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FOREWORD

We anticipate a huge leap in the smart things that make up the edge of everything 
in our homes, offices, factories, and vehicles. The 50 billion smart connected devices 
expected by 2025 can influence how individuals, communities and entire industries 
communicate, learn and operate. These devices will anticipate our needs and automate 
our environments. As an industry, it is up to all of us to ensure they meet the ultimate 
goals for society – a greener, safer, and more productive society. No single company 
can do this alone. It’s a collective effort that requires expertise across an ecosystem of 
semiconductor suppliers, software partners and device makers. 

Widespread adoption of these smart connected devices means enormous amounts of 
data will be created, which is why the edge is fast becoming a requirement for the next 
era of the IoT. The edge puts processing power where data is generated. At the heart 
is silicon, but the end-to-end architecture of an edge device is much more complex than 
the silicon itself. Deeply intertwined in the silicon is software that brings advancements 
in security, low power, machine learning, and connectivity. 
 
This book was created to share knowledge and insights to help the industry unravel 
this complexity and drive forward the enormous potential of the edge. Whether you’re 
creating SoCs or edge products, you are an enabler of a society that is greener, safer 
and more productive. I hope you find information in this book useful for your tasks 
towards realizing the future edge of everything. 
 
Ron Martino
Executive Vice President and General Manager
Edge Processing
NXP Semiconductors



4

PREFACE

Computing at the edge of a network is a fundamentally simple concept, but it requires 
a broad range of capabilities to achieve optimal security, energy efficiency, connectivity 
and machine learning intelligence. In Essentials of Edge Computing, you’ll find insights 
and best practices on a wide range of these emerging edge computing design 
concepts that you can apply in your next application. 
 
I would like to thank many key contributors who have made this book possible, 
including Mohit Arora, Jean-Christophe Bodet, Antoine Boiteau, Cristi Caciuloiu, 
Brian Carlson, Nicolas Collonvillé, Julien Delplancke, Silvano di Ninno, Alexandra 
Dopplinger, Mihai-Andrei Dragnea, Natraj Ekambaram, Sebastian Grigore, Doru 
Gucea, Michal Hanak, Mathieu Imbault, Saleem Kala-Janssen, Prabhu Loganathan, 
Nihaar Mahatme, Pascal Mareau, Jason Martin, Guillermo Michel, Sujata Neidig, Ali 
Osman Örs, Nicu Penişoară, Laurent Pilati, Wim Rouwet, Erich Styger, Marc Vauclair, 
and Francois Villeneuve. Special thanks goes to the reviewers who helped convey the 
concepts, including Gowri Chindalore and Monica Davis. 
 
A well-architected edge computing system requires multiple domains of expertise, 
and these contributors are the experts who are sharing their knowledge and expertise 
with you. We would love to hear from you about your experiences in this new era of 
edge computing. Let the journey begin!
 
Robert Oshana 
Vice President, Edge Processing Software R&D 
NXP Semiconductors 
Technical Editor-in-Chief 
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EDGE COMPUTING
INTRODUCTION 

Chapter 1



7

THE ROAD TO THE EDGE
In the “early days” of the internet of things (IoT), processing and most storage was performed in cloud 
data centers because only the cloud had the computational resources needed to perform complex analysis. 
But as more connected applications were deployed, the limitations of cloud processing became apparent.

One of the limitations was latency — the time required for the data generated by sensors at the source,
to traverse the path to the cloud for processing and then back to deliver actionable results. Milliseconds 
of latency might not be important in a smart thermostat, but an industrial robot and other real-time systems 
require even less time for ensuring safety and productivity. For the sensor-based safety features on modern 
vehicles, latency can be a matter of life and death.

Even a modest application with sensors can create enormous amounts of data that consumes costly 
bandwidth available across the network. The cloud-based approach could also expose sensitive 
information, including intellectual property (IP), that must be protected. Today, security has become  
one of the most critical aspects of the IoT.

A better solution is to divide the processing tasks between cloud-based servers and processors operating 
at the location where the data is generated, which is generally called the edge. More precisely, it’s the 
edge of the network, or, from a data center’s perspective, the far edge. Note that some processing has 
always been performed at the edge, principally in gateways that aggregated the data produced by  
sensors into a standard format, and then sent outward (Figure 1.1).

NXP EdgeVerseTM edge processing solutions span across IoT, industrial and automotive markets.
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Figure 1.1. Conceptual representation of edge computing
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However, in this new scenario, significant processing is performed at the edge on processors to satisfy  
the needs of real-time applications that require responses almost instantaneously. Several solutions 
emerged to achieve this new scenario. 

In the first, mini data centers placed near the end-user location perform reasonably high levels of 
processing. Because they are nearby, latency is dramatically reduced. In the next approach, the gateway 
became a more formidable processing element with less computational horsepower but the ability to 
reduce latency even further. None of these approaches are small or consume little power.

Recent advancements in computing, including applications processors and microcontrollers, have brought 
significant compute capability to the edge. These devices can now perform machine learning, creating a 
plethora of edge applications that span beyond gateways and to the sensors and things in between.

TINY POWERHOUSES 
Microcontrollers and microprocessors have made great leaps forward in performance, capabilities and cost 
reduction. They can include multiple cores dedicated to specific tasks, support several wireless protocols, 
feature power management and offer other impressive features. Today, they are powerful enough to make 
decisions based on data aggregated from multiple sensors at the edge.

They can perform analysis that was formerly the sole domain of the cloud, send commands to machines 
with virtually no latency and transfer only a summary of the information (a much smaller amount) to the 
cloud. An intelligent door lock, for example, can facilitate unlocking doors when it recognizes a face 
because it knows the person, and it can store and process the image data locally for a speedier response 
and enhanced privacy. 

This new approach has become so important for IoT that there’s a name for it: TinyML. It shrinks deep 
learning networks to fit on microcontrollers. The concept is not new. Smartphones have neural networks 
that enable music identification, multiple camera modes and various other functions to be performed,  
even in a smartwatch. But only recently has TinyML been applied to edge computing. 

ENERGY-EFFICIENT COMPUTATION
Many modern MCUs are designed to operate with low power consumption, which enables the devices 
to run unplugged on batteries for weeks, months and, in some cases, even years while running ML 
applications on the edge device.

IoT edge devices can run on battery or solar power or be plugged into the wall. Energy is a costly 
commodity, whether battery or line powered. Computing is not the only consumer of energy; any 
process involving data aggregation, wired or wireless data transmission and data analysis consumes 
energy. To understand where to save on energy costs, look at what is consuming it. Decreasing power 
consumption requires reducing the time that a processor is active. This can be achieved by separating 
a processor into functional blocks capable of fine-grained power partitioning and management. 
Edge compute processors are an example of a recent innovation that makes this a reality. 
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Figure 1.2 shows an edge compute processor application for a smartwatch. In this example, the NXP 
processor has two separate Arm® Cortex® core domains: a Cortex-A domain for running the watch 
and a Cortex-M core for real-time processing. Both domains have fine-grained power management 
and partitioning, allowing the domain to be shut down into a deep sleep mode. Each core’s operation  
is highlighted with the different use cases that show how energy consumption is minimized. 
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Figure 1.2. Energy-efficient heterogeneous processing
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INTELLIGENT PRODUCTIVITY
Intelligence and the capability of an edge device to make decisions locally imply the use of ML inference, 
the basis of an intelligent edge device. This significant rise in ML inferencing at the edge is partly due to 
the improvements in inference processing techniques and the development of energy-efficient inference 
“engine” accelerators. The number of potential inference applications that can be conducted at the edge 
increases with the applications’ energy efficiency (Figure 1.3).

Potential applications for inference at the edge are limited only by the imagination. Consider a smart home 
application that monitors for unusual sounds when the occupants are not at home. It detects running water 
sounds, perhaps indicating a pipe leak or a leaking water faucet. The sound of breaking glass indicates 
a window being broken. These and many more scenarios trigger the smart home application to alert the 
owners of problems. In addition to energy efficiency, intelligent productivity adds a societal and safety 
dimension to the technology benefits.

DATA SECURITY AND PRIVACY
Keeping data secure and private is the number one priority for any application. With more data collected 
and processed locally, any intelligent edge application needs to remain vigilant. Security applies to securing 
the edge application code, the data being processed and any data communication to the cloud. The use of 
encryption keys can help validate firmware, authenticate techniques for cloud communication and prevent 
adversaries from gaining control of the device. Embedded security, isolated secure subsystems and secure 
software enablement are the foundation of any intelligent edge processor (see Figure 1.4). Only by taking a 
holistic approach to device security and data privacy that embraces collective security knowledge and best 
practices can the IoT transform into the “internet of trust”.

Figure 1.3. More possibilities with energy-efficient inference
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12

EDGE AWARENESS
As edge computing adoption expands, more intelligence will be added to devices to achieve a level  
of “awareness” across a network of devices. These systems can perform ML, make decisions without any 
external assistance and use minimal power in a footprint the size of a postage stamp. Connect multiple 
intelligent devices across a network, and it becomes a data-generating, decision-making aware network.

An intelligent device may process only voice, but intelligent devices across an aware network could 
combine nuances such as the tone of the voice, facial expressions and body gestures. For example, data 
from multiple smart home sensors connected across an aware network could recognize danger signals such 
as someone falling and send an alert to a remote caregiver. And if some of the data must be sent to the 
cloud, an intelligent edge processor could anonymize it along with other information such as audio profiles 
of a person’s voice and others who are authenticated.

Another example is a home security vision system that scans faces and recognizes family members.  
A typical security camera captures video of car theft in a driveway. If awareness and context are added,  
the system can spot a person it doesn’t recognize and send an alert to authorities.

Our homes and buildings can also become occupancy-aware, recognizing when the house  
is empty and then arm the security system, dim the lights and lower the temperature.
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SUMMARY
Computing at the edge is not a replacement for processing in the cloud. Instead, it complements the 
cloud while providing a way to maintain data safety by keeping it local, eliminating the cost of transmitting 
gargantuan data to and from a remote data center and allowing real-time applications to get the answers 
they need in a few milliseconds rather than minutes (or longer). In short, edge computing is now a 
component of IoT architectures for a vast number of applications.

Credit for the ability to achieve this at low cost with low power consumption must be given to the 
microcontrollers and microprocessors that have evolved into powerful compute platforms capable of 
making decisions previously unachievable a few years ago. As their performance increases in coming  
years, they will take on even more functions to further complement the cloud.

In the chapters that follow, details of edge computing technologies will be discussed in greater detail 
along with many other technologies that make this approach possible.
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Edge computing architectures are evolving. This chapter explores the hardware and software 
that make up these architectures and how they connect the real world with the cloud.

EDGE-TO-CLOUD COMMUNICATION
Computing advancements have enabled IoT devices to process data locally at the edge without sending 
data to the cloud. Edge computation can also act as a proxy between the real world and computation in 
the cloud. End-device sensors collect information from the real world. That data is processed locally (filter 
and compute), and the resulting meaningful information can be sent to the cloud. Edge computing involves 
“data in motion,” and cloud-based computation involves “data at rest.” In that sense, edge computing is 
enabling communication from the edge to the cloud, so edge computing technology must work with multiple 
communication protocols and convert these to cloud-based protocols.

Edge computing also is responsible for the business rules of processing data in preparation for 
transmission to the cloud. For example, an engine sensor emits rotation status multiple times each 
second, but the analytics in the cloud operate on this data less frequently — once every 30 seconds. 
The edge computation must prepare the data locally and send it to the cloud every 30 seconds. This is 
an example of a “smart” gateway, where this intelligence is embedded locally in the edge device.
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Cloud IoT 
Platform Services

Actuators

Devices

Edge Connectivity
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UWB

Smart Edge Capabilities

Monitoring

Dataflow

Routing

Storage

Analytics

Management

Figure 2.1. Edge computing architecture model
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Sensors and actuators in edge computing systems usually communicate with microcontrollers where  
data is converted (analog to digital and/or digital to analog). Figure 2.3 shows an example of a 
microcontroller for an edge processing end node. It has a rich set of connectivity, processing and 
multimedia capabilities. These serve applications that require graphics such as wearables or smart  
meter systems. The microcontroller also has robust security capabilities to protect data flowing in  
and out as well as real-time capabilities such as interrupt processing and real-time scheduling.

SENSORS AND ACTUATORS
Sensors and actuators (see Figure 2.2) operate in the trenches. They must have robust mechanisms  
to communicate with each other as well as the gateway and sometimes directly with the cloud.  
These communication technologies include Bluetooth®, Bluetooth® Low Energy (Bluetooth LE),  
Zigbee®, Wi-Fi and near-field communication (NFC).

Actuators

DAC

Sensors

ADC

Computer
Controller

Continuous and
Discrete Parameters

Output Devices Input Devices

Continuous and 
Discrete Variables

Transformation Process

Figure 2.2. Sensors and actuators operating in the real-world environment
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Figure 2.3. Hardware architecture for edge processing using a microcontroller for example
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MICROPROCESSOR AND MICROCONTROLLER BASICS
A microprocessor is a general-purpose digital computer central processing unit. To make a complete 
microcomputer, a number of additional components, including memory (ROM and RAM), interfaces  
and I/O ports are required, as shown in Figure 2.4. 

In Figure 2.4, support devices, including read-only memory, read-write memory, serial interface, timers and 
I/O port are all external and interfaced to the microprocessor via the system bus. The system bus, which 
connects components of a system, is composed of the data bus to carry information, an address bus to 
determine its destination or where it will read from, and a control bus to determine its operation. The primary 
use of a microprocessor is to read data, perform extensive calculations on that data, and store the results in a 
mass storage device or display the results. 

The design of the microcontroller is driven by the desire to make it as expandable and flexible as possible.  
A microcontroller is a functional computer system-on-a-chip. Microcontrollers include an integrated processor, 
memory (a small amount of RAM, program memory, or both) and peripherals capable of input and output 
(see Figure 2.5).
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A/D Converter RAM
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Memory
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Figure 2.5 Microcontroller based system
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Figure 2.4 Typical microcontroller software architecture for edge processing
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Although the microprocessor is considered to be a powerful compute machine, it is limited with how it 
communicates to the peripheral environment. For communication with the peripheral environment, the 
microprocessor must use specialized circuits, which are external chips. The microprocessor, by definition,  
is the heart of the computer. On the other hand, the microcontroller is designed to be all of that in one:  
No other specialized external components are needed for its applications because all of the necessary  
circuits are already built into it. This saves both time and space when designing an end device.

Generally in the embedded world, the term “MPU” is used for “microprocessing unit” or  
“microprocessor” and does not include flash memory in the system-on-chip. Likewise the term  
“MCU” is used for “microcontroller” and includes on-chip flash memory in the system-on-chip.

These design attributes typically compete with one another: improving one often leads to degradation 
of another. For example, if the die size is reduced, the features and performance of the edge device may 
suffer. Moving to a lower technology node to reduce the die size and cost, however, may increase the 
leakage and have an adverse impact on power consumption. 

