EV-INVERTER Pitch Pack

Mathieu Clain

Distribution Marketing Manager NXP Automotive

Company Public– NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Agenda

- Target Market
- EV-INVERTER Description
- Key Differentiator
- Enablement

- Application Example
- Package Offering and Ordering

New Applications Driving Electrification Market Growth

What is a HV Power Inverter for EV Traction Motor?

EV Traction motors requires high power (80 kW to 200+ kW) and high voltage (48 V to 400+ V).

EV range directly related to efficiency of the traction motor

Inverter output power & power density efficiency is critical with HV battery

- The inverter converts DC power from HV battery to high current multi-phase AC power
 - i.e. converts high voltage, high current DC to AC and controls the traction motor, which is a 3-phase AC load
- · The inverter drives electronics in the inverter key to efficiency of the traction motor
- The inverter electronics are required to:
 - Minimize switching losses & maximize thermal efficiency
 - Provide system protection
 - Withstand extremely high temperatures (125°C)
 - Withstand high voltages
 - Be as small and light as possible (better packaging or integration)
 - Typical functional safety requirement at ISO26262 ASIL-C/ ASIL-D

NXP EV-INVERTER Overview

• Fast short circuit protection

- High speed over current protection
- Integrated temp sense
- Integrated galvanic signal isolation

- o Independence (Phys & Elect) for ASIL D
- UV / OV monitoring
- Fail Safe State Machine
- Analog & Digital BIST
- Challenger watchdog

- Multi-core, ASIL-D MCU
- Programmable MC timers
- Software resolver
- Rich on-chip resources communications, timer, ADC etc

NXP EV-INVERTER Details

Small footprint ASIL-D 100 kW power inverter enablement

NXP Components

- GD3100 isolated IGBT gate driver with <2us over-current protection
- MPC5775E advanced motor control ASIL-D MCU with software resolver
- FS65 robust ASIL-D SBC with fail-silent and Grade 0 capabilities
- TJA1042 redundant CAN bus interface with low power standby
- System enablement software with API and functional safety case

Target Application: EV motor power inverters High voltage DC to DC boost circuits High voltage on-board chargers

EVALUATION PROTOTYPE PERFORMANCE SUMMARY

Inverter Performance Summary			
Parameter	Value	Units	
Operating Input Voltage Range	240-420	VDC	
Maximum Output ¹	150	KVA	
Nominal Voltage	340 VDC		
Peak Current ²	420 A, rm		
Control Input Supply Voltage Range ³	8.5 - 16	VDC	
Motor Operating Speed	0-10,000	RPM	
PWM Switching Frequency	3-12	kHz	
Control Type	current/ speed/ torque		
Maximum Electrical Efficiency	98	%	
Communication Interface	CAN		
Inverter Mechanical Envelope	28 x 28 x cm		
Power Devices	IGBT 1 modul		
Standby Power Consumption	<1 mA		
HV Bus Capacitance	440	uF	
	200000		

Measurement conditions: HV bus capacitance of 440 uF, Fuji M653 IGBT module

2 1K - 3K RPM

³ Range extension to 18 VDC is possible with hardware design update

NXP EV-INVERTER Key Differentiators

- NXP EV Power Inverter Platform provides a hardware reference design, system enablement software, and functional safety enablement to develop a complete ASIL-D compliant high voltage, high power traction motor inverter for electric vehicles.
- The Reference Platform demonstrates 196 kW peak output power and >96 % electrical efficiency operating from 320 V supply voltage.

•

 It is designed to interface to a Fuji M653 IGBT module rated for 800 A / 750 V operation (purchased separately from Fuji Electronics) and can drives up to ±15 A into a broad range of other IGBT & SiC power devices.

NXP EV-INVERTER SW Enablement

Functional Basic SW

- NXP SDK w/ production-ready SPCE/CMMI Class B and MISRA 2012 compliant drivers
- Peripheral drivers for FS65 & GD3100
- Special function drivers for SW RDC and eTPU advanced motor control timer
- Service layer w/ function calls for controlling platform motor control operations by functional application layer

Safety Basic Software (Coming Soon)

- Operates in lockstep core
- Transfers data with QM functional core via Inter-Core Communications mechanism
- Low level safety drivers interact with all platform HW safety mechanisms
- Checkers in safety services layer continuously monitor & verify status of critical safety mechanisms
- Safety libraries offer default Safe State & Reaction routines callable by safety manager application

SYSTEM ENABLEMENT AND FUNCTIONAL SAFETY MANAGEMENT SOFTWARE

NXP EV-INVERTER HW and Collateral Enablement

Reference design hardware kit

- Control board w/ MCU & SBC & CAN
- Driver board w/ GD3100
- Interface board w/ RDC I/F
- Sensor board w/ output current sensors
- PCB interconnect cables

