄 Stator resistance 

𝒊𝒂,  𝒊𝒃,   𝒊𝒄 Stator current vector 

𝜳𝒂, 𝜳𝒃, 𝜳𝒄 Stator flux linkages 
 

a

b

c

N

S

Ψ f

ωr 

θr 

is

 

Figure 31 3-phase stator reference frame 

The stator winding flux linkage is the sum of the flux linkages from their own excitation, mutual flux linkages 
from other winding currents, and flux linkages from the rotor magnet. Because the current phases on the stator 
windings are 120° apart, the stator flux linkages are written as: 
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{
 
 

 
 

𝜳𝒂 = 𝑳𝒂𝒂(𝜽𝒓) × 𝒊𝒂 + 𝑴𝒂𝒃(𝜽𝒓) × 𝒊𝒃 + 𝑴𝒂𝒄(𝜽𝒓) × 𝒊𝒄 + 𝜳𝒇 × 𝒄𝒐𝒔𝜽𝒓

 
𝜳𝒃 = 𝑴𝒃𝒂(𝜽𝒓) × 𝒊𝒂 + 𝑳𝒃𝒃(𝜽𝒓) × 𝒊𝒃 + 𝑴𝒃𝒄(𝜽𝒓) × 𝒊𝒄 + 𝜳𝒇 × 𝒄𝒐𝒔(𝜽𝒓 − 𝟏𝟐𝟎°)

 
𝜳𝒄 = 𝑴𝒄𝒂(𝜽𝒓) × 𝒊𝒂 + 𝑴𝒄𝒃(𝜽𝒓) × 𝒊𝒃 + 𝑳𝒄𝒄(𝜽𝒓) × 𝒊𝒄 + 𝜳𝒇 × 𝒄𝒐𝒔(𝜽𝒓 +  𝟏𝟐𝟎°)

 

Where: 

 𝑳𝒂𝒂 ,  𝑳𝒃𝒃, 𝑳𝒄𝒄 Equivalent inductances of stator phases 

𝑴𝒂𝒃,  𝑴𝒂𝒄,  𝑴𝒃𝒂, 𝑴𝒃𝒄,  𝑴𝒄𝒂,  𝑴𝒄𝒃 Mutual equivalent inductances of stator phases 

𝜳𝒇 Amplitude of rotor flux linkage 

𝜽𝒓 Angle between 𝜳𝒇 and phase a 
 

This model is of a high order, is strongly coupled, and has nonlinearity; analyzing it and controlling the torque 

and flux based on it is difficult. Therefore, the (d, q) frame is used to simplify the 3-phase model. The (d, q) 
frame defines a rotating 2-phase reference frame where the d axis is aligned with the rotor flux direction. 

There are two transformations to convert the (a, b, c) frame to the (d, q) frame. The first one is a Clarke 
transformation – it converts the (a, b, c) frame to a 2-phase stationary reference frame (α, β) (Figure 32). 
 

α

β

iα

iβ 

a

b

c

is

ia

ib

ic

 

Figure 32 Clarke transformation 

The current vectors in the (α, β) frame are: 

{
 
 

 
 𝒊𝜶 =

𝟐

𝟑
× 𝒊𝒂 −

𝟏

𝟑
× 𝒊𝒃 −

𝟏

𝟑
× 𝒊𝒄

 

𝒊𝜷 =
√𝟑

𝟑
× 𝒊𝒃 −

√𝟑

𝟑
× 𝒊𝒄            

 

For “star” type winding connections, the sum of the currents in the three phases is zero: 

𝒊𝒂 + 𝒊𝒃 + 𝒊𝒄 = 𝟎 

Therefore, the current vectors in the (a, b, c) frame are transformed to the (α, β) frame as: 

{

𝒊𝜶 = 𝒊𝒂                                 
 

𝒊𝜷 =
√𝟑

𝟑
× 𝒊𝒂 +

𝟐√𝟑

𝟑
× 𝒊𝒃
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The Park transformation then converts the (α, β) frame to the (d, q) frame. The (d, q) frame has two axes – direct 
and quadrature – that rotate with the same angle speed  𝝎𝒓 as the current vector. The direct axis is aligned with 

the rotor flux 𝜳𝒇 (Figure 33). The angle between the d axis and the α axis is  𝜽𝒓. 
 

dq

id

iq 

a

Ψ f

ωr 

θr 

is

α

β

iα

iβ 

 

Figure 33 Park transformation 

The current vectors in the (d, q) frame are calculated as: 

{

𝒊𝒅 = 𝒊𝜷 × 𝒔𝒊𝒏𝜽𝒓 + 𝒊𝜶 × 𝒄𝒐𝒔𝜽𝒓

 
𝒊𝒒 = 𝒊𝜷 × 𝒄𝒐𝒔𝜽𝒓 − 𝒊𝜶 × 𝒔𝒊𝒏𝜽𝒓

 

The voltages in the (d, q) frame are calculated from 𝒊𝒅  and  𝒊𝒒, as: 

{
 
 

 
 𝒖𝒅 = 𝑹 × 𝒊𝒅  +  

𝒅𝜳𝒅

𝒅𝒕
− 𝝎𝒓 × 𝜳𝒒

 

𝒖𝒒 = 𝑹 × 𝒊𝒒  +  
𝒅𝜳𝒒

𝒅𝒕
+ 𝝎𝒓 × 𝜳𝒅

 

and: 

{

𝜳𝒅 = 𝑳𝒅 × 𝒊𝒅 + 𝜳𝒇

 
𝜳𝒒 = 𝑳𝒒 × 𝒊𝒒            

 

 

The torque equation is expressed as: 

𝑻𝒆 = 
𝟑

𝟐
𝑷𝒏[𝜳𝒇𝒊𝒒 − (𝑳𝒒 − 𝑳𝒅)𝒊𝒅𝒊𝒒] − 𝑻𝑳 

Where: 

𝑳𝒅 ,  𝑳𝒒 Inductances of direct and quadrature axes 

𝐏𝐧 Number of pole pairs in rotor 

Note that for a SPMSM (Figure 1), 𝑳𝒒 and 𝑳𝒅 are independent of  𝜽𝒓, and  𝑳𝒒 is equal to  𝑳𝒅. Thus, the torque 

equation is simplified for SPMSM as: 

𝑻𝒆 = 
𝟑

𝟐
𝑷𝒏𝜳𝒇𝒊𝒒 − 𝑻𝑳 
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𝐏𝐧  and  𝜳𝒇 are motor characteristics that are not affected by the motor rotation. Compared to the 3-phase 

model, the torque is proportional only to the q-axis current  𝒊𝒒, which is easier to control. 