EDGE DEVICE DESIGN CHALLENGES 
An edge device design must balance numerous design attributes, as shown in Figure 2.6. 

Figure 2.6 Parameters that control embedded system success
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Technology, size and design cost

Unlike the desktop world where performance requirements drive the technology choices, there are 
number of factors that affect that decisions in edge device design. Some edge devices must be 
highly reliable to operate in extreme conditions for long operational hours without failure. A stable 
technology node that is well tested under extreme conditions is recommended. Furthermore, it is 
reasonable to assume that a system-on-chip for an embedded device would include analog-to-digital 
convertors (ADC/DAC) and integrated power management controllers (PMICs) that are tuned to 
specific technology. These need to be re-designed every time a new technology node is adopted 
which adds significant risk and design cost. Further, switching between different technology nodes 
can impact power consumption of the device and low power modes, affecting the chip architecture. 

Since switching between technology nodes adds non-recurring engineering costs, volumes have to 
be high to justify the decision. To reduce the per unit cost of embedded systems on a chip (SoCs), it is 
necessary to reduce the die size either by restricting feature set or by switching to a lower technology 
node, which may be a natural transition once the technology is stable and the transition cost is justified. 
There is always a fine balance between technology, die size and design cost when determining an SoC 
for an edge device.

Power Consumption

Low power consumption is a critical parameter for an edge device. Compared to typical systems or 
desktop computers that are always powered, many edge devices are powered by battery. Though 
this is use-case dependent, an edge device may have a conflicting need for low power consumption 
and more performance. 

Some applications may be continuously powered by battery including water or gas meters that 
measure the flow of water in a residential or commercial complex. Meters are required to work for 
several years without replacing the battery. Since they are often idle, ultra-low power modes are 
often used. Consumption can be measured in sleep mode, and enabled for counter overflows or 
data transmission to a remote network or cloud.

Performance

Edge device performance depends on more than processor speed. Real-time performance,  
or how quickly a system reacts to a specific event, is key. An edge device running a real-time 
operating system (RTOS) would often guarantee a response within specific time frame, which  
offers determinism. Conversely, the typical response for desktop computing is non-deterministic 
and guaranteed response time is not critical. 

Systems used for many mission critical applications must process data in real-time. The real-time 
processing fails if it is not completed within a specified deadline relative to an event; deadlines 
must always be met, regardless of system load.
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SOFTWARE
An edge processing microcontroller requires a comprehensive set of enablement software.  
Figure 2.7 shows a software architecture that features:
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Figure 2.7. Microcontroller software architecture for edge processing
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ADVANCED PROCESSING
Edge processing often requires more advanced processing capability for the devices operating on the 
edge and aggregating information from one or more end-node devices. Figure 2.8 shows an example of 
an edge processing device. This multimedia device has a range of capabilities to support various edge 
processing application types:

Processing power using 
multicore technology

2D and 3D 
graphics capabilities

Security protocols 
and performance

Camera, video and audio interfaces

Connectivity protocols

ML capabilities

Figure 2.8. Edge computing hardware architecture for advanced processing
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Edge computing devices such as the one shown in Figure 2.8 require more advanced software enablement. 
Figure 2.9 shows a software architecture common in many edge processing devices. This architecture 
contains rich OSs such as Linux® and Android, and software enablement for the advanced hardware 
capabilities shown in Figure 2.8. 
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Figure 2.9. Edge processing software architecture for advanced hardware capabilities



EDGE COMPUTING DEVICE LIFE CYCLE
Another important component of an edge processing system is the ability to manage the life  
cycle of the edge computing devices deployed in the field. This includes:

Key provisioning

Original Equipment Manufacturer 			 
(OEM) provisioning

Onboarding

Services

Application upgrades

Decommissioning

Figure 2.11 shows a high-level flow of this device life-cycle management process. 
See Chapter 6 for more details on life-cycle management.
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For certain market segments, this software enablement can be customized. For example, Figure 2.10 
shows software customized for industrial applications, with support for more advanced industrial  
protocols such as time-sensitive networking, EtherCAT and PROFINET.

Figure 2.10. Edge computing industrial software architecture
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Figure 2.11. Device management in an edge computing environment

OPEN-SOURCE EDGE COMPUTING
In addition, some open-source edge computing platforms support general edge computing applications. 
An example is EdgeX (see Figure 2.12), which is vendor-neutral software that interacts with the capabilities 
in the real world (sensors, actuators and other objects). It’s essentially a middleware layer that manages 
physical sensing and actuating and the cloud IT systems.

Cloud CloudCloudCloud

Embedded Device 
Services

Gateway

Gateway

Server Server

Device Service

Device Service Device Service

Device Service

Core Services

Core Services

Core Services

Core Services

Appl Services

Appl Services

Appl Services

Appl Services

Analytics

Analytics

Analytics

Analytics

Figure 2.12. The EdgeX open-source edge computing software platform
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COMMUNICATION PROTOCOLS FOR EDGE COMPUTING
Once data is at the edge, messages must be organized via protocols before communicating with the cloud. 
These “cloud” protocols include Message Queue Telemetry Transport (MQTT), Advanced Message Queuing 
Protocol (AMQP), Constrained Application Protocol (CoAP) and, of course, Hypertext Transfer Protocol (HTTP).

Edge computing also requires a rich set of run-time capabilities. One category referred to as “dataflow” 
includes receiving and processing sensor data using the communication protocols in the previous 
paragraph. Once data is received from the sensors and end node devices, it is filtered, cleansed and 
transformed using various control protocols and then aggregated, among other things. 

For example, in a smart building application, temperature sensors distributed throughout the building 
send temperature information to the edge device using the Bluetooth LE communication protocol. 
Software functions on the edge device implement business rules that determine, based on the received 
data, that the air conditioning must be turned on.

The software function sends air temperature commands to the air conditioners using the Zigbee  
communication protocol. Temperature information is also sent to the cloud for general analytics purposes.  
The edge computing software also does this using a cloud-based application programming interface (API) call.

Security constraints, such as authentication, must be applied as well.

DECISION-MAKING AT THE EDGE
Many decisions must be made close to the device for latency and security reasons. Sending information 
to the cloud for every decision is not practical. A more obvious example of this is real-time anomaly 
detection on a factory floor. This capability helps manufacturers adjust robots to optimize production 
capacity and yield as well as to identify potential defects as soon as possible so that any affected 
equipment can be removed and serviced immediately. This is usually implemented using reactive 
monitoring, which is different from the broader function of data analytics, a mostly passive and 
non-real-time process. 

Many other applications featuring “independence from the cloud” offer these same benefits.  
EdgeX has four middleware services:

Core Supporting Application Device
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This framework can be used with the device architectures mentioned earlier in use cases including:

Smart building optimizing 
efficiency across facility

Factory automation
interoperability across sensors, 

machines and robots

Water treatment loss
 detection in real-time

SUMMARY
Edge computing essentially offloads computation and storage from a centralized cloud to the network’s 
logical extremes. Edge architecture is a distributed computing architecture that includes both hardware 
and software. Edge devices can connect to other edge devices and may ultimately connect to a centralized 
system or cloud. In addition to the hardware, communication protocols, enablement software and device 
life cycle management are important factors to edge computing architecture. 
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The security of edge devices is increasingly important as more of them are incorporated 
into systems. This chapter explores functional and platform security methods to address 
weaknesses pinpointed by risk assessments conducted during the design stage.

SECURITY: A HOLISTIC SYSTEM PROPERTY
Future systems will encompass billions of interconnected devices. They will form an attractive target 
for attackers. Edge devices are part of these systems. They process data closer to where it is generated 
while connecting with remote and cloud-based services. They collect raw data from sensors, analyze and 
extract relevant information to be delivered to the cloud and present it to local users. In most cases, this 
information contains sensitive data that needs to be protected. Also, some edge devices have actuators 
to control utilities and machinery that can be misused; therefore, the commands received from remote 
services need to be verified as authentic and originating from the proper controlling entities. This makes 
them interesting targets for the attackers. 

Security is a holistic system property1; security is not an add-on. A system is as secure as its weakest 
component that an attacker can reach. Edge devices will play several roles in system security:

Edge devices are privileged targets (the 
return on investment for an attacker is 
higher for an edge device controlling 

many devices), and these devices have 
to be protected accordingly.

They can help improve system 
security by providing the necessary 
isolation of less secure subsystems 

or by delivering secure services 
to them.

Most of the fundamental concepts used to secure networking devices work for securing edge devices as well:

However, although a data-center infrastructure (where cloud services are typically deployed) offers inherent 
physical protection for the data being stored and processed, edge devices are placed in locations where 
little or no physical protection is guaranteed. This implies that additional protection and some level of 
intrusion-detection capability needs to be deployed for edge devices. At the system-on-chip (SoC) level, 
these needs must be supported by the following hardware capabilities combined with specific software 
mitigation techniques that protect and react against such attacks2:

1Recommended reading: “From the Internet of Things to the Internet of Things” (https://www.nxp.com/docs/en/white-paper/NXP-FROM-IOT-TO-IOTRUST-WP.pdf)
2Readers interested in more information on the security features in SoCs for improving system security can consult the NXP white paper on security primitives here: https://
www.nxp.com/docs/en/white-paper/SEC_PRIMITIVES_WP.pdf.

•	 Root of trust (RoT)
•	 Tamper detection

•	 Secure boot
•	 Secure enclaves

•	 Data in transit
•	 Data at rest

•	 Access control mechanisms
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The edge device and its data protection capabilities make up one critical part of the edge computing 
security story, but protecting the network and cloud services from edge devices transformed into remote 
controlled weapons is also important. Edge devices need to process increasingly larger amounts of data 
in a variety of new ways. To address that, both compute power and the available network bandwidth have 
grown over the years. This trend will only continue with the emergence of edge artificial intelligence (AI) 
and the deployment of 5G and faster Wi-Fi technology. Given the ever-tighter interaction between edge 
devices and the cloud infrastructure, the risk of disrupting the cloud’s services is increasing through the 
following methods, among others:

Mirai, a malware able to command and control hundreds of thousands 
of devices to mount denial of service (DoS) attacks, and its variants have 
inflicted massive damage multiple times recently.

The security for edge devices is two-fold3:

•	 Functional security — These security primitives (most of the time the cryptographic features) ensure 
that sensitive data remains secure (confidentiality, integrity, authenticity) and private when required. 
For example, using encrypted messages between two edge devices is a functional security feature.

•	 Platform security — These security primitives ensure that the implementation of the functional 
security remains secure in the presence of remote or sometimes local attackers. For example, 
protecting the secret key used to encrypt and decrypt messages in each of the two communicating 
edge devices is a platform security feature (one potential implementation of this security feature is 
secure storage with access control and isolation so that remote attacks on other parts of the software 
of the edge device under attack cannot recover this secret key). But if local attacks (i.e., those with 
physical access to the edge device) are considered part of the threat model, more advanced hardware 
security features such as side-channel and fault-attack resistance should be implemented.

For both kinds of security, some fundamental cryptographic features can be used to secure edge nodes. 
Through cryptographic protocols and key management techniques, in-transit and at-rest data can be 
protected and the edge device booting and running authentic, authorized firmware and software can be 
ensured. Additionally, a unique identity for a device can be constructed to verify and protect it on the edge 
device side while using it on the cloud infrastructure side for access control. This unique identity can help 
detect if a device was corrupted and needs to be isolated to avoid DoS attacks.

Device cloning Denial of service 
(DoS) attacks

3This chapter only skims the security topic. A detailed introduction to security can be found in “Security Engineering: A Guide to Building Dependable Distributed Systems” by Ross Anderson, 
Wiley, 3rd Edition, 2020.
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Algorithm Integrity Confidentiality Authenticity Nonrepudiation

Hash

Symmetric 
cryptography

MAC

Public key 
cryptography

The ability to create and protect multiple software execution environments on a single SoC is another 
key functionality required on more advanced edge computing devices. It’s needed to isolate sensitive 
software processing. To integrate applications with third-party software stacks as part of an edge 
computing offering, secure communication between those different software stacks must be guaranteed.

Finally, security features and countermeasures need to be seamlessly integrated into software stacks so 
they can be deployed easily by applications running on the edge device. Using a standard and/or well-
established open-source application programming interface (API) is essential to maximize software reuse.

Table 3.1. Security properties of algorithms

CRYPTOGRAPHIC FEATURES
Cryptographic features4, relying on cryptographic algorithms, ensure functionality by providing  
one or more of the following capabilities in a system: 

Integrity — The data received is identical to the data sent.

Confidentiality — A third party listening to the communication cannot understand the message.

Authenticity — The receiver of a message can verify the authenticity of the message.

Nonrepudiation — The sender of a message cannot deny having sent it.

4To learn more about cryptography, read “Cryptography — Theory and Practice” by Douglas Robert Stinson and Maura Paterson, Chapman and Hall/CRC, 4th Edition, 2018. This is a good 
introduction to the theory of cryptography, while “Cryptography Engineering — Design Principles and Practical Applications” by Niels Fergusson, Bruce Schneier and Tadayoshi Kohno, Wiley, 
2010, is a more practical introduction to the use of cryptography.
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HASH FUNCTION
A hash function is a cryptographic function that can take any amount of data as input and provide a 
fixed number of bits as output. It is a function (see Figure 3.1) for which generating the output from the 
known input can be achieved fairly easily, while retrieving the input data based only on the output result 
is infeasible. Another property is that easily creating two different input data points that give the same 
output result is infeasible as well.

INPUT HASH FUNCTION

EASY

INFEASIBLE

OUTPUT

Figure 3.1. Hash function one-way property

Figure 3.2. Use of hash function to guarantee the integrity of messages
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This function is often used for the following (see Figure 3.2):

Integrity checking
This use validates that the data received was not corrupted. The common example is a file transfer 
or a download from the internet. Downloaded files are sometimes associated with the results of a 
hash function run over the content of the file, for example, the outcome from the sha256sum hash 
command. The user downloading the file can run the same type of hash function with a downloaded 
file as an input. The user then compares the output with the sha256sum value contained in the file 
that was associated. If there is a match, it is highly probable the data wasn’t corrupted.

User password storage
Storing passwords on a server is potentially dangerous; passwords can be lost if the server is hacked. 
Instead of storing the password in plain text, the hash of that password with additional fixed data 
(known as “salt;” the salt is added to prevent rainbow dictionary attacks) is stored. When the user is 
prompted to enter the password, the same process is used (the verifier software collects the password 
from the user, collects the associated salt from the system and computes the salted hash of the 
password), and the resulting salted hash is compared with the data stored on the server. For additional 
user protection, the user password never appears in plain text on the server.

Signature generation and verification
Unlike integrity checking, here the hash function result, in association with other cryptographic 
operations, is used to validate not only the data’s integrity but also the origin of the data. These 
cryptographic functions used alongside the hash function are part of the public key cryptography. 	
See the “Public Key Cryptography” section later in this chapter. 

Proof of work
Bitcoin uses a hash-based mechanism as proof of work.