Documentation

- Design Guide Application Note
- Enablement Kit User Manual (UM11298)
- Basic software user manuals (UM11317)
- Safety application package (coming soon)
- Hardware design package (schematics & layout)
- System proof-of-concept prototype test results

Vepco Engineering Services - Advanced development assistance

Power Inverter Platform

- Apply NXP hardware, software and toolchains to vehicle motor control
- Setup and training on the use of Platform
- Introduction on Safety concept of the Platform

Customization and advanced support

- Advance power inverter design principle to different vehicle architecture and topology needs
- Participate customer's packaging design and integration analysis
- Premium support over design of complete eDrivetrain system
- Facilitate customer ISO 26262 functional safety related activities in system design, development, validation and integration cycle
- · Work with agencies on design and development process certification

Value-added services:

- Calibration and tools integration
- Application level integration with advanced auto code generation tools
- Engineering software and tools
- Dyno and Hardware-in-the-loop testing

Application Example

Inverter Platform System Control Flow from Torque Command to Wheel Speed

VCU Interface

System messaging, Safety and Power management

Dual CAN comm ports

- FS65 CAN transceiver
- TJA1051 NXP transceiver

FS65 functions

- Safe system power for all sensors, drivers, MCU, transceivers
- Key Safety Mechanism for MCU:
 - Check MCU, Clock, Power Supply
- System safe state assertion
- System latch-on / latch-off

FS65 Safety SBC Safety Monitoring Capabilities

Robust fit for ASIL-D with fail-silent and Grade 0 capabilities

Independent Fail Safe State Machine

- Physical & electrical independance to fit for ASILD
- Power management monitoring unit (UV / OV)
- Analog & digital built in self test to minimize latent faults
- Own reference & supply to reduce common cause failure

Advanced Watchdog

- Challenger
- Replace external MCU monitoring

HW Redundancy

Vcore external monitoring

MCU Monitoring

- FCCU: fault collection control unit
- Monitor dual-core lock-step modes

RSTb – Fail Silent Mode

Configurable RSTb activation giving more system availability

Fail Safe Pin (FS0b)

- Redundant system fail safe enabler
- Second fail safe pin to assert safety path with configurable delay

Application Example

Inverter Platform System Control Flow from Torque Command to Wheel Speed

Field Oriented Control (FOC) Processing Block Diagram

Typical customer application functionality supported by the platform

MPC5775E Advanced traction motor power inverter MCU

Peripherals

FlexCAN (4) + CRC

SPI for gate driver and FS65

Application Example

Inverter Platform System Control Flow from Torque Command to Wheel Speed

GD3100 IGBT Gate Driver with High Voltage Isolation

ASIL C/D ISO26262 compliant advanced gate driver for high voltage power IGBTs with integrated high voltage isolator, high speed current sense interface and robust functional safety mechanisms

Features:

- 5 kV galvanic signal isolation compatible with 1700V IGBTs
- High 15 A peak gate current source/sink capability
- <2 us short circuit protection via IGBT i-Sense direct feedback
- Programmable Desaturation Detect level, Two Level Turn off
- Redundant PWM gate control signal paths
- IGBT Vge monitoring for IGBT gate control verification
- Active Miller Clamp (AMC) reduces need for turn off assist
- Temperature sense soft shutdown for system protection
- Compact 10 x 18 mm SOIC package for reduced PCB area

Application Example

Inverter Platform System Control Flow from Torque Command to Wheel Speed

eTPU-Based SW Resolver to Digital Converter

Block diagram and performance specifications

Package Offering and Ordering

Inverter Platform Enablement Kit: \$5000

KIT INCLUDES

		Offering Packages	
Offerings	Туре	Inverter Platform Enablement Kit	Inverter Platform Safety Kit *
Hardware design package (schematics & layout)	DOC	DL	
NXP device datasheets	DOC	DL	
NXP device functional safety documents	DOC	DL	
NXP device software drivers (GD3100 & FS65)	SW	DL	
Reference design enablement kit including control, driver, RDC interface, & sensor boards	HW	Х	
BSW with service level, SDK, driver & GUI software	SW	DL	
Reference design enablement kit user manual	DOC	DL	
Design guide application note	DOC	DL	
BSW user manual	DOC	DL	
System proof-of-concept prototype test results	DOC	DL	
Safety basic software & safe-state library	SW		DL
Basic safety software user manual	DOC		DL
Inverter safety concept manual			
Analysis & fault reaction matrix	DOC		DL

DL = downloadable from NXP

* Available by end of 2019

NXP EV-INVERTER Reference Platform Summary

Reference Platform

- $_{\odot}$ Open system IP with hardware, Basic SW enablement and Safety concept
- Optimized BOM solution targeting ASIL-D
- System safety concept based on NXP's Safety IC and ISO26262 methodology
- Automotive Quality proof-of-concept prototype available for Dyno Testing
- System design partners (e.g. Vepco) to reduce customer engineering efforts

SECURE CONNECTIONS FOR A SMARTER WORLD

www.nxp.com

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.