5.1 Slide mode observer (SMO) 

Obtaining the position of a rotating rotor is critical for FOC. The Park transformation requires the rotor position 
angle  𝜽𝒓  between the rotor flux linkage  𝜳𝒇  and the  α axis. Originally, this information came from physical 

sensors, such as Hall-effect sensors and optical encoders. These sensors not only increase the system cost, but 
they also require maintenance. Later, the sensorless technique was developed to remove the need for sensors. 

Some high-precision applications such as robotics still require encoders. 

The idea of the sensorless technique is to estimate the angle  𝜽𝒓 based on the BEMF value in the (α, β) frame. 

The typical algorithm to do this is called a slide mode observer (SMO). In this algorithm, the 2-phase voltages in 

the (α, β) frame is expressed as: 

{
 
 

 
 𝒖𝜶 = 𝑹𝒔 × 𝒊𝜶 + 𝑳𝒔 ×

𝒅𝒊𝜶
𝒅𝒕

+ 𝒆𝜶

 

𝒖𝜷 = 𝑹𝒔 × 𝒊𝜷 + 𝑳𝒔 ×
𝒅𝒊𝜷

𝒅𝒕
+ 𝒆𝜷

 

Where: 

𝑹𝒔 Line-to-neutral resistance 

𝑳𝒔 Line-to-neutral inductance 

𝒆𝜶, 𝒆𝜷 BEMF on (α, β) axes 

In the digital domain, the  𝒖𝜶 equation is changed to: 

𝒊𝜶(𝒏 + 𝟏) − 𝒊𝜶(𝒏)

𝑻𝒔
= (−

𝑹𝒔

𝑳𝒔
) 𝒊𝜶(𝒏) + 

𝟏

𝑳𝒔
[𝒖𝜶(𝒏) − 𝒆𝜶(𝒏)] 

Where: 

 𝑻𝒔 Period of PWM on inverter 

Solving for  𝒊𝜶: 

 𝒊𝜶(𝒏 + 𝟏) = (1 − 𝑻𝒔
𝑹𝒔

𝑳𝒔
)𝒊𝜶(𝒏) + 

𝑻𝒔

𝑳𝒔
[𝒖𝜶(𝒏) − 𝒆𝜶(𝒏)] 

You can now define two new parameters that are related to motor parameters: 

𝑭 = 1 − 𝑻𝒔

𝑹𝒔

𝑳𝒔
 

𝑮 =
𝑻𝒔

𝑳𝒔
 

Note that  𝑹𝒔 and  𝑳𝒔 are motor characteristics that can be measured. 𝑻𝒔  is a constant system parameter, 𝒊𝜶(𝒏) 

is the sampled result from the last control cycle, and 𝒖𝜶(𝒏) is the calculation result of the last control cycle. 
Therefore, if given an estimated 𝒆𝜶

∗ (𝒏), an estimated current value 𝒊𝜶
∗ (𝒏 + 𝟏) can be calculated (“*” indicates 

an estimated value). 

Comparing  𝒊𝜶
∗ (𝒏 + 𝟏) with the actual current value  𝒊𝜶(𝒏 + 𝟏) sampled by the ADC, the error between these 

two values is used to adjust  𝒆𝜶
∗ (𝒏) for a better estimation. Repeat this process until the error between 
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𝒊𝜶
∗ (𝒏 + 𝟏) and 𝒊𝜶(𝒏 + 𝟏) is small enough to meet the design requirements. Then, the estimated   𝒆𝜶

∗ (𝒏) can 
represent the actual BEMF  𝒆𝜶(𝒏). The  𝒆𝜷(𝒏) is obtained in the same manner. 

Because  𝒆𝜶(𝒏) and  𝒆𝜷(𝒏) are expressed as: 

{

𝒆𝜶(𝒏) = −𝜳𝒇 × 𝝎 × 𝐬𝐢𝐧𝜽
 

𝒆𝜷(𝒏) = 𝜳𝒇 × 𝝎 × 𝐜𝐨𝐬𝜽
 

The angle 𝜽 is calculated as: 

𝜽(𝒏) = 𝒂𝒓𝒄 𝒕𝒂𝒏
−𝒆𝜶(𝒏)

𝒆𝜷(𝒏)
 

The angular speed   𝝎𝒓 is calculated by accumulating  𝜽 over m samples and multiplied by the speed 
constant  𝑲: 

𝝎𝒓 = ∑[𝜽(𝒏) −  𝜽(𝒏 − 𝟏)] ∗ 𝑲

𝒎

𝒏=𝟏

 

Thus, the position and speed information are calculated from the estimated BEMF. 

5.2 SVPWM theory 

In Figure 3, Q1, Q3, and Q5 are the upper MOSFETs of the inverter. If you consider the MOSFET ON state as “1” 

and the OFF state as “0”, there are eight combinations of ON/OFF states, which lead to eight inverter outputs. 

Table 4 lists the ON/OFF state combinations and their corresponding inverter outputs. 𝒖𝒂, 𝒖𝒃, and 𝒖𝒄 are the 

phase (line-to-neutral) voltages, while  𝒖𝒂𝒃, 𝒖𝒃𝒄, and 𝒖𝒂𝒄 are the line-to-line voltages. The values in each cell 
indicate the voltage as a percentage of the bus voltage, 𝑽𝒃𝒖𝒔. For example, 2/3 means 2/3 of  𝑽𝒃𝒖𝒔. 