Several hash functions are available. Some like MD5 and SHA-1 are considered obsolete and weak.  
They should be avoided, although some are still used for weak file integrity checking or file identification. 
In these cases, don’t rely on MD5 of SHA-1 for authenticity. As of today, the standardized and 
recommended functions are the ones from the SHA-25 families; these are mandatory if used for  
signature and signature verification.

5Reference: https://en.wikipedia.org/wiki/Secure_Hash_Algorithms 
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SYMMETRIC KEY CRYPTOGRAPHY
Symmetric key cryptography (see Figure 3.3) uses a secret key shared by the sender and receiver to 
encrypt and decrypt data. In other words, Alice and Bob use the same key both for encryption and 
decryption. This function involves relatively fast operations, so users prefer it when exchanging significant 
amounts of data. The main disadvantage of this function is that the secret key used to encrypt/decrypt 
data (i.e., the symmetric key) must be shared between the communicating parties appropriately to ensure 
it does not fall into the wrong hands. Securely generating and sharing a symmetric key is problematic when 
exchanging data between two remote parties. This problem is exacerbated when confidential information 
sharing among a larger number of participants is needed. Also, the base encryption/decryption function 
provides only data confidentiality. This function is often used alongside public key cryptography for key 
distribution and authentication functions for integrity verification. The AES6 family (AES-128, AES-192, 
AES-256) is the most common among the many symmetric key algorithms. 

5572797962204e7976707221

5572797962204e7976707221

5572797962204e7976707221

Encrypt Decrypt

Hello Alice!

Hello Alice!

Clear text

Secret key Secret key

Clear textEncrypted text

Encrypted text

Encrypted text

SENDER: BOB RECEIVER: ALICECHANNEL

Figure 3.3. Use of symmetric key cryptography to ensure the confidentiality of messages

6Reference: https://en.wikipedia.org/wiki/Advanced_Encryption_Standard 
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Protecting data at rest
This is used when the data is not moving from one system to another; instead, it’s in physical storage 
such as a hard disk or a flash drive. Data is encrypted so it’s protected when the system is off and the 
data is not being used. On a Linux® OS, dm-crypt can be used for this purpose; on a Windows® OS, 
BitLocker can be used. Recent SoCs provide on-the-fly automatic encryption and decryption as it loaded 
or saved to the various memory areas (RAM, flash and so on). For this purpose, the Prince algorithm is 
used because it has low-latency properties that do not introduce delays in memory accesses.

Wrapping keys
This use case is similar to protecting data at rest, but the data protected is another key (i.e., the 
data stored or transmitted is a secret key encrypted with another secret key). Selecting an algorithm 
stronger or a key longer than the algorithm associated with the wrapped key or the length of the 
wrapped key, respectively, is important when wrapping keys.

Protecting data in transit
Data exchanges between two or more systems are usually implemented through a connection using 
a communication protocol on wired (e.g., Ethernet) or wireless (e.g., Wi-Fi) network links. In this case, 
protocols commonly used are Internet protocol security (IPsec), transport layer security (TLS) or secure 
shell (SSH). But the connection also can be local within a system, such as an SoC connected to a secure 
element or trusted platform module (TPM) through an I2C interface. In this case, a specific protocol 
(sometimes a proprietary one) is used.

Symmetric key cryptography is often used in the following cases:
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MESSAGE AUTHENTICATION CODE ALGORITHM
The message authentication code (MAC)7 algorithm is a cryptographic function for integrity and 
authenticity checking. This function is like the hash function with the addition of a shared secret key 
(see Figure 3.4). Anyone can verify a hash, but only the ones who know the shared secret can verify
 a MAC. MAC algorithms are categorized in two families: hash MAC uses one of the hash algorithms 
as an underlying function for the operation, and cipher-based MAC uses symmetric key cryptography 
(e.g., Advanced Encryption Standard or AES) as an underlying function. 
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Figure 3.4. Use of MAC to guarantee the authenticity of a message

7Reference: https://en.wikipedia.org/wiki/Message_authentication_code 
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Data in transit
MAC algorithms are commonly used alongside a symmetric cryptography algorithm to authenticate 
the data being exchanged. This is the case for the network protocol IPsec or TLS. It also can be used 
locally within a system, for example, the connection between an SoC and an enabled multimedia 
card (eMMC) chip. To read and write to eMMC storage, a specific protocol is used, and frames are 
exchanged between the SoC and the physical storage for reading and writing data. In a recent version  
of the eMMC specification, a special partition was introduced for security purposes. A replay
protected memory block (RPMB) and the frame sent and received are protected by an authenticated 
field. The key used to generate the MAC is stored in the eMMC chip, and only the software in 
the SoC knows that the key can read and write data in that RPMB partition. Modern protocols 
use Authenticated Encryption with Augmented Data (AEAD) algorithms that combine the MAC 
computation with the encryption computations to simultaneously provide confidentiality and 
authenticity in one operation (e.g., AES in CCM).

This function is often used for the following:

Key derivation function (KDF)
A MAC algorithm also can be used as the underlying function to derive a new key from an existing  
one. This is a desirable feature in secure systems that requires a key being used only for one purpose  
(e.g., a key used for encryption cannot be used for authenticity). A simple representation of this 
function is “KDF (IKM, salt).” KDF is the function for the derivation. It can be, for example, an HMAC 
function using an SHA256 algorithm. The input key material (IKM) is the secret part of the input 
function (typically an existing secret key). The salt is a nonsecret input data point. The key derivation 
technique is frequently used in resource-constrained devices where a single secret key (the IKM) can 
be stored in fuses — embedded in some ROM in SoC die or a combination of both — and used to 
generate other keys for a variety of purposes in the system.
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PUBLIC KEY CRYPTOGRAPHY (ASYMMETRIC CRYPTOGRAPHY)
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Figure 3.5. Use of asymmetric cryptography to protect the confidentiality of small messages

Figure 3.6. Use of asymmetric cryptography for digitally signing messages
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As opposed to symmetric key cryptography that uses a single key for both encryption and decryption 
operation, asymmetric cryptography, which is also known as public key cryptography (PKC), is using a key 
pair. Each participant has a key pair made of a private key (only known by the owner of the key pair) and a 
public key (known by all participants). Those keys can be used in different ways. The following two major 
uses of asymmetric cryptography are illustrated in figures 3.5 and 3.6. 

Encryption to provide integrity and confidentiality 
A participant encrypts a message using the public key of the intended receiver of the message, and 
only the intended receiver is capable of decrypting the message using their private key. For example, 
the Rivest-Shamir-Adleman (RSA) encryption algorithm can be used for this purpose.

Digital signature to provide authenticity and nonrepudiation 
A participant signs a message using their private key and sends the message together with the 
signature. All other participants can verify the signature using the public key of the sender. 
For example, the RSA algorithm and an Elliptic Curve Digital Signature Algorithm (ECDSA) can be
used for this purpose. As mentioned earlier, the digital signature algorithm relies on a hash function; 
it is the hash of the document that is signed.

PKC has solved the fundamental problem of allowing two entities that have never been in contact  
before to establish an authentic and confidential message exchange between them. 

The PKC function is more computationally intensive than the symmetric functions, so it is commonly  
used to process small amounts of data and support the following use cases:

•	 Establishment of communication channels — The digital signature capability allows participants 	
to identify the parties in the communication, while the encryption capability is used as part of a 	
key-exchanged mechanism to agree on a new key to be used later for the communication.  
The TLS protocol is an example of this usage.

•	 Secure boot mechanism — The digital signature is used to authenticate that a binary is genuine.  
The manufacturer signs the software using their private key and distributes their public key so that 	
any other entity can verify the genuineness of the software.

•	 Public key infrastructure (PKI) — When PKC is used, the identities of the participants need to  
be bound to their public keys and the freshness of those keys needs to be ensured. This is the  
role of PKI: to certify these links by emitting certificates and revocation status information.  
See the “Public key infrastructure” section later in this chapter.

•	 Attestation services — Device attestation means that a device has been provisioned by the 
manufacturer with a key pair unique to the device. Whenever an entity of the network in which the 
device is connected wants to challenge the device for genuineness, the entity can send a challenge 	
to the device and the device can send back a signature of the challenge proving the knowledge of 	
the right private key and, therefore, their genuineness.
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HARDWARE ACCELERATION
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With hardware acceleration, an application can offload certain computing tasks to specialized hardware 
components within the system. To optimize performance and keep the power budget low, the cryptographic 
functions discussed earlier are often accelerated in hardware on many edge computing devices. 

Depending on the edge computing device, one or more hardware accelerators may be available. In some 
devices, the main core processor is extended with special accelerated cryptographic operation codes;  
on many other edge devices, one or more additional coprocessors are integrated in the SoC.

For example, the NXP i.MX product family has a hardware IP called the Cryptographic Accelerator and 
Assurance Module (CAAM) for cryptographic computation hardware acceleration. Beyond the acceleration 
capabilities, the CAAM offers special key-wrapping functions that protect sensitive keys from being 
exposed. This key-wrapping mechanism relies on a collection of fuses that are not accessible by the 
main core of the SoC. This implies that even if an attack succeeds in corrupting the behavior of the main 
core, the attackers don’t have access to the wrapped keys because they don’t have access to the internal 
mechanisms of the CAAM. The key store constructed around these functions is not accessible by the main 
core of the SoC even if the software running on the SoC is compromised. 

Cryptographic hardware accelerators are also hardware isolation devices. The accelerator has its own 
processing unit, including registers, and its own local memories. These resources are not directly  
accessible by the other cores in the SoC.

The use of hardware accelerators, which come with device drivers, is integrated in cryptographic software 
libraries to abstract the cryptographic computations from the point of view of the application software.

Hardware accelerators also provide a guaranteed and sometimes certified implementation of the various 
cryptographic algorithms. In addition, they can incorporate additional security countermeasures to prevent 
side-channel attacks or fault-injection attacks that are trying to access the cryptographic credentials used 
during the cryptographic computations.

Figure 3.7. Hardware acceleration
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HARDWARE RANDOM NUMBER GENERATORS
The security of many security primitives and, more specifically, many cryptographic algorithms and 
protocols relies on the true randomness of some of the data processed during the computations. 
For example, a network protocol for a secure channel is secure only if the challenges sent between the 
communicating parties are truly random (if that’s not the case, an attacker can guess the session keys 
and listen to the communication). The digital signature of a message using the ECDSA is valid only if the 
ECDSA can rely on a truly random number during the signature computation (if that’s not the case, an 
attacker can guess and compute the private key of the signer and forge new signatures in their name). 
The only way to produce truly random numbers is by the addition of a hardware true random number 
generator (TRNG). This generator is used by the software. Modern SoCs incorporate a hardware TRNG 
that’s accessible through protected interfaces. The TRNG is mostly used to seed a pseudorandom number 
generator because the amount of entropy generated by a TRNG per time unit is limited while some 
protocols require more random material per time unit.

PUBLIC KEY INFRASTRUCTURE
A Public Key Infrastructure (PKI) defines and certifies the binding between public keys and entities, 
individuals and/or organizations. It facilitates the exchange of data between two or more entities that are 
using PKC by introducing one or more third parties that can attest the identities of those entities and the 
relationship to the public keys they advertise. This topic is becoming more relevant in edge computing 
because in some architectures, edge devices can act as these third parties. They have the necessary 
implementation security features that ensure they cannot be abused.

A digital certificate can be used to represent this binding between an identity and a public key. The most 
common is the X.509 v3 certificate8. As shown in Figure 3.8, it contains information about not only the 
identity of the organization linked to the key pair but also who has issued and signed the certificate  
as well as a validity period.

Version

Certificate Serial Number

Period of Validity

Subject Name

Public Key Information

Issuer Name

Extensions e.g., Key Usage

Signature Algorithm Identifier

Signature

Figure 3.8. Example of x509.3 certificate content

8Reference: https://en.wikipedia.org/wiki/X.509 
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The issuers of those certificates are called certification authorities (CAs). A CA is responsible for checking the 
link between an identity and a public key along with additional information before it emits a digital certificate. 
Either the certified entities receive these certificates or the certificates are published in public repositories 
accessible by anyone. When another entity receives a certificate, it can verify the validity of the certificate 
thanks to the knowledge of the public key of the certificate issuer (the CA that has signed the certificate) and 
the trust that the verifying entity has in this CA. The receiving entity can also check whether the certificate 
has been revoked between its emission and its current use. Having one CA for all purposes is neither feasible 
nor desirable for many reasons: scalability, availability, confidentiality and so on. That’s why instead of 
having one CA, a PKI is made of several CAs that are commonly organized in a hierarchy. A top CA certifies 
subauthorities that, in turn, certify entities. CAs also commonly cross-certify each other’s certificates. 

Manufacturer A 
Intermediate CA

Manufacturer F 
Intermediate CA

Manufacturer B 
Intermediate CA

Manufacturer G 
Intermediate CA

Device B1 
Certificate

Device G1 
Certificate

Device F1 
Certificate

Device A1 
Certificate

Device B2 
Certificate

Device F2 
Certificate

Device A2 
Certificate

Device A3 
Certificate

Organization 2 CAOrganization 1 CA

Certificates do not have an infinite life; they have a start-of-use date and an end-of-use date. In addition,  
if for any reason (disappearance of the owner of the certificate, security breach of the private key  
associated with a public key and so on) the certificate is revoked, the CA publishes this end of validity.  
If the revoked certificate is presented in a digital transaction, it can be rejected by an entity that first 
checks whether it has been revoked.

A PKI is a set of hardware and software components as well as defined policies. It provides the following services:

Figure 3.9. Example of a PKI infrastructure

Creation of public/private key pair

Digital certificate creation and signature

Digital certificate revocation

Digital certificate validation/verification

PKIs should not be perceived as a single entity that manages all available certificates. A PKI can be not  
only a public implementation at a large scale in data centers but also a private, single corporation or even 
an implementation in a single SoC.

The most common use of PKIs is with secure socket layer (SSL) certificates when browsing the internet 
with “https” URLs. Edge devices may also use “https” URLs to reach out to the internet. However, device 
life-cycle management and secure boot are other good examples of PKI use by an edge-connected device.
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SECURE BOOT: CHAIN OF TRUST
A key aspect of building a secure system is guaranteeing that genuine binaries are running and that these 
binaries are trusted by the OEM that owns or supplies the system. The secure boot functionality provides 
this guarantee. Secure boot typically starts from an immutable memory area within the SoC, which is always 
inherently trusted and always runs correctly. This immutable part of the SoC and its corresponding features 
are sometimes referred to as a root of trust (RoT). PKC algorithms are often used as the underlying 
technology that supports the secure boot of a system. 

The OEM or the entity responsible for the initial firmware running on the chip creates a public/private 
key pair. This operation takes place in a secure facility, and the private key is safely stored with controlled 
access. Often specialized hardware security modules (HSMs) are used to generate, store and apply this key 
(i.e., the key never leaves the HSM and only authorized users use it).