Table 4 Output combination in 3-phase frame 

Q1 

(A) 

Q3 

(B) 

Q5 

(C) 

𝒖𝒂 𝒖𝒃 𝒖𝒄 𝒖𝒂𝒃 𝒖𝒃𝒄 𝒖𝒄𝒂  

1 0 0 2/3 -1/3 -1/3 1 0 -1 𝐔𝟎  

1 1 0 1/3 1/3 -2/3 0 1 -1 𝐔𝟔𝟎  

0 1 0 -1/3 2/3 -1/3 -1 1 0 𝐔𝟏𝟐𝟎  

0 1 1 -2/3 1/3 1/3 -1 0 1 𝐔𝟏𝟖𝟎  

0 0 1 -1/3 -1/3 2/3 0 -1 1 𝐔𝟐𝟒𝟎  

1 0 1 1/3 -2/3 1/3 1 -1 0 𝐔𝟑𝟎𝟎  

0 0 0 0 0 0 0 0 0 𝟎𝟎𝟎𝟎  

1 1 1 0 0 0 0 0 0 𝟎𝟏𝟏𝟏 
 

The eight combinations can be considered as six non-zero vectors and two zero vectors (000 and 111). As 

Figure 34 shows, the non-zero vectors are the axes of a hexagon; the angle between any two adjacent axes is 60 
degrees. This divides the hexagon into six sectors (Roman numerals I to VI). The zero vectors are at the origin, 
and they generate zero voltage on the three phases. These eight vectors, called “basic space vectors,” are 
called 𝑼𝟎, 𝑼𝟔𝟎, 𝑼𝟏𝟐𝟎, 𝑼𝟏𝟖𝟎, 𝑼𝟐𝟒𝟎, 𝑼𝟑𝟎𝟎, 𝟎𝟎𝟎𝟎, and 𝟎𝟏𝟏𝟏. A voltage vector is synthesized by one or two of the six 

non-zero basic space vectors. 
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Figure 34 Basic space vectors 

For example, as Figure 35 shows, the voltage vector 𝑼𝒔 
⃑⃑ ⃑⃑  ⃑ is in sector I, and the period of the PWM is 𝑻. 𝑻𝟏 is the 

duration of 𝑼𝟎; 𝑻𝟐  is the duration of 𝑼𝟔𝟎; and 𝑻𝟎  is the duration of the two zero vectors. The vectors 𝒖𝜶⃑⃑⃑⃑  ⃑ and 𝒖𝜷 ⃑⃑ ⃑⃑  ⃑ 

compose a voltage vector, 𝑼𝒔 ,⃑⃑ ⃑⃑ ⃑⃑   that can also be composed by basic space vectors 𝑼𝟎 and  𝑼𝟔𝟎. 
 

U0

U60

Sector-I (U0,U60)

θ π/3 

α 

β

Us

Uα 

Uβ  

U60 *T2/T 

U0 *T1/TT0

 

Figure 35 Voltage vector in Sector I 

 

𝑼𝒔
⃑⃑ ⃑⃑   can be expressed as: 

𝑻 = 𝑻𝟏 + 𝑻𝟐 + 𝑻𝟎  

𝑼𝒔 
⃑⃑ ⃑⃑  ⃑ = 𝑼𝟔𝟎 

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ×
𝑻𝟐 

𝑻
+ 𝑼𝟎 

⃑⃑⃑⃑⃑⃑ ×
𝑻𝟏 

𝑻
 

Therefore: 

|𝑼𝒔 | 𝒄𝒐𝒔𝜽 =  |𝑼𝟔𝟎 | ×
𝑻𝟐 

𝑻
× 𝒄𝒐𝒔

𝝅

𝟑
+ |𝑼𝟎 | ×

𝑻𝟏 

𝑻
 

|𝑼𝒔 | 𝐬𝐢𝐧𝜽  = |𝑼𝟔𝟎 | ×
𝑻𝟐 

𝑻
× 𝒔𝒊𝒏

𝝅

𝟑
 

Then: 

𝑻𝟏 =  𝒎𝑻𝐬𝐢𝐧 (
𝝅

𝟑
− 𝜽) 

𝑻𝟐 =  𝒎𝑻𝐬𝐢𝐧𝜽 
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𝑻𝟎 = 𝑻 − 𝑻𝟏 − 𝑻𝟐  (𝑻𝟎 ≥ 𝟎) 

Where: 

𝒎 =   √𝟑 ×
|𝑼𝒐𝒖𝒕 |

𝑼𝒅𝒄
 

|𝑼𝒐𝒖𝒕 | =  √|𝒖𝜶|2 + |𝒖𝜷|2 

Note that all basic space vectors are generated with a specific ON/OFF state of upper MOSFETs; the duration is 

actually the time of the PWM being high, or the duty cycle. Thus, generating a 𝑼𝒔
⃑⃑ ⃑⃑   is related to a change in duty 

cycle of the PWMs applied to the inverter. In this example, both 𝑼𝟎  and  𝑼𝟔𝟎  require phase A to be turned ON, 

and 𝑼𝟔𝟎  requires phase B to be turned ON. Therefore: 

𝑫𝒖𝒕𝒚𝑨 =
𝑻𝟏 + 𝑻𝟐

𝑻
,        𝑻𝟏 + 𝑻𝟐 ≤ 𝑻 

𝑫𝒖𝒕𝒚𝑩 =
𝑻𝟐

𝑻
,                  𝑻𝟐 ≤ 𝑻            

𝑫𝒖𝒕𝒚𝟎 =
𝑻 − 𝑻𝟏 − 𝑻𝟐 

𝑻
 

Depending on how you use zero vectors, the SVPWM has two output patterns: a five-phase pattern and a seven-
phase pattern. The five-phase pattern uses only  𝟎𝟎𝟎𝟎  or  𝟎𝟏𝟏𝟏.The seven-phase pattern uses both  𝟎𝟎𝟎𝟎  and 

𝟎𝟏𝟏𝟏, and their durations are equal. Figure 37 illustrates these two patterns. Note that in 5-phase SVPWM, 

phase A is always on or always off. 
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Figure 36 5- and 7-phase SVPWM in Sector I 

There is no difference in the synthesized voltage vector generated by these two methods. However, the 5-phase 

pattern reduces the number of MOSFETs that are switching. This can reduce the switching losses in the power 
components, but it creates more harmonics than the seven-phase pattern. 
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6 Appendix B: Adapting the design to other motors 

This appendix helps you to drive other motors with the code example provided with this application note. You 
should follow the operation guide step by step. A bold font indicates a mandatory action or critical 
information that requires more attention. 