The public part of that key becomes part of the device’s RoT. This is the first trusted component that is 
used to verify any further software. Care must be taken to guarantee the correct public key is placed in 
the devices; this step is usually implemented on the manufacturing line during a process called “trust 
provisioning” (see “OEM closed state” section in Chapter 6). 

The private key is used to sign the firmware that will be executed on the secure system. This is a sensitive 
process, and the ability to sign the binary needs to be correctly controlled by the OEM. If, for example, 
mistakes are made and binaries that are not ready for production are signed, these binaries can later be 
used to compromise deployed edge devices.

Consider many of the heterogeneous i.MX applications processors. They use a mechanism similar to the 
secure boot process called High Assurance Boot (HAB), which is shown in Figure 3.10.
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Figure 3.10. High Assurance Boot
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SECURITY AND ISOLATION
Cryptographic algorithms and protocols have been around for decades. They are trusted to be robust and reliable 
if used correctly. However, as shown by several cyberattacks, logical errors (also known as bugs) have proven to 
be easy-to-exploit weak links in securing edge computing systems. A bug that can be used to compromise the 
security of a system is known as a vulnerability. The larger the code base, the higher the number of vulnerabilities 
the software running on the system has. Android and Linux are good examples of this reality (see also Table 3.2.) 

A mitigation technique used in systems that require a certain level of security is isolating the storage and 
processing of sensitive information to dedicated hardware. For example, secure elements have been used to 
protect keys and sensitive data in the smart card industry. This is also true for the PC industry, which uses Trusted 
Platform Module (TPM) technology to guarantee the integrity of the software running. This has proven to be an 
effective method that still provides some of the best protection available today. However, for several use cases, 
this solution has not scaled well because the need for processing power for sensitive operations has increased over 
the years. Hardware extensions were integrated in the SoC’s CPU to add isolation capabilities to the system while 
taking full advantage of the performance advances of the CPU. Those isolation techniques were first introduced in 
PC, server and mobile devices, but they are now equally applicable to the SoCs used in edge devices.

Modern SoCs implement one or more of the following isolation techniques:

Temporal isolation 
The core of the processor can be in different execution modes; the execution mode determines the 
amount of access the core has to the SoC resources (see “Trusted Execution Environment” section 
later in the chapter).

Virtualization
The resources of the SoC are split, and a hypervisor controls access to them (see “Virtualization” 
section later in the chapter). The hypervisor provides access to several OSs and applications that 
are all being executed in isolation.

Secure enclaves 
These are additional cores in the SoC that are secure/hardened and that have their own private 
resources not accessible to the rest of the SoC. 

Discrete components attached to the SoC 
These are additional hardware components that can be attached to the SoC. They include secure 
elements, memory protection units, secure memory management units and discrete hardware 
firewalls around the SoC.

Multicore isolation
In SoCs with more than one core, the tasks can be split over the various cores and different security 
policies can be applied per core.

The next section explores one of these isolation techniques: the trusted execution environment.
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TRUSTED EXECUTION ENVIRONMENT
The first category of hardware extension is designed to isolate trusted functions. The concept of a 
Trusted Execution Environment (TEE) was introduced in the early 2000s to address these new 
requirements. The TEE implements a safe zone within the application processor. Large OSs such as Linux 
and Android potentially expose numerous vulnerabilities, so they are considered untrusted and execute 
outside the TEE in a zone known as the Rich Execution Environment (REE). Software that is carefully written 
with security in mind and is easily auditable runs inside the TEE. To satisfy those needs, CPU architecture 
extensions, including hardware support for this partitioning of trusted and untrusted software, have 
emerged from several hardware vendors. Some of these extensions include Intel SGX9, AMD Secure 
Encryption Virtualization (SEV)10 and Arm® TrustZone®11. Several software implementations are available, 
including proprietary and open-source options. Most of these implementations follow a similar software 
architecture for which the software running in the TEE offers a collection of services to the software 
running in the REE. The TEE stack itself is usually made of the following two components: 

•	 The TEE core component, also known as the TEE kernel, offers the core isolation mechanism  
as well as basic services like cryptographic and storage services. 

•	 TEE applications, running on top of the TEE core components, offer customization and user 
programmability for dedicated services to the REE. 

On edge computing devices, several trusted service applications run in the TEE including the following:

9Reference: https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html 
10Reference: https://www.amd.com/en/processors/amd-secure-encrypted-virtualization 
11Reference: https://developer.arm.com/ip-products/security-ip/trustzone 

Content protection and digital 
rights management (DRM)

Machine learning protection

TEEs are used to partition not only the processor and the memories but also the peripherals.  
Some TEE technologies enable a separation of the devices so that some devices are accessible  
only by the TEE and not by the REE.

Local HSM (for example, to serve  
as a local certification authority as  
mentioned in PKI)

Firmware update

Secure boot
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OpenSSL is an open-source software library that provides TLS protocols implementation and cryptographic 
operation functions. It is widely used by applications running Linux OS on edge devices for securing 
communication channels. One OpenSSL example shows how an edge device software stack can be 
deployed to secure key assets material while keeping, from an application point of view, the same interface. 

Figure 3.11 shows an edge device software stack. It relies on Arm TrustZone isolation to provide two 
software execution environments. The nonsecure world execution environment is running the rich Linux 
OS. The secure world execution is running open, portable OP-TEE12. It is an open-source implementation 
of TEE that complies with the Global Platform TEE specification. It works through API core functionalities 
such as cryptographic, key and storage operations. Those functions also can be accelerated in hardware. 
This is the case for cryptographic operations that are accelerated using the CAAM hardware on i.MX 
devices. Trusted applications use those APIs to offer services to the Linux OS. In the OpenSSL example, 
this trusted application offers cryptographic operation with keys that are protected by the TEE and saved 
in secure storage.

Figure 3.11. Edge device software stack with nonsecure world in Linux and secure world in OP-TEE

12Reference: https://www.op-tee.org/ 
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A standard interface is used to prevent the OpenSSL from being modified. PKCS11 is one of the PKC 
standards. It is a platform-independent API for accessing tokens like HSMs or smart cards. Most of the 
Linux applications that use PKC have an option to use the PKCS11 interface. This is the case for most 
web browsers, including Firefox and Chrome, and for OpenSSL. 

Figure 3.12 shows the final architecture for the OpenSSL example. A trusted application is deployed on the 
TEE and exposes PKC functions to a library running on Linux OS. This library exposes a PKCS11 API that is 
then used by OpenSSL to offer cryptographic functions to the entire application running on the rich OS. 

The keys of the edge-connected device are safely stored in the TEE, while a Linux application, such as a trust 
provisioning or firmware update, can use them to establish a safe TLS connection with a remote server. 

Figure 3.12. Deploying a trusted application on the TEE
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VIRTUALIZATION
Another isolation technique is virtualization (with or without support of the hardware). The applications 
performed by the edge device are clustered in virtual machines that are executed by a hypervisor that 
manages the sharing of the SoC hardware resources among the different virtual machines (see Figure 3.13). 
Malware infesting one of the virtual machines (e.g., a virtual machine installing an application from an  
unreliable source on the internet) cannot alter the behavior of the other virtual machines. It also cannot 
access the sensitive information managed by the other virtual machines as long as the attacker does not 
succeed in attacking the hypervisor as well. There are several ways to virtualize, for example, using a XEN 
hypervisor or a “docker” implementation. This approach is more secure because a hypervisor is a specific 
software implementation of a minimal OS. It has a smaller attack surface, and it can be audited for security 
when compared with Linux or Android complex systems. Table 3.2 illustrates this difference by listing the 
number of Common Vulnerabilities and Exposures (CVE) referring to XEN, Linux and Android. Note: Just 
because the OS is mentioned in a Table 3.2 entry doesn’t mean it is per se an issue, but inclusion in this 
table shows the relative numbers for a hypervisor compared with those of large, complex OSs. In addition, 
modern cores used in SoCs provide some hardware support for this virtualization. The most common  
one is a memory manager that ensures the secure partionning of the memory.

ApplicationsApplications

Hypervisor kernel

HW resources (processors, memories, peripherals)

Applications

OS 3OS 2OS 1

VIRTUAL MACHINE 3VIRTUAL MACHINE 2VIRTUAL MACHINE 1

Year Total number of 
entries in CVE 
database

Total number of 
entries mentioning 
XEN

Total number of 
entries mentioning 
Linux

Total number of 
entries mentioning 
Android

2018 21837 95 650 725

2019 21431 90 710 1445

2020 30890 100 405 1241

Table 3.2. Number of CVE entries per OS13

Figure 3.13. Virtualization

13Reference: https://cve.mitre.org/



SECURITY CERTIFICATIONS
Security is about trust. This implies that when edge devices are incorporated in a system to adhere 
to a given level of security, those edge devices must be trusted to operate at that security level. 
When an edge device is manufactured and further sold, manufacturers claim some features offer 
some level of security. To substantiate these claims, one approach is to have a trusted third party 
that conducts security evaluations according to agreed upon certification schemes examine the 
edge device. These third-party evaluators deliver certificates that are recognized and trusted by 
all the stakeholders exploring the security of the system containing those edge devices. Some 
certification schemes are proprietary like the Arm Platform Security Architecture (PSA) scheme; 
others are open like the SESIP scheme from GlobalPlatform. Some schemes are specific to special 
use cases like the Common Criteria certification scheme used in high-end security chips for payment 
and identity. Other schemes are made mandatory by regulations like the FIPS 140-x certification 
scheme required for devices sold to U.S. governmental entities.

PRIVACY BY DESIGN
This chapter has addressed the broad topic of system security for edge devices, but there is more. 
Edge devices will be incorporated in systems that must comply with privacy-preserving regulations 
(e.g., the General Data Protection Regulation, or GDPR , in Europe). Moving the collection and 
processing of data (some considered personally identifiable information) to edge devices is an 
approach that lessens the burden on cloud services, but it will make edge devices subject to 
privacy impact assessments. Privacy, like security, is a holistic system property. When privacy is a 
requirement, a “privacy by design” approach must be adopted the same way a “security by design” 
approach is used to achieve system security.

SECURITY BY DESIGN
Implementing security correctly is a difficult and complex task. Incorporating security features in 
edge devices is not sufficient; they have to be used judiciously to achieve the expected result. 
System security architects must envision the use cases of the system and conduct a risk and threat 
analysis. From this analysis, they identify the required security features and how to combine them. 
This approach is called “security by design”. Note that in this approach, security must be considered 
from Day 0 of an edge device’s conception. The sooner security is considered, the higher the 
probability of achieving the expected security at the lowest budget. Security is never an afterthought.

49



50

EDGE COMPUTING  
INTELLIGENCE

Chapter 4

CONTRIBUTORS
Natraj Ekambaram, Director, AI and ML Enablement, NXP Semiconductors

Ali Osman Örs, Director, AI and ML Strategy and Technologies, NXP Semiconductors

Laurent Pilati, Director, ML and Voice Engineering, NXP Semiconductors



51

This chapter presents the benefits of machine learning inference at the edge, such 
as uninterrupted processing, lower latency and user privacy. It examines workflows, 
frameworks and tools, hardware, software, application examples and other edge 
processing machine learning topics.

MACHINE LEARNING AT THE EDGE
Machine learning (ML) is a subset of artificial intelligence (AI) that enables computer algorithms to  
improve automatically through experience. ML can be classified into supervised ML and unsupervised  
ML categories. In supervised ML, algorithms are “trained” using large sets of previously collected and 
labeled data from one or more sensors. In unsupervised ML, the algorithm learns over time to identify 
outliers and differentiation in the sensor data it is exposed to during operation. 

ML is predominantly conducted in the cloud with servers and large compute and storage capacities. 
However, as ML models and algorithms matured, ML inferencing moved from cloud to edge devices. 
Billions of internet of things (IoT) devices perform control and data gathering operations. Compute 
power continues to increase as more complex control and operational decisions are moved to edge 
devices. These secure and self-reliant, albeit memory- and power-constrained, edge devices can  
perform real-time ML inferencing tasks locally with occasional cloud connection.

For example, ML in the cloud is the key technology applied when anyone uses a voice assistant with  
a smartphone or smart speaker. It also is the technology behind how social media and even smartphones 
group together photos featuring a specific person. But those use cases all rely on ML running on a server 
somewhere in the cloud. 

Running ML inference at the edge has advantages. All the ML inference runs locally on an edge processor, 
which means that the application continues to run even if access to the network is disrupted. This is critical 
for applications such as surveillance or a smart home alarm hub, or when operating in remote areas without 
network access. It also provides much lower latency during decision-making than if the data had to be  
sent to a server and processed, and the server had to send the results back. Low latency is important,  
for example, when performing industrial factory floor visual inspection and deciding whether to accept  
or reject products whizzing by.

Another key benefit of ML on the edge is user privacy. The personal data collected, such as voice 
communication and commands, face recognition, video and images captured by the edge device, 
are processed and stay local on the edge. Information is not sent for processing to the cloud, where it 
can be recorded and tracked. The user’s privacy remains intact, so individuals can choose whether to 
share their personal information in the cloud.

Given the need for ML on the edge, the question becomes how much ML performance is needed. 
One way to measure ML performance requirements is the number of operations per second. These are 
usually referred to as TOPS or tera (trillion) operations per second. This is a rudimentary benchmark 
because overall system performance depends on many other factors. Nonetheless, it is one of the most 
widely quoted ML measurements.

For example, performing full speech recognition (not just keyword spotting) on the edge takes around  
1 to 2 TOPS, depending on the algorithm used and whether one wants to understand what the user is 
saying rather than just converting from speech to text. Performing object detection (using an algorithm 
such as Yolov3) at 60 frames per second (FPS) also takes around 2 to 3 TOPS. 
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ML DEVELOPMENT WORKFLOW
Figure 4.1 shows a high-level ML development workflow. Developing ML technology to deploy to an 
edge node requires both operation and dataflow. These steps include:

•	 Collecting raw data — Identify and collect data that will be used to train an ML model.
•	 Augmenting data — Artificially expand labeled training datasets to improve the performance  
	 of an ML model.
•	 Extracting features — Reduce the number of features in the dataset by creating new features that 		
	 summarize the original features with less information.
•	 Creating training and validation sets — Separate the raw, augmented data into two datasets:  
	 one for training the ML model and one for validating the model. To test for bias and over-fitting 		
	 bias, these should be separate datasets.
•	 Selecting a model — Choose a model that meets application and performance requirements  
	 (image classification, object detection, speech recognition, anomaly detection, etc.).
•	 Training the model — Use an ML algorithm and the raw data to create a model for performing 		
	 predictions on new data.
•	 Validating the model — Run a separate set of data through the trained ML model to test  
	 for accuracy and correctness.
•	 Converting and quantizing the model — Approximate a floating-point-based ML network with 		
	 a low-fixed-point model that reduces memory bandwidth and computational cost. In neural networks, 	
	 quantization is converting a data floating-point number to a fixed-point number. Edge devices with ML 	
	 accelerators are largely capable of computing at 8-bit fixed-point precision. By converting a 32-bit 		
	 floating-point value to an 8-bit fixed-point integer value, model size is instantly reduced by four times. 	
	 Quantization also enables faster weight transfers due to reduced precision from the main memory 		
	 to local compute engines. ML accelerators typically have large local memory that can store weights, 		
	 thus benefiting from reduced data transfers between the main memory and local memory. 
•	 Inferencing — Run new data (from a sensor or other data collection mechanism) through the  
	 ML algorithm (or model) to determine an output (for example, the classification of an object).