Hardware: CY8CKIT-037 or your own motor driver board 

Firmware: Sensorless FOC project from the latest version of this application note 

Equipment: Oscilloscope, multimeter, PC, USB cable for CY8CKIT-062S4 or J-Link for programming your own 
board. 

Operation guide: 

1. Check the power range and motor type. 

a. Power range 

CY8CKIT-037 supports a 12-V to 48-VDC supply voltage with up to 2 A input DC current. You should use 
the kit only in this power range; using the kit out of this power range may damage it. 

b. Motor type 

A motor with sinusoidal back electromotive force (BEMF) is recommended. A motor with trapezoidal 

BEMF may not rotate or achieve the desired performance with the sensorless FOC project. Figure 37 
illustrates these two BEMF types. To measure BEMF, connect the ground of the oscilloscope probe to 

one motor phase and the probe to another motor phase. Leave the other motor phases floating. Rotate 
the motor either by hand or by using another motor. You should see the BEMF waveform on the 

oscilloscope. 

The sinusoidal BEMF contains the complete angle information, which can be calculated with the SMO 
algorithm. The trapezoidal BEMF is almost flat at the wave crest and trough and therefore is missing 

sufficient angle information. As a result, the SMO algorithm cannot reliably retrieve the angle from this 

waveform, which may halt the motor rotation. 
 

      
(a) Sinusoidal BEMF                                                             (b) Trapezoidal BEMF 

Figure 37 Sinusoidal BEMF versus trapezoidal BEMF 

2. Change the parameters in the example project. 

a. These parameters are defined as global variables in h03_user\customer_interface.c. You should 

change them based on your motor specifications. 

int32_t   i32_motor_pole_pairs = 4;     // the pole pairs of rotor 

float32_t f32_motor_ld        = 0.6;  // the d axis reductance,unit:mh   

float32_t f32_motor_lq        = 0.6;  // the q axis reductance,unit:mh    

float32_t f32_motor_res   = 0.8;   // the resistance between two phases 

b. Change the macro definitions for the system parameters. 
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These macro definitions are related to system parameters, such as the sampling resistor and so on. You 
should change them (h03_user\hardware_config.h) if the default values are different from your system. 

#define SYS_VDC_FACTOR   20.1 //DC voltage sample resistor factor 

#define MOTOR_SHUNT_NUM   2 // The number of shunt used to sense current 

#define MOTOR_IUVW_SAMPLE_RESISTOR  0.03 // Iuvw sample resistor (ohm) 

#define MOTOR_IUVW_AMPLIFIER_FACTOR   4.16 // Iuvw calculation factor 

#define ADC_VOLT_REF           5.0f     // Reference voltage for ADC 

#define ADC_VALUE_MAX          4096.0f  // 12-bits ADC max value 

c. Change the parameters for the PI controllers. 

You may need to change the PI coefficient parameters in the PI controller if the PI controller does not 

work well with your motor. You can change the parameters in h03_user\customer_interface.c. For more 

details, see Tunable parameters. 

3. Set up the hardware. 

If you are using the CY8CKIT-037 kit, you can use the adapter provided with the kit for any motor whose 

maximum power is 24 V DC / 2.1 A. If a different voltage (such as 48 V) or current (such as 3 A) is required, 

connect the DC voltage source to the J8 connector (yellow marker in Figure 38) instead of the supplied power 
adapter. 
 

 

Figure 38 Setting up the board for a motor with a higher voltage or current 

4. Program the CY8CKIT-062S4 kit and observe the performance. 

5. Tune the parameters if the motor does not rotate 

a. The motor starts up in open-loop control and then switches to closed-loop speed control later. If 

switching to the closed loop control fails (motor halts very soon after the rotation starts), you may 
need to tune the following parameters. Try the following methods: 

▪ Confirm that the motor parameters are set correctly in Step 2. 

▪ Change the parameters switch from open-loop to closed-loop in h03_user\customer_interface.c. 
uint16_t  u16_motor_open_loop_spd_init_hz    = 5; //open loop start speed 

uint16_t  u16_motor_open_loop_spd_end_hz     = 10;//open loop end speed 

uint16_t  u16_motor_open_loop_spd_inc_hz     = 10;//acceleration speed of 

open loop 

uint16_t u16_motor_close_loop_target_spdhz = 10; //target speed when 

switching to close loop 
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▪ Debug with the Back-EMF low-pass filter factors in SMO structure Motor_stcSMO. 

▪ If the error occurs when the motor is running, the motor will stop immediately. Check the variable  
MotorCtrl_stcRunPar.u32ErroType to find the error. If the error is over/under voltage, confirm the 
parameters set in 2.b. You can clear the error by rotating the potentiometer to the smallest value. 
If the error occurs more than 10 times, it cannot be cleared, and you should reset the board. 

▪ When the motor is running, LED2 will blink according to the motor’s speed. If motor’s speed goes 
high, the LED2 will blink more frequently. 

b. If the motor rotates with a vibration, try tuning the Kp and Ki parameters in the PI controller. The larger 

the Kp value, the faster the system closes in on the reference value; however, it may make the system 
unstable. The Ki value can reduce the static error and make the system stable; however, a larger Ki 
may make the integration value saturate. 