Figure 4.1. A high-level ML development workflow

Split
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Figure 4.2. ML workflow and Edge ML tools

EDGE ML TOOLS
Edge-based ML requires tools to create and deploy ML models starting in the cloud and ending with 
inferencing performed by edge device ML software stacks with optimized run times on the key edge 
device hardware such as graphics processing units (GPUs), central processing units (CPUs), digital signal 
processors (DSPs) and ML or neural processing unit (NPU) accelerators. These components are shown in 
Figure 4.2 along with the ML workflow example. Users with different roles such as embedded developers, 
data scientists and ML algorithm experts use ML toolkits. Because many cloud vendors provide tools for 
model training, edge-based tools should support the deployment of ML technology from the cloud to an 
edge device.

TFLite Arm NN ONNX 
Runtime Third Party
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Table 4.1. Common edge processing ML frameworks

EDGE ML FRAMEWORKS
Edge ML tools use several open ML frameworks. An ML framework combines libraries and tools 
that enable embedded developers to build, optimize and deploy ML models easier and faster. 
These frameworks democratize the development of ML models and abstract some but not all the 
underlying algorithmic details. Some of these frameworks provide pretrained models for speech 
recognition, object detection, natural language processing (NLP) and image recognition and 
classification, among others. Table 4.1 describes some of the popular edge-based ML frameworks.

ML Framework Edge device applicability Key features

TensorFlow Numerical computation using dataflow 
graphs, regression, classification, neural 
networks, CPUs and GPUs

Google, open-source, open-source deep 
learning framework, training and inferencing

TensorFlow Lite Designed for mobile platforms and 
embedded devices; specifically designed for 
inference on devices with limited compute 
(phones, IoT and other embedded devices) 
and low latency

Faster, smaller in size and less 
computationally expensive; cannot be used 
for training like TensorFlow; only can be 
used for device inferencing

PyTorch Regression, classification, neural networks, 
CPUs and GPUs

Facebook, object-oriented programming 
and many options for optimizing algorithms

TensorFlow Lite Micro Inference library based on Arm® Mbed™ 
technology: targeted to on-device inferencing 

Targets memory resource constrained 
Microcontrollers such Arm Cortex®-M cores 
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EDGE ML HARDWARE
Artificial neural networks (ANN), commonly called neural networks (NN), are computing systems inspired 
by biological neural networks. Loosely modeled on the neurons in a biological brain, an ANN is based 
on a collection of connected units or nodes called artificial neurons. NN-based ML algorithms such as 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been shown to be very 
effective in ML inference tasks. These algorithms consist of multiple compute and transform layers that 
analyze data to detect patterns. CNNs are feed-forward neural networks. In feed-forward networks, all the 
computation is performed as a sequence of operations on the outputs of a previous layer. The final set of 
operations generates the output of the network such as the probability that an image contains a particular 
object, that an audio sequence contains a particular word, that a bounding box in an image surrounds 
an object or that the proposed action is taken. In CNNs, the network has no memory and the output for 
a given input is always the same irrespective of the sequence of inputs previously given to the network. 
RNNs use internal memory to allow long-term dependencies to affect the output. RNNs use time-series 
information for giving outputs and predicting future actions and results based on current and past data for 
language processing tasks, sensor analytics, anomaly detection and so on. The major computation in CNNs 
and RNNs is the “weighted sum” operation that typically uses multiply-accumulate (MAC) operations. 
Because a MAC operation involves a multiplication followed by an addition, each MAC comprises two 
operations. Both CNN and RNN computations benefit from fast memory on the embedded hardware 
device. RNN performance and support are impacted more by limited memory because the feedback path 
requires it.

Typically, neural networks are trained with data in a 32-bit floating-point (FP32) representation. 
But because memory and compute profiles are limited in embedded devices, inference on the edge often 
generates a large incentive to quantize from FP32 to a fixed-point integer representation that’s 16-bit, 
8-bit and even lower. Lower-bit mathematical operations with quantized parameters combined with 
quantized intermediate calculations of a neural network results in large computational gains and higher 
performance. Quantization decreases accuracy, so additional methods are needed to recover the accuracy 
loss to an acceptable level. The energy and area of a fixed-point multiply scale approximately quadratically 
with the number of bits. Reducing the precision also reduces the energy and area cost for storage, which 
is important because memory access and data movement dominate energy consumption and memory is 
limited in embedded systems.

Based on estimates done in 45nm technology1

•	 An 8-bit integer ADD operation consumes 30X less energy than a 32-bit floating point ADD.

•	 An 8-bit integer MUL operation consumes 18.5X less energy than a 32-bit floating point MUL.

Edge processing ML can be performed on SoC processing elements such as CPUs, GPUs, DSPs and dedicated 
accelerators, or a combination of these processing elements. Each has advantages and disadvantages. 

CPUs work well for embedded applications that require parsing or interpreting complex logic in code.  
They are not optimized for ML computation, but they can be used if necessary. CPUs dedicate more area  
to caches and control flow to handle complex logic and more sequential processing.

DSPs have been used in embedded systems for many years to efficiently and economically handle various 
forms of complex signal processing. Using DSPs to analyze sensor data for feature extraction is common. 
DSPs, which continue to evolve, use special instructions such as MACs to accelerate common signal 
processing structures. Vector processing units built around MAC units are being used to accelerate neural 
network computations. Wider single instruction, multiple data (SIMD) units are also being used with very  
long instruction word (VLIW) DSP architectures. 

1M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it),” 2014 IEEE International Solid-State Circuits Conference Digest of Technical 
Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 10-14, doi: 10.1109/ISSCC.2014.6757323.
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Figure 4.3 shows a DSP used for ML processing on a low-cost edge device. In this example, an Arm®-
based Cortex Microcontroller Software Interface Standard (CMSIS) DSP standardizes the DSP code 
running on Cortex-M cores. PowerQuad, a coprocessor designed by NXP to improve energy efficiency 
and performance when implementing DSP algorithms using its MCUs based on Cortex-M33 cores, 
can leverage this application programming interface (API). Preprocessing of mathematical functions, 
like FFT, square root; activation functions like sigmoid and softmax; as well as matrix operations 
are supported.

Figure 4.3. Using a PowerQuad coprocessor on a low-cost edge device for ML

GPUs originated from dedicated graphical rendering engines for computer games. They have evolved to 
accelerate additional geometric calculations such as transforming polygons or rotating images into different 
coordinate systems. GPUs have more logical cores such as arithmetic logic units (ALUs), which allow them 
to process multiple computations simultaneously. ML also requires large amounts of data, which works 
well with GPUs architected for high memory bandwidth. GPUs are primarily designed for pixel processing; 
however, highly parallel matrix mathematics can be achieved using the shader cores for ML computations.

NPUs are optimized for common edge-based use cases such as object detection and segmentation at 
much higher levels of performance and much lower power than CPUs. The accelerators in Figure 4.4 
process complex workloads under a rich OS in Cortex-A systems with wide bus interfaces (128-bit) and 
dynamic random access memory (DRAM) support. Other optimizations such as integrated direct memory 
access (DMA) allow for neural network weights and activations to be fetched ahead of time using a DMA 
connected to system memory. The heavy compute operations, such as convolution, pooling, activation 
functions and primitive element wise functions, run directly on the NPU. Other kernels run automatically 
on a tightly coupled CPU (such as Cortex-M). Another approach to increase performance and reduce 
memory requirements is to conduct offline compilation and optimization of neural networks, including 
operator and layer fusion as well as layer reordering.
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Edge processing SoCs contain multiple processing elements including one or more of the types mentioned 
previously. These processing elements can be used independently or together to perform ML at the edge. 
Various optimized ML pipelines can be designed to efficiently leverage the available processing power of the 
SoC. Edge ML computing is a system-level optimization exercise for which multiple processing elements on 
a SoC (see Figure 4.5) can be used and enabled properly to support advanced real-time edge ML processing.

Figure 4.4. An NPU for edge ML processing
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Consider the ISP shown in Figure 4.5. Camera-based systems always include image signal processor (ISP) 
functionality, though sometimes it can be either integrated into a camera module or embedded in an 
applications processor and potentially hidden to the user. ISPs typically conduct many types of image 
enhancement along with their key purpose: converting the one color component per pixel output of a raw 
image sensor into the RGB or YUV images that are more commonly used elsewhere in the system.

Applications processors without ISPs work well in vision-based systems when the camera inputs are coming 
from network or web cameras that are typically connected to the applications processor by Ethernet or 
USB. For these applications, the camera can be up to 100m away from the processor. The camera itself  
has a built-in ISP and processor to convert the image sensor information and encode the video stream 
before sending it over the network.

•	 OpenCV support accelerated on NEON
•	 TensorFlow and Caffe
•	 Classical machine learning algorithms
•	 Cloud deployment using Docker

•	 OpenCL optimized libraries for ML or 
Application processing in parallel with ML

•	 ISP as part of optimizedML pipeline •	 Optimized machine learning

Figure 4.5. Edge processing SoC with NPU for ML acceleration 

•	 Other open source options
- 	� Arm NN w/NEON acceleration using Arm 

Compute Library (ACL)
- 	 Android NN
- 	 TensorFlow, TF Lite (direct deployment)
-	 ACL for image segmentation, feature 
detection/extraction, image processing, etc.

•	 Sensor integration (e.g. anomaly detection)
- �M7 manages sensor reading/fusion,  

feature extraction RPmsg to send data  
to the A53 for inferencing

•	 Leverage sensor integration libraries
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But at a resolution of around 2 megapixels (1080p) or higher, most image sensors do not have an 
embedded ISP; instead, they rely on an ISP somewhere else in the system. This may be a stand-alone 
ISP chip (which works but adds power and cost to the system) or an ISP integrated in the applications 
processor as shown in Figure 4.5.

With the combination of an ML accelerator and an ISP, the edge SoC processor can perform embedded 
vision system applications at the edge, whether they be for smart homes, smart buildings, smart cities or 
industrial IoT applications. With its embedded ISP, the edge SoC processor can be used 
to create high image quality optimized systems connected directly to local image sensors. It even can 
be used to feed this image data to the latest ML algorithms, all offloaded in the local ML accelerator.

Edge processing also can be implemented on low-end microcontrollers. A possible development  
flow for ML on low-end MCU includes these steps:

1.	 Upload the labeled data to a PC. You can use a universal asynchronous receiver-transmitter 
(UART), Secure Digital or an SD card.

2.	 Experiment with the data and an ML toolkit using tools such as scikit-learn. Make sure an 	
off-the-shelf method can produce good results before moving forward.

3.	 Experiment with feature engineering and selection. Try to achieve the smallest feature set 
possible to save resources.

4.	 Write an ML method to use on the embedded system (perceptrons or decision trees are 		
good because they don’t need a lot of memory). If no floating-point unit is available,  
integers and a fixed-point unit can be used.

5.	 Implement the normal training procedure. Use cross-validation to find the best tuning 
parameters, integer bit widths, radix positions, etc. 

6.	 Run the final trained predictor on your holdout testing set.
7.	 If the trained predictor performance is satisfactory on the testing set, move the code that 

calculates the predictions and the model trained (for example, weights) to the MCU. 		
The model weights will not change, so they can be stored in nonvolatile flash memory  
such as a constant array.

A more generic ML development approach for edge processing includes these steps:
1.	 Define the use case and the corresponding type of machine learning and model.
2.	 Use a ML framework that is self-contained and does not rely on the underlying hardware.
3.	 Prototype the chosen ML paradigms with the framework on a PC, cloud or higher end 

embedded device.
4.	 Characterize the network model in terms of memory and computational overhead.
5.	 Choose a hardware platform while considering the memory and computational constraints. 

Then cross-compile the network for the specific embedded device.
6.	 Train the model on a higher end machine and transfer the weights over to the embedded 

device (the weights do not change, so they can be stored as a constant array in memory).
7.	 Perform relevant network optimizations (pruning, quantization, precision reduction)
8.	 Perform relevant hardware optimizations (alignment, SIMD instructions).
9.	 Test the performance of the deployed network model and determine whether this 		

	implementation can be iterated over after deployment. 

For relatively low-resolution cameras, applications processors without ISPs also work well. At resolutions of 
1 megapixel or below, image sensors often feature an embedded ISP and can output RGB or YUV images 
to an applications processor, so an ISP is not needed in the processor.
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OPTIMIZING ML PIPELINES FOR EDGE DEVICES
Embedded edge devices are growing more complex and powerful as they incorporate more hardware 
components such as CPUs, GPUs, DSPs and ML accelerators to perform various forms of ML. However, 
these complex hardware components must be used efficiently. Edge devices with dedicated accelerators 
such as GPUs and NPUs can perform matrix multiplication significantly faster than CPUs. ML frameworks 
can efficiently leverage these hardware components. For example, TensorFlow Lite interpreters use the 
concept of “delegates” that can hand over the compute intense operations to the dedicated hardware 
for acceleration. Software architectures to support ML can optimize the execution flow of ML in the SoC 
to provide high-performance, low-power solutions.

The application-specific processing pipeline shown in Figure 4.6 is designed in multiple stages with  
multiple steps in the pipeline that can be leveraged for ML processing. Key application segments include:

Vision pipelined for object/face detection/recognition

Voice and audio pipeline for speech analysis

Series data processing pipeline for anomaly detection

Processing pipelines and flexible software architectures provide out-of-the-box SoC and application-type 
optimized run-time support. This facilitates complete exploitation of heterogeneous SoC capabilities 
for ML and maximizes component reuse. Key benefits of this approach include improved out-of-box 
experience (OOBE) and ease of use; comprehensive SoC and hardware resource usage, with configurability 
over I/O interfaces; acceleration option configuration for different use cases; processing domains for easier 
customization; scalability across SoCs; and the use of open-source and other community components.
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Input
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Figure 4.6. Edge device optimized ML pipeline

As an example of an ML-optimized pipeline in Figure 4.6, consider the growing demand for video 
intelligence (industrial inspection, face/person/object detection and classification, action recognition). 
This intelligence has pushed the vision paradigm to quickly incorporate ML-based techniques. The 
traditional vision techniques based on handcrafted feature extraction and usage are still greatly used, 
but the emergence of powerful hardware to run inference engines combined with the widely available ML 
frameworks and vision-based models lowered the barriers to fully (or almost fully) using ML to address 
machine vision use cases. 