6.1 Tunable parameters  

6.1.1 Hardware parameter setting  

The hardware parameters should be set according to the kit. If you have your own inverter board, change the 
parameters mentioned in Table 5 in the h03_user\hardware_config.h file. 

Table 5 Hardware parameter setting 

Macro Description Value 

SYS_VDC_FACTOR DC voltage sample resistor factor 20.1 

MOTOR_SHUNT_NUM Number of shunts used to sense current 2 

ADC_VOLT_REF AD reference voltage 3.3 V 

ADC_VALUE_MAX AD accuracy set, 12-bit AD is set to ‘0xFFF’ 4096 

COMP_ADC_CH_IU ADC channel for U phase current 0 

COMP_ADC_CH_IW ADC channel for W phase current 1 

SYS_ADC_CH_VDC ADC channel for VBUS 2 

MOTOR_SPEED_VR ADC channel for potentiometer voltage 3 

MOTOR_IUVW_SAMPLE_RESISTOR Iuvw sample resistor  0.03 Ω  

MOTOR_IUVW_AMPLIFIER_FACTOR Iuvw calculation factor 4.16 

Especially, in the Table 5, 

• SYS_VDC_FACTOR:  The factor for calculating Vbus, which is determined by the input protection circuit in 
the following diagram. Here, SYS_VDC_FACTOR = (R9 + R10) / R10. 
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Figure 39 Input protection circuit 

• MOTOR_SHUNT_NUM: Number of shunts used to sense current, which is dependent on your circuit of motor 
current detection.  

• ADC_VOLT_REF: ADC sampling reference voltage of the system.  

• ADC_VALUE_MAX: Depends on the accuracy of the ADC; the accuracy of the internal ADC is 12-bits, thus the 
maximum ADC value is 4096. You need to change the value according to your own schematic.  

• COMP_ADC_CH_IU: ADC channel number for motor U phase current sense, that is channel 0. 

• COMP_ADC_CH_IW: ADC channel number for motor W phase current sense, that is channel 1. 

• SYS_ADC_CH_VDC: ADC channel number for bus voltage sense, that is channel 2. 

• MOTOR_SPEED_VR: ADC channel number for potentiometer input sense, that is channel 3. 

The four parameters (COMP_ADC_CH_IU, COMP_ADC_CH_IW, SYS_ADC_CH_VDC, MOTOR_SPEED_VR) are set by 
the design.modus file, and the motor phase current sense depends on the circuit for current detection. In 

CY8CKIT-037, the circuit detects the current of U and W phase. If the order of ADC channels in Figure 40 is 
changed, for example, if OP_Ia_Vout_Filt and VR-In are interchanged, the COMP_ADC_CH_IU parameter 

should set to 3, and MOTOR_SPEED_VR should set to 0. 
 

 

Figure 40 ADC channel number set 

• MOTOR_IUVW_SAMPLE_RESISTOR: Value of the sample resistor in the current detection circuit. 

• MOTOR_IUVW_AMPLIFIER_FACTOR: Amplification factor in the amplification circuit. 

 

 

 

 

 

ADC Channel 0~3 
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6.1.2 Firmware parameter setting 

The firmware parameters are defined for motor running. The firmware parameters include motor parameters, 
motor carry frequency, PI parameters, and motor start-up parameters, which are in the 

s03_user\customer_interface.c file. 

6.1.2.1 Motor parameters 

Motor parameters include the motor pole pairs, phase current, and phase inductance. Table 6 lists the details 
of these parameters. 

Table 6 Motor parameters 

Variable  Description 

i32_motor_pole_pairs Motor’s pole pairs 

f32_motor_ld Phase inductance of d axis. Unit: mH. 

f32_motor_lq Phase inductance of q axis. Unit: mH. 

f32_motor_res Resistance between two phases. Unit: Ω. 

Motor parameters are dependent on the motor that you choose. 

The motor pole pair is usually labeled in the motor nameplate. The phase inductance of d/q axis and the phase 
resistor can be detected by the RLC measuring instrument. 

6.1.2.2 ADC sampling parameters 

These parameters are defined for ADC sampling. The value of the sample resistor is related to the circuit.  

Table 7 lists the details of these parameters. 

Table 7 ADC sampling parameters 

Variable  Description 

i32_motor_iuvw_offset_normal Middle value of 12-bits ADC: 4096/2=2048 

i32_motor_iuvw_offset_range ADC offset range of Iuvw sampling. If the error of the 

ADC checked value is out of this range, the system will 

raise the AD_MIDDLE_ERROR fault. 

i32_motor_iuvw_offset_check_times Iuvw ADC sample offset check times 

f32_motor_dead_time_micro_sec Dead time (µs) of the PWM 

u16_motor_carrier_freq Motor carry frequency (Hz) 

• i32_motor_iuvw_offset_normal: The middle value of 12-bits ADC. For example: if your system has 3.3 

VDDA, the maximum ADC input is 3.3 V and the normal offset value is 1.65 V. Thus, the ADC normal offset 

output is 2048. 

• i32_motor_iuvw_offset_range: The range of current offset check. If the offset check result is out of this 
range, the system will raise the AD_MIDDLE_ERROR fault. Do not set a higher value for this parameter 

because the motor current will fluctuate a lot if there is something wrong with the current detection circuit. 
This parameter can be set to a value of 150~200. 

• i32_motor_iuvw_offset_check_times: Iuvw ADC sample offset check times. The offset check result is 
an average value of the sum of those check values. You can set this value based on your requirement. 
However, the value should not exceed 256.  
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• f32_motor_dead_time_micro_sec: The dead time of the PWM expressed in µs. This parameter is set 
according to the inverter circuit or the IPM blocks that you use. 

• u16_motor_carrier_freq: This parameter should be set based on the MCU and the FOC execute time. 
You should set it according to your own MCU and load (motor). However, if this parameter is set to a higher 

value, the inverter service life will be reduced.  
 

6.1.2.3 PI regulator parameters 

Table 8 PI regulator parameters  

Variable  Description 

f32_motor_dki d axis current PI regulator integral constant 

f32_motor_dkp d axis current PI regulator proportion constant 

f32_motor_qki q axis current PI regulator integral constant 

f32_motor_qkp q axis current PI regulator proportion constant 

f32_motor_low_speed_ki Speed PI regulator integral constant at low speed 

f32_motor_low_speed_kp Speed PI regulator proportion constant at low speed 

f32_motor_ski Speed PI regulator integral constant at high speed 

f32_motor_skp Speed PI regulator proportion constant at high speed 

u16_motor_change_pi_spdhz PI parameters change at this speed 

These parameters are set for the current and speed PI loop. You should change the values according to your 

own motor and prior experience.  

6.1.2.4 Startup parameters 

Table 9 Motor startup parameters  

Variable  Description 

u8_motor_run_level Motor run stage: 1 → orientation, 2 → open-loop 

running, 3 → closed-loop running, 4 → change 

speed enable 

i16q8_motor_orient_end_iqref Orientation current when motor in orient stage. 

Unit: A. 

i16q8_motor_orient_init_iqref Orientation start current. Unit: A. 

f32q8_motor_orient_iqref_inc_aps Reference vary step in orient stage 

f32q8_motor_orient_time Orientation time. Unit: s. 

u16_motor_open_loop_spd_init_hz Open-loop start speed. Unit: Hz. 

u16_motor_open_loop_spd_end_hz Open-loop end speed; this value should be the same 
as the speed when the motor changes to closed-

loop. Unit: Hz. 

u16_motor_open_loop_spd_inc_hz Open-loop acceleration. Unit: Hz. 

i16q8_motor_open_loop_init_iqref q axis current reference in open loop. Unit: A. 

i16q8_motor_open_loop_end_iqref q axis current reference in open loop. Unit: A. 

f32_motor_open_loop_iqref_inc_aps q axis current reference vary step in open loop 
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• u8_motor_run_level: This parameter is used to set the motor running stage. Set this parameter to 4 if you 
need to change the speed while the motor is running.  

• i16q8_motor_orient_end_iqref, i16q8_motor_orient_init_iqref, 
f32q8_motor_orient_iqref_inc_aps, and f32q8_motor_orient_time: These parameters are 

explained in Figure 42. 
 

Iq(A)

1

2

Orient Time

0.5
T(s)

i16q8_motor_orient_init_iqref

i16q8_motor_orient_end_iqref

Slope = f32q8_motor_orient_iqref_inc_aps

 

Figure 41 q-axis current set in orient stage 

• Parameters 6 to 11 are similar to the parameters shown in Figure 41. 

• The values of parameters i16q8_motor_open_loop_init_iqref and 
i16q8_motor_open_loop_end_iqref should be the same as parameter 2.  

6.1.2.5 Closed-loop running parameters 

The parameters when the motor enters the closed-loop stage are defined in Table 10; these mainly include the 
target speed when the motor switches to closed-loop from open-loop, max and min speed, and acceleration 
when motor is running. 

Table 10 Closed-loop running parameters  

Variable  Description 

u16_motor_close_loop_target_spdhz Target speed when switching to closed-loop. Unit: Hz. 

u8_motor_running_direction Motor run direction 0: CW, 1: CCW 

i16q8_motor_close_loop_is_max Maximum torque current when motor running. Unit: A. 

i16q8_motor_close_loop_iqref_max Maximum value of q axis current reference in closed-loop. 

Unit: A. 

u16_motor_spdmax Motor run maximum speed. Unit: rpm. 

u16_motor_spdmin Motor run minimum speed. Unit: rpm. 

f32_motor_spd_acceleration_hz Acceleration. Unit: Hz. 
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f32_motor_spd_deceleration_hz Deceleration. Unit: Hz. 

• u16_motor_close_loop_target_spdhz: Motor switches to closed-loop stage when the motor reaches 

this speed. 

• u8_motor_running_direction: Determines the rotate direction of the motor when you first start the 
motor. If the direction of rotation does not suit the situation, change it to counter-clockwise.  

• i16q8_motor_close_loop_is_max and i16q8_motor_close_loop_iqref_max: Limit the maximum 
current when the motor is running.  

• u16_motor_spdmax and u16_motor_spdmin: Limit the motor speed. The values are set according to the 

motor’s rated speed.  

• f32_motor_spd_acceleration_hz, f32_motor_spd_deceleration_hz: Set for the 
acceleration/deceleration speed when the motor speed is changed. This value should not set too large. You 

can set it according to your needs. 

6.1.2.6 Protection parameters 

Table 11 Protection parameters 

Variable  Description 

i16q8_motor_current_max Motor phase current peak. Unit: A. 

u16_motor_vbus_max Maximum DC voltage. Unit: V. 

u16_motor_vbus_min Minimum DC voltage. Unit: V. 

• i16q8_motor_current_max: Specifies the peak of motor phase current when the motor is running. If the 

motor current exceeds this value, the system will enter software overcurrent protection process, and 
MotorCtrl_stcRunPar.u32ErroType will be set to SW_OVER_CURRENT fault. 

• u16_motor_vbus_max / u16_motor_vbus_min: Specifies the maximum/minimum value of the bus 
voltage. If the bus voltage that the ADC sampled is out of this range, the system will enter voltage protection 

process, and the MotorCtrl_stcRunPar.u32ErroType will be set to OVER_VOLTAGE /UNDER_VOLTAGE 
fault. 