A capable edge SoC for ML processing in this application must first be chosen. The device in Figure 4.5 
embeds an NPU, 2D and 3D GPUs, a dual-image signal processor and two camera inputs for an effective 
advanced vision system. This SoC has all the hardware elements required to address complex ML-based 
vision use cases.
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Software must enable these hardware components. Figure 4.7 shows an example of an edge device 
software architecture to support optimized ML at the edge. This software includes:

•	 Video streams and image processing from the Linux® kernel drivers to the de facto standard media 		
	 stream framework GStreamer. These software components enable local and remote camera capture, 		
	 local and remote video stream and picture presentation, and hardware-accelerated single picture 		
	 processing (scaling, rotation, color space conversion).

•	 Adaptation and optimization of the major natural language frameworks (TensorFlow Lite, ONNX, 		
	 ArmNN, Glow) to run efficiently on the SoC NPU, GPU and (coming soon) DSP.

•	 GStreamer plug-ins to provide a vendor-agnostic neural network integration framework that eases 		
	 the integration and connection of the different hardware and software components involved in a 		
	 machine vision use case. This framework, NNStreamer, an open-source technology, supports the 		
	 major ML frameworks (TensorFlow Lite, ArmNN, Caffe2) and features the following:

	 1.	 Neural network framework connectivity (TensorFlow, Caffe, etc.) 

		   — Stream frameworks like GStreamer.

	 2.	 AI project streaming — Apply efficient and flexible stream pipelines to neural networks.

	 3.	 Intelligent media filters — Use a neural network model as a media filter/converter.

	 4.	 Composite models — Apply multiple neural network models in a single stream pipeline instance.

	 5.	 Multimodal intelligence — Use multiple sources and stream paths for neural network models.

•	 Methods to construct media streams with neural network models using the de facto media stream 		
	 framework, GStreamer. GStreamer users can apply neural network models as if they were just another 	
	 media filter. Neural network developers can manage media streams easily and efficiently.

•	 Real-time performance profiling of the full pipeline (CPUs, GPUs, NPUs, DSPs and memory profiling).



Figure 4.8. Application run time simultaneously leveraging voice and vision pipelines on an NXP i.MX 8M Plus edge computing SoC
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This concept can be expanded further by conducting the parallel processing of ML algorithms on a single 
SoC. Figure 4.8 shows a voice and audio ML pipeline configured to run on an Arm Cortex-M core on top of a 
real-time OS while a vision ML pipeline executes on the Arm Cortex-A core on top of a rich OS such as Linux. 

In summary, running ML at the edge requires an awareness of the compute and memory resources available. 
It also requires modifications to the ML models and the process flow to fit the resource profile. In return, 
running ML at the edge has many advantages such as improved privacy, reduced or no dependency on a 
network connection, reduced power dissipation and the capability to make real-time low-latency decisions.
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Connectivity is a fundamental part of the edge processing system, and one of 
the basic tenets of smart devices and edge processing is “connect.” This chapter 
provides an overview of several of the wireless connectivity standards.

WIRELESS CONNECTIVITY OVERVIEW
Wireless connectivity communication protocols (see Figure 5.1) can be proprietary or proposed  
by global standardization organizations to achieve greater interoperability.

The selection of a wireless connectivity protocol for a given application depends on several factors 
including data rate, range and power consumption. Security requirements and support of an internet  
of things (IoT) ecosystem like Matter should also be considered. Multimode IoT devices can implement 
several of these protocols simultaneously.
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Figure 5.3. Connectivity software stack mapped approximately as OSI layers

The IoT ecosystem comprises a variety of devices with diverse purposes. End devices or end nodes, 
such as sensors can collect environmental, physical or mechanical data and send it to the edge device. 
The edge device, for example, a smart home gateway, aggregates the data and adds the necessary 
intelligence either locally or through the cloud. Specialized edge devices such as thermostats can 
perform data collection and analysis and, at the same time, support end nodes while also connecting 
to a gateway or the cloud. 

Often the ecosystem is supported through a wireless network that allows data to flow securely and 
reliably between the devices. Those wireless networks use standard communication protocols to allow 
interoperability and an optimal user experience. Because of this, wirelessly connected devices enable  
an increasing number of services and applications in the diverse field of IoT such as home automation, 
smart buildings, industrial automation, medical devices, wearables and consumer appliances.

The reliability of these systems depends on the ability of the nodes to communicate with each other.  
Many end nodes and specialized edge nodes are battery powered, so the power consumption of an 
application needs to be managed to guarantee long battery life while maintaining functionality.  
This also helps reduce battery cost and maintenance.

Energy efficiency is relevant for applications that are connected to the power grid. In this case, 
the environmental impact of applications should be controlled or physical limits such as thermal 
constraints need to be addressed.

Wireless connectivity communication protocols can be proprietary or they can implement specifications 
proposed by global standardization organizations to achieve greater interoperability.

Multimode IoT devices often support several of these protocols. Figure 5.4 shows the connectivity 
software stack of a single microcontroller device that works with Wi-Fi, Bluetooth® Low Energy, 
Zigbee® and Thread™.
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Figure 5.4. Connectivity software stack of a multimode MCU

Wi-Fi
Wi-Fi® has had a tremendous impact on the modern world and will continue to do so. From our home 
wireless networks, to offices and public spaces, the ubiquity of high speed connectivity without reliance 
on cables has radically changed the way computing happens. 

Over the past decades Wi-Fi technology has evolved significantly to support higher bandwidth, speed, 
lower latency, large number of reliable connections, Quality of Service and robust security that make it 
ubiquitous and quite often the preferred mode of connectivity at home and in enterprise settings.

Wi-Fi NETWORK
Wi-Fi operates in the 2.4, 5 and 6GHz bands. A typical connection involves an Access Point to which 
multiple client devices like smartphone, televisions, security cameras, thermostats, etc. connect to access 
the internet and to communicate with each other. 

The Access Point usually acts as the gateway to the internet besides managing communication between 
devices that are connected on the local network. Access Points usually support concurrent operation in 
multiple bands (2.4, 5 and 6GHz). Client devices incorporate the capability to operate in one or more of 
the bands.

In a typical network configuration high bandwidth, latency sensitive applications like video streaming, 
gaming, enterprise workloads etc. are hosted on the 5/6GHz band which support higher speeds and 
legacy devices or IoT devices with low data and longer range requirements in the 2.4GHz band.

In addition to this, Wi-Fi allows for modes in which two client devices can establish a direct connection 
between two client devices without the need for an Access Point for example like connecting from a 
smartphone to a printer to print a photo. This is called a Point-to-Point connection or Wi-Fi Direct.



Generational name Technology supported

Wi-Fi 7 802.11be (in development)

Wi-Fi 6 802.11ax

Wi-Fi 5 802.11ac

Wi-Fi 4 802.11n

Generational of network connection Sample user interface visual

Wi-Fi 6

Wi-Fi 5

Wi-Fi 4

Source: https://www.wi-fi.org/who-we-are/our-brands

Table 5.2. Sample user interface visuals for Wi-Fi technologies
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Wi-Fi GENERATIONAL NOMENCLATURE
To help users identify capability of Wi-Fi enabled devices, Wi-Fi Alliance introduced simplified 
generational names, based upon major Wi-Fi technology (PHY-Physical Layer) releases that may  
appear in device names and product descriptions. The current generation of Wi-Fi, based on the  
IEEE 802.11ax standard, is known as Wi-Fi 6, which includes devices that can operate in the 6 GHz 
band, referred to as Wi-Fi 6E.

Wi-Fi devices may also use a user interface (UI) visual on the display to identify the generation of a 
network connection. The visuals will display a Wi-Fi signal indicator and a numerical representation of 
the connection. UI visuals will adjust as users move between Wi-Fi networks that provide a different user 
experience. When a device displays a signal indicator visual accompanied by the number 6, indicating a 
Wi-Fi 6 connection, that device is utilizing the most advanced version of Wi-Fi available. 

Table 5.1. Generational nomenclature for Wi-Fi technologies
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Wi-Fi 6/6E
Previous generations of Wi-Fi primarily focused on servicing one device at a time irrespective of the 
capability of the Access Point or the connected client devices. Factors such as device density and radio 
frequency (RF) contention can hinder the ability to achieve the peak individual device and network 
performance in this configuration.

Wi-Fi 6 was introduced to address these issues. Originally named “High Efficiency Wi-Fi”, Wi-Fi 6 aims  
to improve the overall network performance through the use of better spectrum usage, new modulation, 
and multi-user capabilities. The focus shift from individual device performance to holistic network 
performance creates a better Wi-Fi experience for all users on the network. 

Wi-Fi 6 delivers faster speeds with low latency (enabled by multi-user capability to facilitate multiple 
simultaneous communication streams), high network utilization, longer range and power saving technologies 
that provide substantial benefits spanning all the way from high density enterprises, bandwidth and latency 
sensitive video streaming/gaming applications to enabling battery operated low power IoT devices. 

To address the issue of congestion in existing 2.4 and 5GHz bands driven by rapidly growing adoption 
in IoT, automotive and other applications, Wi-Fi was granted up-to 1.2GHz of new spectrum in the 6GHz 
band. Devices that support the 6GHz band sport the 6E moniker.

Peak user data rates of multi-gigabits per second are supported by Wi-Fi 6/6E and a typical Access  
Point supports several dozen connected client devices. To further improve range Wi-Fi supports Wi-Fi 
EasyMesh, a standards-based approach protocol that ensures interoperability.
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NXP offers a complete portfolio of Wi-Fi4/5/6/6E solutions, including standalone and combo devices 
incorporating Wi-Fi, Bluetooth and 802.15.4 connectivity with robust security.

Wi-Fi SECURITY
Since 2003, Wi-Fi Alliance has enabled individuals and businesses to increase the protection of 
information moving across Wi-Fi networks through the Wi-Fi Protected Access® family of technologies. 
Security features of Wi-Fi Protected Access constantly evolve to include stronger protections and new 
security practices as the security landscape changes.

The Wi-Fi Protected Access security family includes solutions for personal and enterprise networks.

Wi-Fi CERTIFIED WPA3™

WPA3™ (Wi-Fi Protected Access 3) provides cutting-edge security protocols to the market. Building on the 
widespread success and adoption of Wi-Fi security, WPA3 adds new features to simplify Wi-Fi security, 
enable more robust authentication, deliver increased cryptographic strength for highly sensitive data 
markets, and maintain resiliency of mission critical networks. WPA3 networks:
•	 Use the latest security methods

•	 Disallow outdated legacy protocols

•	 Require use of Protected Management Frames (PMF)

Since Wi-Fi networks differ in usage purpose and security needs, WPA3 includes additional capabilities 
specifically for personal and enterprise networks. Users of WPA3-Personal receive increased protections 
from password guessing attempts, while WPA3-Enterprise users can now take advantage of higher-
grade security protocols for sensitive data networks.

WPA3 is a mandatory certification for Wi-Fi CERTIFIED™ devices.

WPA3-PERSONAL
WPA3-Personal brings better protections to individual users by providing more robust password-
based authentication, even when users choose passwords that fall short of typical complexity 
recommendations. This capability is enabled through Simultaneous Authentication of Equals (SAE). 
The technology is resistant to offline dictionary attacks where an adversary attempts to determine a 
network password by trying possible passwords without further network interaction. 

•	 Natural password selection: Allows users to choose passwords that are easier to remember

•	 Ease of use: Delivers enhanced protections with no change to the way users connect to a network

•	 Forward secrecy: Protects data traffic even if a password is compromised after  
	 the data was transmitted
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WPA3-Enterprise with 192-bit mode
WPA3-Enterprise also offers an optional mode using 192-bit minimum-strength security protocols  
and cryptographic tools to better protect sensitive data.

Authenticated encryption: 256-bit Galois/Counter Mode Protocol (GCMP-256)

Authentication: Extensible Authentication Protocol – Transport Layer Security (EAP-TLS) using  
Elliptic Curve Diffie-Hellman (ECDH) exchange and Elliptic Curve Digital Signature Algorithm  
(ECDSA) using a 384-bit elliptic curve

Key derivation and confirmation: 384-bit Hashed Message Authentication Mode (HMAC) with 
Secure Hash Algorithm (HMAC-SHA384)

Robust management frame protection: 256-bit Broadcast/Multicast Integrity Protocol Galois 
Message Authentication Code (BIP-GMAC-256)

The 192-bit security mode offered by WPA3-Enterprise ensures the right combination of cryptographic 
tools are used and sets a consistent baseline of security within a WPA3 network. 

Source: https://www.wi-fi.org

Wi-Fi IN EDGE COMPUTING
In-addition to being the commonly preferred mode of connectivity pipe in interfacing edge devices to the 
cloud, Wi-Fi devices at the edge can also serve other functions like less intrusive safety/security using CSI 
(monitor number of people in a facility, presence detection etc.). These compute heavy functions benefit 
from real time edge processing where the round trip delay to the cloud is not ideal. 

Analytics processing and Wi-Fi rate adaptation also benefit from a hybrid approach of using edge compute 
capabilities for real time edge processing and the cloud for heavier workloads that are not time sensitive.

Wi-Fi COMBO CHIPSETS
NXP offers Wi-Fi chipsets based on the latest standards in Wi-Fi alone format or more commonly integrated 
with Bluetooth (including Bluetooth Low Energy) and 802.15.4 on the same chipset. This has the benefit of 
enabling compact board design, lower power consumption, reduced system cost and better co-existence 
between the various radios.
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BLUETOOTH LOW ENERGY
Bluetooth Low Energy is a short-range radio communication technology that is independent of and 
incompatible with Bluetooth Classic. Still, Bluetooth Low Energy and Bluetooth Classic can coexist in 
the same radio spectrum. 

The Bluetooth Low Energy protocol stack has excellent power consumption due to several factors such 
as low latency, low duty cycle (data is exchanged only on connection intervals) and smaller data packet 
size compared with Bluetooth Classic.

Bluetooth Low Energy hardware is usually designed to support advanced low-power modes, thus 
enabling long lifetimes for battery-operated devices (the common use case is a coin cell).

Typical Bluetooth Low Energy topologies are point-to-point, star and tree, as shown in Figure 5.6.

Figure 5.6. Typical Bluetooth Low Energy topologies
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Bluetooth Low Energy also features the mesh network topology, which allows many-to-many 
communication over network radio links (see Figure 5.7).

A mesh topology that 
incorporates Bluetooth Low 
Energy is ideal for creating 
large-scale, industrial-grade 
device networks such as sensor, 
asset tracking, lighting and 
building automation networks.

Figure 5.7. Mesh topology with Bluetooth Low Energy
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Figure 5.8. Bluetooth Low Energy architecture

The Bluetooth Low Energy connectivity architecture is shown in Figure 5.8.

The key components in a Bluetooth Low Energy stack are:

•	 Application Profiles — Include one or more General Attribute Profile services and how the services 
can be used to enable an application.

•	 Generic Access Profile (GAP) — Encompasses the base functionality common to all Bluetooth devices 
such as modes and access procedures used by the transports, protocols and application profiles. GAP 
services include device discovery, connection modes, security, authentication, association models and 
service discovery.