6.1.2.7 Other global parameters  

Table 12 Other global parameters 

Variables in project Structure member Comments 

Name: 
motor_contrl_iq_pid_reg 

Type: stc_pid_t 

Location: motor_ctrl.h 

Comments:  

PID controller for Iq 

int32_t i32q15_kp p coefficient for PID 

calculation 

int32_t i32q15_ki i coefficient for PID 

calculation 

int32_t i32q15_kd d coefficient for PID 

calculation 

int32    i_cnt Counter for PI regulator 

Out calculation 

int32_t i_timer Cycle for PI regulator 

Out calculation 

int32    i32_p_out Output: Item P 

int32    i32_i_out Output: Item I 

int32    i32_d_out Output: Item D 
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Variables in project Structure member Comments 

int32    i32_out Output: PID regulator 

int32    i32_outPre Last output: PID 

regulator 

int32    i32_qn_Iout Output: Item I QN 

format 

int32    i32_out_max Output upper limitation 

int32    i32_out_min Output lower limitation 

int32    i32_error_0 Input error 

int32    i32_errot_1 Last input error 

int32    i32_error0_max Input error max limit 

int32    i32_errot0_Min Input error min limit 

Name: 
motor_control_id_pid_reg 

Type: stc_pid_t 

Location: motor_ctrl.h 

Comments:  

PID controller for Id 

Same as PID_Iq Same as PID_Iq 

Name: 
motor_control_spd_pid_reg  

Type: stc_pid_t 

Location: motor_ctrl.h 

Comments:  

PID controller for speed 

Same as PID_Iq Same as PID_Iq 

Name: motor_control_run_par 

Type: stc_motor_run_t 

Location: motor_ctrl.h 

Comments:  

Structure for motor control 

int32_t   i32_target_speed_rpm Motor target speed 

int32_t   i32_motor_speed_lpf Motor max target speed 

int32_t  

i32_target_speed_rpm_max 
Controller output 

int32_t    

i32_target_speed_rpm_min 
Motor min target speed 

int32_t    i32q8_estmi_wm_hz Motor speed Hz 

int32_t    i32q8_estmi_wm_hzf Motor speed Hz Lpf 

uint8_t    u8status Motor running status 

uint32_t   u32_error_type Motor running error 

type 

int32_t   i32q8_vbus Sampled bus voltage 

int32_t   i32q8_vr Sampled VR value 

int32_t  i32q22_delta_theta_ts Delta theta 

int32_t    

i32q22_delta_theta_kts 
Delta theta calculation 

factor 

int32_t    

i32q8_target_speed_wm_hz 
Motor target speed Hz 

format 

int32_t    

i32Q22_TargetSpeedWmHz 
Motor target speed Hz 

format 
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Variables in project Structure member Comments 

int32_t    

i32Q22_TargetWmIncTs 
Motor target speed 

acceleration 

int32_t    

i32q22_target_speed_wm_hz 
Motor target speed 

deceleration 

int32_t    i32q22_elec_angle Motor target electric 

angle 

uint8_t    u8_speed_pi_enable Speed PI enable or 

disable flag 

uint8_t    

u8_startup_complete_flag 
Startup complete flag 

uint8_t    u8_running_stage Motor running stage 

uint8_t      u8_running_level Motor running level 

uint8_t    u8_close_loop_flag Enter closed-loop or not 

flag 

uint8_t    

u8_change_speed_enable 
Speed change flag 

Name: motor_stc_iuvw_sensed 

Type: stc_uvw_t 

Location: motor_ctrl.h 

Comments:  

Structure for motor current 

sampling results 

int32_t    i32q8_xu Phase-a variable  

int32_t    i32q8_xv Phase-b variable 

int32_t    i32q8_xw Phase-c variable 

Name: motor_stc_iab_sensed 

Type: stc_ab_t 

Location: motor_ctrl.h 

Comments:  

Structure for alpha-beta axis 

current 

int32_t    i32q8_xa Alpha variable of fixed 

2-phase 

int32_t    i32q8_xb Beta variable of fixed 2-

phase 

Name: motor_stc_idq_sensed 

Type: stc_dq_t 

Location: motor_ctrl.h 

Comments:  

Structure for d-q axis current 

int32_t    i32q8_xd d-axis variable 

int32_t    i32q8_xq q-axis variable 

int32_t    i32q12_cos Cosine value with angle 

int32_t    i32q12_sin Sine value with angle 

Name: motor_control_idq_ref 

Type: stc_dq_t 

Location: motor_ctrl.h 

Comments:  

Structure for d-q axis reference 

current 

int32_t    i32q8_xd d-axis variable 

int32_t    i32q8_xq q-axis variable 

int32_t    i32q12_cos Cosine value with angle 

int32_t    i32q12_sin Sine value with angle 

Name: motor_contrl_vdq_ref 

Type: stc_dq_t 

Location: motor_ctrl.h 

Comments:  

int32_t    i32q8_xd d-axis variable 

int32_t    i32q8_xq q-axis variable 

int32_t    i32q12_cos Cosine value with angle 

int32_t    i32q12_sin Sine value with angle 
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Variables in project Structure member Comments 

Structure for d-q axis reference 

current 
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7 Appendix C: Q number format (fixed-point number) 

The Q number format is a well-known method to store and process floating-point numbers. It enables faster 
floating-point operations done by the CPU, so that a separate floating-point unit is not needed. However, some 
accuracy may be lost by using floating-point. 

The example project provided in this application note uses the Q number format. Although understanding the 

Q number format is not mandatory, gaining a fundamental knowledge of it will help you master the example 
code faster. 

An introduction to the Q number format can be found in Wikipedia. This appendix contains a copy of the “Q 
(number format)” page from the Wikipedia site, if you are not able to connect to the Internet but need to know 
about the Q number format when reading this application note. 

The following content is from Wikipedia. Infineon does not maintain this content for accuracy, nor guarantee 

that it is up to date. If you have access to the Internet, go to the Wikipedia website to read the latest version by 
clicking the following link or entering it in your browser. 

This material from Wikipedia is reproduced under the Creative Commons Attribution-ShareAlike 3.0 Unported 

License, which you can view at the following URL: http://creativecommons.org/licenses/by-sa/3.0/. For more 

information, please see Wikipedia’s licensing statement at 
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-

ShareAlike_3.0_Unported_License. Your rights to this Wikipedia material are governed by the foregoing 
license. 