•	 Generic Attribute Profile (GATT) — Describes the hierarchy of services, characteristics and attributes. 

•	 Attribute Protocol (ATT) — Implements the peer-to-peer protocol between server and client. 

•	 Security Manager Protocol (SMP) — Manages pairing, authentication and encryption.

•	 Logical Link Control and Adaptation Protocol (L2CAP) — Allows higher level protocols to  
transmit and receive upper-layer data packets. 

•	 Host Controller Interface (HCI) — Provides a uniform and standardized command interface  
between the host and the controller. 

•	 Link Layer — Manages connection advertising, scanning, creation and maintenance. 

•	 Physical Layer (PHY) — Configures and controls the physical parameters of the transmitted  
and received data.

In a typical scenario, the Bluetooth Low Energy peripheral device sends advertising packets announcing its 
presence. A Bluetooth Low Energy central device in scanning mode sends a connect request to the Bluetooth 
Low Energy peripheral, or it may alternatively request additional information from the peripheral device. 
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Figure 5.9. Bluetooth Low Energy peripheral and central devices

Another example is a Bluetooth Low Energy beacon device, which is a transmitter-only device that is not 
connectable. It uses advertising packets to send information to a central or observer device. Usually, the 
beacon information consists of an identifier that can be picked up by a compatible device to perform 
specific action(s). Common use cases are indoor positioning, tracking and message distribution at various 
points of interest (e.g., train station, bus stop, museum, etc.).

Bluetooth Low Energy has a variety of security features that ensure protection against passive 
eavesdropping, man-in-the-middle attacks and device tracking.

The following methods and techniques are used to ensure reliable security:

For example, the mouse in Figure 5.9 is a Bluetooth Low Energy peripheral device, and the PC is a Bluetooth 
Low Energy central device.

Pairing
Generates and exchanges one or more shared secret keys for two Bluetooth Low Energy devices so 
they can establish a secure link.

Device Authentication
Checks that two Bluetooth Low Energy devices have the same keys.

Bonding
Securely stores the keys exchanged during the pairing process for use in further connections.

Encryption
Transforms information from plaintext to ciphertext to ensure data confidentiality.

Message Integrity
Ensures that the data was not tampered with during transit.
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There is a broad market for Bluetooth Low Energy technology. Uses cases that implement this technology 
range from simple beacon applications to complex mesh networks for industrial or building automation.

These markets feature associated applications:

Portable Medical
Heart rate sensor, 

blood pressure monitor, 
thermometer, glucose sensor, 

pulse oximeter sensor

Home Control
Appliances, lighting, 

HVAC, security

Automotive
Tire pressure monitoring, 

car sharing, remote keyless entry
 with UWB (see Figure 5.10),

 infotainment

Sports and Fitness
Cycling speed and cadence 

sensor, cycling power 
sensor, weight scale 

Building 
and Industrial
Mesh networks

Proximity
Beacon,

 proximity reporter

PC Peripherals
Headphones, 
HID devices, 

gaming controllers

Figure 5.10. Bluetooth Low Energy helps activate UWB ranging for secure car access
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Embedded microcontroller devices connect to edge processing platforms using technologies including 
Bluetooth Low Energy. An example is shown in Figure 5.11. This microcontroller integrates long-range 
capability with Bluetooth Low Energy and generic frequency-shift keying (FSK) radio. Many Bluetooth Low 
Energy-enabled microcontrollers can achieve -105 dBm sensitivity with 125 kbit/s data rates to enable 
connections in harsh environments and across extended distances. Data stream buffers allow the capture 
of radio parameters without stalling the processor or direct memory access (DMA) operations. This enables 
the high-accuracy measurements needed for distance and angle approximations. These types of radios 
can support up to eight simultaneous secure connections in any leader/follower combination, which allows 
multiple authorized users to communicate with the device. Peripherals such as FlexCAN enable integration 
into an automobile’s in-vehicle or industrial controller area network (CAN). 

Figure 5.11. An example of a Bluetooth Low Energy-enabled microcontroller
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ULTRA-WIDEBAND TECHNOLOGY
Another interesting connectivity technology is ultra-wideband (UWB), which can be used not so much for 
the basic transmission of information but for sensing and ranging through the concept of “localization”.

Localization is the determination of an object’s physical location, which can be pinpointed in terms of 
range (distance) estimation, angle estimation and joint estimation of range and angle.

UWB was originally designed for high-rate data communication competing against other technologies 
such as Wi-Fi. The technology has undergone several transformations. UWB’s evolution from a data 
communication technology based on orthogonal frequency-division multiplexing (OFDM) to an impulse 
radio technology specified in IEEE 802.15.4a makes it a uniquely secure fine-ranging technology.
Its security extension specified in IEEE 802.15.4z (at the PHY/MAC level) adds to that security.

Range estimation
Radio waves can be used to determine the distance between devices because of these characteristics: 

•	 Waves are attenuated in a predictable way over distance. 

•	 Waves travel at the speed of light.

•	 The number of cycles a wave completes over a fixed distance  
	 varies with the frequency of the wave.

Unlike Bluetooth and Wi-Fi, which transmit narrowband signals and use Received Signal Strength 
Indicator (RSSI) to determine location, UWB transmits wideband signals (500 MHz) and uses time of 
flight (ToF) to determine location.

Because waves travel at the speed of light, distance can be estimated by measuring the time it takes  
a message to travel from one radio to another. This technique is shown in Figure 5.16.

Figure 5.16. Determining a device’s relative position with UWB localization capability
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Figure 5.17. Locating a device using a combination of angle detection and distance estimation

Some UWB devices combine angle detection and distance estimation to fully locate the position of a  
device. Knowing the distance alone indicates a target device is within a ring of possible positions relative to 
the anchor (see Figure 5.17A). If the angle of the incoming wavefront is known, it can be used to precisely 
determine the position of the target device (see Figure 5.17B).

UWB technology uses ranging and ToF for precision ranging. A UWB radio is embedded into a device such 
as a smartphone, wearable or smart key. When this device comes within range of another UWB-enabled 
device, a process called “ranging” happens. This is done by performing a ToF measurement between the 
devices. Depending on the application, one of the UWB-enabled devices computes a precise location of 
the other device. Many use cases assume one UWB device is mobile and one is fixed. For example, 
a smart key would be the mobile UWB device and the corresponding automobile would be the fixed 
device (assuming the driver is approaching a parked car).

As a short-range wireless technology like Bluetooth, Wi-Fi and NFC, UWB can operate at frequencies 
between 6.5 GHz and 10 GHz compared with Bluetooth’s fixed 2.4 GHz. The general rule is that the higher 
the frequency, the shorter the range.

Under line-of-sight (LOS) conditions, UWB’s operating range can stretch to 100 m. Of course, the real-world 
range depends on many variables in the end-product design and the environment for which it’s planned. 
For instance, antenna design, power levels, channel frequency, propagation environment complexity 
and the kinds of materials that the signal may have to pass through all influence operating range. UWB 
performs poorly in metal environments, but it does pass through other materials such as wood, plaster  
and even brick, so the density of materials impacts the range. Though many applications use UWB for its 
short-range benefits, it can stretch a lot further.
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By supporting the IEEE’s work with an interoperable HRP standard, the FiRa Consortium develops service-
specific protocols for multiple verticals and defines the necessary parameters for a wide-range of applications. 

Because UWB is mostly used as a secure fine-ranging impulse radio technology, it fits better in the category 
of sensing technologies that can pinpoint objects more accurately. Other technologies such as Bluetooth 
Low Energy and Wi-Fi feature improved positioning accuracy, but for sensing, the physics don’t compare. 
They still rely on a modulated sine wave carried over a narrow frequency, whereas UWB has a unique pulse 
signal (2 ns) operating over 500 MHz of frequency.

Bluetooth Low Energy and Wi-Fi, which use the RSSI technique, are known to be more susceptible to 
environmental factors, including obstructions and interference from other radios. This results in reduced 
accuracy. An obstruction can cause severe attenuation of signal power, leading to erroneous measurements 
that can be off by multiple meters.

Because of this, UWB is a satisfactory option for localization with good accuracy and reliability under  
a variety of conditions.



Figure 5.18 shows some UWB applications:
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Figure 5.18. UWB applications

Secure hands-free access 
Automatically unlock a UWB-enabled door lock on 
a car, front door or warehouse just by being near it. 
ToF calculations prevent UWB from susceptibility to 
relay attacks based on signal amplifications.

Indoor navigation
Navigate large buildings such as shopping malls 
and easily find a car, a store, a friend and even 
items with the precision of a few centimeters 
using GPS-style location services indoors.

Hands-free payments 
Leave a UWB-enabled phone in a pocket, in a bag or 
mounted on a dashboard and still make a payment. 
Also trigger personalized ads and offers that reflect 
personal interests and preferences.

Credential sharing 
Share access credentials to a rental, coworking 
space or apartment securely and grant temporary 
access. Smart cars will allow specifications for a 
car’s use, including feature unlocking.

Item tracking 
Set up lights, speakers and any other connected 
device with UWB sensing capability to follow users 
from one room to another. UWB-enabled objects 
can be pinpointed instantly using a mobile device.
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NFC
Near Field Communication (NFC) delivers short-range communication with the ability to store and transmit 
data in much the same way that Radio-frequency identification (RFID) tags and contactless smartcards do. 
NFC is a proximity technology, which means it only works when two devices are brought close together or 
actually touch. When devices aren’t near each other, NFC is dormant, so it’s not drawing power or sharing 
information when it shouldn’t. Only one of the devices needs to be powered for a two-way interaction to 
take place. The second device can save its battery for other things, or not have a battery at all.

NFC Communication Modes
Read/Write Mode 

This is where NFC spends most of its time, with one NFC-enabled device interacting with another to get information 
or initiate an action. The initiating device can read data in from the second device or write data out to it.

MCU MCU

MCU

NFC
R/W

NFC
R/W

NFC
R/W MCU

NFC 
CONNECTED 

TAG OR PHONE 
IN CEM

Peer-to-Peer Mode

Sometimes referred to as “P2P” mode, this is the one you can use to exchange files between smartphones, 
or receive loyalty points when making a purchase.

MCU MCUNFC
P2P

NFC
P2P

Card Emulation Mode

This mode, used almost exclusively by NFC smartphones, lets the system behave as an ISO/IEC 
14443-compliant contactless smartcard. That means your phone can be used in the existing contactless 
infrastructure, for things like ticketing, access control, transit, tollgates, and payments. The mode takes 
very little power, and can work even when the phone is off.
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NFC for Edge Computing
NFC is a well-established technology for access control and contactless mobile payments. Besides  
the proximity technology offers new opportunities since any NFC-enabled phone or tablet can  
serve as a temporary touchscreen for another product, enabling sophisticated interactions and  
increased configurability. 

PAIRING & COMMISSIONING

•	 Enable two-way interactions with Peer-to-Peer mode
•	 Pair Bluetooth or Wi-Fi devices faster with NFC
•	 Identify a device instantly, without entering codes or creating device conflicts
•	 Exchange credentials securely, just by tapping
•	 Use protocol-agnostic operations to trigger actions

AUTHENTICATION & IDENTIFICATION

•	 Authenticate replacement parts and automatically adjust settings of the main unit based  
	 on the accessory attached
•	 Identify users and immediately provide personalized settings 
•	 Send notifications when accessories are nearing replacement, and make offers based  
	 on usage patterns

PARAMETRIZATION & DIAGNOSIS

•	 Device can be unpowered
•	 No ambiguities - the device you tap is the device you connect to
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5G adds new frequency spectrum
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5G
5G is the fifth generation of wireless technology for broadband cellular networking. This generation of 
technology will provide increased data speeds into the multi-gigabit per second range, larger network 
capacity and significantly improved latency. From an edge processing perspective, 5G will enable real-time 
edge computing and the low latency required for machine learning and artificial intelligence on the edge.  
It also will support other applications such as vehicle-to-everything (V2X) connectivity, virtual reality  
applications and industrial smart manufacturing.

Three things that set 5G apart from previous generations are 1) its operating location in the wireless 
spectrum, 2) the antenna structure used to transmit and receive signals and 3) the transition to a more 
software-based approach to managing and optimizing operation.

•	 New spectrum 

As shown in Figure 5.19, 5G extends the existing cellular spectrum to include the area between  
2.7 GHz and 6 GHz and adds a completely new part of the spectrum above 25 GHz. This new portion 
of the spectrum, known as millimeter wave (mmWave), was previously reserved for other services 
such as medical imaging, microwave remote sensing, amateur radio, terahertz computing and radio 
astronomy. It will enable ultra-high bandwidth and ultra-low latency use cases, but it presents a  
steep learning curve for engineers used to working below 6 GHz. 

•	 New antenna configurations 

5G uses active antennas, which are more highly integrated and complex than the passive antennas 
traditionally associated with cellular. Active antennas require a sophisticated mix of hardware and 
software and use massive multiple input, multiple output (mMIMO), a technique that involves dozens 
(if not hundreds) of antennas working together to expand capacity within the same bandwidth.  
Working with so many antennas is a complex, compute-intensive task that requires careful  
optimization to ensure reliable, interference-free operation.
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Figure 5.19. 5G densification for capacity in layers

•	 More code

5G takes advantage of virtualization, with more being implemented in the cloud, and often uses 
machine learning algorithms for optimized network management, orchestration in the core, traffic 
monitoring and load balancing. A typical 5G base station has millions of lines of code, software to  
add new features like support for more devices, increased capacity and expanded coverage to  
accommodate more traffic. Heavy reliance on software changes how the network is deployed and 
operated. It also changes the security models.

Preparing the infrastructure for 5G operation, through what’s known as 5G densification, involves adding 
different layers of coverage. Each layer provides the throughput improvements needed for a given area  
or use case. As shown in Figure 5.19, these layers consist of traditional 5G macro cells, 5G mMIMO cells,  
5G mmWave cells and small cells.

•	 Traditional 5G macro cells

Servicing a wide area of about 25 km, traditional 5G macro cells mainly provide capacity in suburban 
and rural environments. Similar to their 4G counterparts, traditional 5G macro cells are big,  
high-powered base stations that live on towers, monopoles and rooftops. They are sometimes  
made to look like giant trees. They typically incorporate a passive antenna system and a simple  
MIMO configuration for transmission and reception that either uses four antennas (4T4R) or eight  
antennas (8T8R) driven at 40 W. 
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•	 5G mMIMO cells

Servicing a smaller area of about 1 km, 5G mMIMO cells are used to provide capacity in urban 
environments that have a higher device density than suburban and rural areas. The traditional macro 
cell’s passive antenna and radio unit are replaced with an active antenna system. The active antenna 
system combines mMIMO configurations with other 5G features, such as beam forming, to increase 
throughput while reducing interference. Typical configurations use 32 antennas driven at 10 W or 64 
antennas (64T64R) driven at 5 W. 