From Wikipedia, the free encyclopedia: 

Q (number format) on Wikipedia: http://en.wikipedia.org/wiki/Q_%28number_format%29 

Q is a fixed point number format where the number of fractional bits (and optionally the number of integer 
bits) is specified. For example, a Q15 number has 15 fractional bits; a Q1.14 number has 1 integer bit and 14 

fractional bits. Q format is often used in hardware that does not have a floating-point unit and in applications 
that require constant resolution. 

7.1 Characteristics 

Q format numbers are (notionally) fixed point numbers (but not actually a number itself); that is, they are stored 
and operated upon as regular binary numbers (i.e. signed integers), thus allowing standard integer 
hardware/ALU to perform rational number calculations. The number of integer bits, fractional bits and the 
underlying word size are to be chosen by the programmer on an application-specific basis—the programmer's 

choices of the foregoing will depend on the range and resolution needed for the numbers. 

Some DSP architectures offer native support for common formats, such as Q1.15. In this case, the processor can 
support arithmetic in one step, offering saturation (for addition and subtraction) and renormalization (for 

multiplication) in a single instruction. Most standard CPUs do not. If the architecture does not directly support 

the particular fixed point format chosen, the programmer will need to handle saturation and renormalization 
explicitly with bounds checking and bit shifting. 

There are 2 conflicting notations for fixed point. Both notations are written as Qm.n, where: 

• Q designates that the number is in the Q format notation—the "Q" being reminiscent of the standard symbol 
for the set of rational numbers. 

• m. (optional, assumed to be zero or one) is the number of bits set aside to designate the two's complement 

integer portion of the number, exclusive or inclusive of the sign bit (therefore if m is not specified it is taken 
as zero or one). 

http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wikipedia.org/wiki/Q_%28number_format%29
http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Fraction_%28mathematics%29
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Rational_number
http://en.wikipedia.org/wiki/Rational_number
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• n is the number of bits used to designate the fractional portion of the number, i.e. the number of bits to the 
right of the binary point. (If n = 0, the Q numbers are integers—the degenerate case). 

One convention includes the sign bit in the value of m, and the other convention does not. The choice of 
convention can be determined by summing m+n. If the value is equal to the register size, then the sign bit is 
included in the value of m. If it is one less than the register size, the sign bit is not included in the value of m. 

In addition, the letter U can be prefixed to the Q to indicate an unsigned value, such as UQ1.15, indicating 
values from 0.0 to +1.99997. 

Signed Q values are stored in 2's complement format, just like signed integer values on most processors. In 2's 

complement, the sign bit is extended to the register size. 

For a given Qm.n format, using an m+n+1 bit signed integer container with n fractional bits: 

• its range is  

• its resolution is  

For a given UQm.n format, using an m+n bit unsigned integer container with n fractional bits: 

• its range is  

• its resolution is  

For example, a Q14.1 format number: 

• requires 14+1+1 = 16 bits 

• its range is [-214, 214 - 2−1] = [-16384.0, +16383.5] = [0x8000, 0x8001 … 0xFFFF, 0x0000, 0x0001 … 0x7FFE, 

0x7FFF] 

• its resolution is 2−1 = 0.5 

• Unlike floating point numbers, the resolution of Q numbers will remain constant over the entire range. 

7.2 Conversion 

Float to Q 

To convert a number from floating point to Qm.n format: 

1. Multiply the floating point number by 2n 

2. Round to the nearest integer 

Q to float 

To convert a number from Qm.n format to floating point: 

1. Convert the number to floating point as if it were an integer 

2. Multiply by 2−n 

7.3 Math operations 

Q numbers are a ratio of two integers: the numerator is kept in storage, the denominator is equal to 2n. 

Consider the following example: 

The Q8 denominator equals 28 = 256 

1.5 equals 384/256 

384 is stored, 256 is inferred because it is a Q8 number. 

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/IEEE_754
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If the Q number's base is to be maintained (n remains constant) the Q number math operations must keep the 
denominator constant. The following formulas shows math operations on the general Q numbers  and . 

 

Because the denominator is a power of two the multiplication can be implemented as an arithmetic shift to the 

left and the division as an arithmetic shift to the right; on many processors shifts are faster than multiplication 

and division. 

To maintain accuracy the intermediate multiplication and division results must be double precision and care 
must be taken in rounding the intermediate result before converting back to the desired Q number. 

Using C the operations are (note that here, Q refers to the fractional part's number of bits): 

7.3.1 Addition 

signed int a, b, result; 

result = a + b; 

With saturation 

signed int a, b, result; 

signed long int tmp; 

tmp = a + b; 

if (tmp > 0x7FFFFFF) tmp = 0x7FFFFFFF; 

if (tmp < -1 * 0x7FFFFFFF) tmp = -1 * 0x7FFFFFFF; 

result = (signed int) tmp; 

7.3.2 Subtraction 

signed int a, b,result; 

result = a - b; 

7.3.3 Multiplication 

// precomputed value: 

#define K   (1 << (Q-1)) 

signed int       a, b, result; 

signed long int  temp; 

temp = (long int)a * (long int)b; // result type is operand's type 

// Rounding; mid values are rounded up 

temp += K; 

// Correct by dividing by base 

result = temp >> Q; 

http://en.wikipedia.org/wiki/Arithmetic_shift
http://en.wikipedia.org/wiki/Rounding
http://en.wikipedia.org/wiki/C_%28programming_language%29
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7.3.4 Division 

signed int a, b, result; 

signed long int temp; 

// pre-multiply by the base (Upscale to Q16 so that the result will be in Q8 

format) 

temp = (long int)a << Q; 

// So the result will be rounded ; mid values are rounded up. 

temp += b/2; 

result = temp/b; 

Text is available under the Creative Commons Attribution-ShareAlike License. 

 

 

  

http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
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