•	 5G mmWave cells

Servicing an area of about 100 m, 5G mmWave cells use the new spectrum above 25 GHz to provide 
capacity in urban environments with very high device density and to support fixed wireless access 
(FWA) in buildings. Working in the mmWave spectrum means exceptionally high bandwidth, made 
possible using hundreds of antennas in a mMIMO configuration driven at 200 mW, but because 
mmWave signals have a lower wavelength, they don’t travel as far. To balance the tradeoff between 
bandwidth and power consumption, 5G mmWave cells have limited range.

•	 5G Small Cells

Servicing an area of between 5 m and 100 m, 5G small cells are backpack-sized, low-power 
base stations that provide targeted capacity in network “hotspots”. Small cells are compact and 
lightweight, so they can be mounted just about anywhere, and they prevent 5G signals from being 
dropped in crowded areas, such as city centers or sports venues. A 5G small cell is, in many ways,  
a miniature, low-power version of a traditional 5G macro cell. It typically uses a passive antenna with  
a smaller MIMO setup of just four antennas (4T4R) driven at a much lower power of just 1 W.
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Figure 5.20. Coexistence of 5G and Wi-Fi to support edge processing

5G and Wi-Fi
Cellular and Wi-Fi are complementary technologies. Today’s smartphones already combine the two, making 
it possible to switch from cellular to Wi-Fi when the cell signal is weak or to save on data usage. This trend 
is expected to continue, with Wi-Fi 6/6E and 5G small cells working in tandem to support more devices 
accessing more data, all at once. 

5G can even boost the deployment of Wi-Fi 6/6E by making it easier to connect Wi-Fi signals to the 
core network. In FWA applications, for example, 5G mmWave cells can be used as the backhaul service, 
replacing the expensive fiber-optic cabling currently used to link many Wi-Fi gateways to the core network. 

Figure 5.20 shows an example of 5G and Wi-Fi technologies coexisting in an infrastructure to support 
edge processing.

Edge processing includes 5G cellular and wireless connectivity for wireless router applications to manage 
network traffic and network connectivity through high-performance processors in distribution and radio units. 
This includes not only infrastructure but also small cells on streetlights and in buildings as well as equipment 
in homes. Central units leverage network interface controllers (NICs) to route data across the network.

In the home, wireless technologies including Thread, Bluetooth Low Energy and Wi-Fi provide connectivity 
in devices such as smart assistants, security systems, smart thermostats, light bulbs and many other 
applications. Distribution units route cell tower data to and from the central unit using network processors. 
Small cells, like distribution units, contain a radio to handle RF signals and communicate with the central 
unit without a distribution unit.
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Customer premises equipment (CPE) technology is similar to a wireless modem and router except it 
connects to a cellular network rather than a wired internet connection. Designed to operate in the home, 
CPE provides internet service through the cellular network. This enables an FWA solution for last-mile 
gigabit broadband connectivity to homes on 5G networks. The infrastructure in Figure 5.20 provides the 
performance, security and scalability required for edge processing.

Reaching the cloud
One of the first factors that product makers must consider when defining a new product is whether it will 
be a “connected” device. IoT “air gapped” products are increasingly rare. Designing a connected device 
benefits the device maker and the end customer. Device makers can easily manage the millions of devices 
as they are released, and consumers can benefit from the automatic firmware updates and diagnostics.  
To deliver the additional capabilities, product developers are turning to the cloud. From scalability to  
expanded compute capability, cloud services can give more life to the lowest end electronic devices. 

Cloud providers such as Amazon Web Services (AWS), Microsoft® Azure® and Google Cloud provide services 
to the IoT. Traditionally, cloud providers have focused on the back-end aspects of business operations, 
including hosting web presences and storage, so their customers can concentrate on their content and data. 
To help drive the acceptance of cloud services in the IoT space, cloud providers offer services that benefit 
IoT product developers. Services like over-the-air (OTA) updates, data aggregation and analytics, and device 
management provide IoT device makers with the opportunity to focus on their products (see Figure 5.21).

Figure 5.21. Edge processing connectivity to the cloud using Microsoft as an example. 
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Figure 5.22. Edge to cloud connectivity

Attaching to cloud services is getting easier. Cloud providers such as AWS and Microsoft now have 
embedded RTOS technology such as FreeRTOS and Azure RTOS, respectively, to more easily enable 
cloud connectivity from an IoT device. IoT software development kits (SDKs) provide integrated support 
for the major cloud providers.
 
Different connectivity options are available from Wi-Fi, NB-IoT and other narrowband technologies such as 
Bluetooth Low Energy and Zigbee. Each of these options provides different benefits depending on the end 
goal. One of the major considerations in any IoT device design is power consumption. 

There are several cloud provider service options. The more traditional way to access the cloud is through 
a direct IP connection over Wi-Fi. This solution is the most convenient because it allows the device to 
directly attach to cloud services, but power requirements for Wi-Fi are substantially higher than other 
connectivity options. Device makers also have locally hosted cloud service options. Connections to a 
locally hosted cloud solution via an IP connection over Wi-Fi also allow for the introduction of a border 
router, which provides other wireless communication options such as Bluetooth Low Energy, Zigbee 
and Thread. A cloud service provider consolidates all the cloud access in a local edge server, which then 
communicates with cloud services (see Figure 5.22).
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Users interested in creating their own AWS-connected device can follow these steps to get connected:

•	 Create an AWS account.

•	 Configure a “thing” in the AWS IoT Console.

•	 Make sure you have internet access 
	 for your device.

•	 Open and build the example project.

•	 Connect a USB cable between the PC host 	
	 and the OpenSDA port on the target board.

•	 Download the program to the target board 	
	 with the CMSIS-DAP or J-Link debugger  
	 and execute your cloud-connected  
	 application on the target.

Cloud provider SDKs
SDKs provide the software necessary to connect to the cloud provider. Each of these pre-integrated SDKs offers 
a starting point for device makers to help build their cloud-connected products. Though each cloud SDK varies 
slightly, they all focus on two main components: connectivity and security.

For example, the AWS IoT Device SDK is built around the FreeRTOS kernel. In addition to the kernel, 
Amazon provides critical connectivity and security services to create a cloud-connected device. To ease 
the connectivity aspects of accessing AWS IoT Core, Amazon developed a Wi-Fi management library. 
This library abstracts the underlying Wi-Fi stack from the upper-level application. The Wi-Fi library provides 
features such as authentication (WEP, WPA, WPA2, WPA3), access point scanning, power management 
and network profiling. This library makes it possible for device makers to maintain portability with their 
application while swapping out the underlying Wi-Fi hardware or software. 

Amazon also provides a Bluetooth Low Energy library for Bluetooth Low Energy-connected devices. 
These devices can subscribe and publish to Message Queue Telemetry Transport (MQTT) topics through a 
Bluetooth Low Energy proxy device, such as a mobile phone. The library provides support for configuring 
Wi-Fi networks, data transfer and network abstraction over Bluetooth Low Energy. In addition to these 
AWS connectivity features, the library offers application programming interfaces (APIs) for directly 
accessing lower-level Bluetooth Low Energy stack functionality. The benefits of using an abstraction layer 
like this are similar to the benefits of the Wi-Fi management library: the greatest portability for the end-
user application. 

Once a physical connection is made to the AWS cloud, it must use one of two protocols to communicate 
with AWS: MQTT or Hypertext Transfer Protocol (HTTP). Through the MQTT library, the user application 
can easily subscribe, unsubscribe and publish messages to a given topic. The popularity of the MQTT core 
library in embedded microcontrollers is due to its small footprint. The HTTP library provides a similar set 
of abstracted HTTP client interfaces used to access HTTP/1.1 powered services. Though the HTTP client 
offers a more flexible approach to cloud services, it comes at a price. The HTTP target library is nearly 3X 
bigger than the MQTT core library. 

Another important aspect of cloud-connected applications is the security. Access to the AWS IoT Core is 
controlled through public key cryptography (PKC), namely the PKCS11 standard. This standard documents 
the way in which secrets are exchanged between the end-user device and the cloud. Amazon has simplified 
the way user applications establish a PKCS11 session through their PKCS11 Library. The library helps with 
both device provisioning (should this device be granted access to a given cloud service) and transport layer 
security (TLS), the ongoing communication of the end-device with the cloud services. In both cases, the 
application developer should use the PKCS11 Library to perform these tasks. 



 Hybrid application  Bluetooth Low Energy  Zigbee  IEEE 802.15.4  Hardware
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Application Layer
The connectivity protocols discussed here explore a broad range of coverage and data rates required 
for various edge processing applications (Figure 5.23). This also requires edge devices to support multiple 
protocols, sometimes operating simultaneously in many use cases in the smart connected world. 

Figure 5.23. Multiple data rate and coverage requirements for edge connectivity with accompanying connectivity protocols

Figure 5.24. Mobile wireless system coexistence
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Figure 5.24 shows an embedded device that supports Bluetooth Low Energy and IEEE 802.15.4 protocols 
concurrently in a single chip. The SDK connectivity software has a mobile wireless system (MWS) 
coexistence software component that arbitrates the use of the radio hardware resource. It is essentially a 
set of APIs that allow higher layers of the software to request access to the radio resource. MWS natively 
gives priority to Bluetooth Low Energy, allowing it to abort ongoing IEEE 802.15.4 transactions even when 
they have already started. If this happens, the IEEE 802.15.4 transaction restarts when the Bluetooth Low 
Energy transaction completes. 
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Figure 5.25. Complexity created by multiple connectivity protocols
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This is especially true in the smart home market where consumers are challenged by the interoperability of 
devices made by different companies that use different standards. For example, sensors, door locks and 
other devices that require a low data rate for control and configuration need to be very power-efficient. 
The standard requirement is that a given device needs to run for two to five years on a single small-sized 
battery. The short-range network protocols that support this kind of low-power operation include Zigbee, 
Thread, Bluetooth LE and Bluetooth Mesh. Thread and Zigbee PRO are mesh technologies based on the IEEE 
802.15.4 radio providing for robust networks with Thread based on IP. Bluetooth Low Energy is designed 
for point-to-point communications. The other end of the spectrum contains devices like video cameras and 
appliances with large, interactive screens, which use more data and consume more power. These devices 
require a Wi-Fi connection. Depending on the end application, one or multiple protocols will be used. For 
example, Bluetooth Low Energy is often used to join devices to an existing home automation network and 
then Thread or Zigbee is used to interact with other devices on the same network (see Figure 5.26).

Matter is a unifying, IP-based connectivity protocol built on proven technologies designed to enable 
developers to connect and build reliable, secure IoT ecosystems and increase compatibility among 
smart home devices. Part of the Connectivity Standards Alliance, Matter is an open-source royalty-free 
connectivity standard. The long-term goal is to simplify IoT development, increase compatibility for 
consumers, ensure security and privacy, and create truly smarter homes. Connectivity Standards Alliance 
board member companies Amazon, Apple, Google, IKEA, Legrand, NXP Semiconductors, Resideo, 
Samsung SmartThings, Schneider Electric, Signify (formerly Philips Lighting), Silicon Labs, Somfy,  
Wulian and more than 200 other companies are leading the efforts and adopting Matter.

Application/ 
Accessory

Thermostat
Light 

Switch
Door
Lock

Light 
Bulb

Fan
Garage 
Door

Audio  
System

Smart 
Speaker

Sprinkler 
Control

Security 
System

Appliances
Smart 

Sensors
Spa/Pool 
Control

Window 
Covering

Power 
Outlet

Hub/
Bridge

Doorbell

Voice 
Assistant

Alexa
(Amazon)

GVA
(Google)

Siri
(Apple)

Tingting,
xiaoQ,
Small Q

(Tencent)

DuerOS
(Baidu)

Xiao AI
(Xiaomi)

AliGenie
(Alibaba)

Embedded 
Voice

Home
Control 

Ecosystem

Mi
Ecosystem

OCF
Smart
Things

HomeKit
ZCL

(Zigbee)
Weave

Transport Wi-Fi Ethernet Zigbee Thread Z-Wave
Sub 1GHz
Proprietary

Bluetooth 
Low En-

ergy
UWE NFC

Figure 5.26. Multiple transport protocols for home control



94

Figure 5.27. Matter for unifying the network layer and simplifying the application layer
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Matter provides both compatibility and interoperability to devices for the smart home, so it’s easier to 
design, deploy and manage these devices (see Figure 5.29). A key capability of Matter is multi-admin, 
which enables users to connect Matter devices to multiple apps and ecosystems simultaneously, locally  
and securely. Matter is creating a platform, supported by ecosystem-agnostic technology, that lets smart 
home devices communicate locally with each other on any IP network using a common language. The 
platform draws on the best of today’s market-proven protocols and ecosystems, including Apple HomeKit, 
Google Weave and the Amazon ecosystem, which uses the Zigbee Cluster Library (ZCL).

Matter uses IP to create a dedicated application layer for smart home technology that provides methods 
for device addressing, routing, host-to host communication and other mechanisms for transporting 
data. Standardizing on IP significantly reduces the need for translation because it enables devices to 
communicate with each other without having to repackage data or packets. Standardizing on IP in the 
application layer also makes it easier to address important issues like data security and safe provisioning 
of devices onto the network. Choosing IP-based connectivity lets smart home technology standardize on 
the subcomponents of the network layer, including TCP/UDP for the transport layer, which are familiar 
protocols of internet-based communication. Matter will begin with support for Thread, Ethernet and  
Wi-Fi for communications and Bluetooth Low Energy for provisioning.
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Figure 5.12. Thread protocol stack

THREAD 
Thread is an open standard for reliable, cost-effective, low-power, wireless device-to-device (D2D), 
device-to-mobile and device-to-cloud mesh communication. It is designed specifically for connected 
home and building applications where IP-based networking is desired and a variety of application 
layers, such as HomeKit and Matter, can be used on the stack. Thread is an IP-addressable protocol 
that also supports cloud access and basic Advanced Encryption Standard (AES) security. Thread offers 
proprietary implementations and an open-source, BSD-licensed version (OpenThread).

The key characteristics of the Thread connectivity protocol include: 

•	 Simple network installation, startup and operation — The simple protocols for forming, joining and 
maintaining Thread networks allow systems to self-configure and fix routing problems as they occur. 
In addition, as an IP-based protocol, Thread eliminates the need for dedicated proprietary hubs or 
translators which reduces infrastructure investment, complexity and maintenance costs. Instead, any 
powered device that implements the Thread Border Router role provides the connection from the 
Thread network to other networks, i.e. Wi-Fi.

•	 Security — Devices do not join the Thread network unless authorized and all communications are 
encrypted and secure. From a system-level, Thread’s IP foundation enables end-to-end security.

•	 Scalable mesh networks — Home networks range from several devices to hundreds of devices 
communicating seamlessly. The network layer is designed to optimize the network operation  
based on the expected use. 

•	 Range — Typical devices in conjunction with mesh networking provide sufficient range to cover a 
normal home. Spread spectrum technology is used at the physical layer to provide good immunity 
to interference. Also, Thread networks implement a mesh topology so a Thread network extends its 
range as more powered devices are added to the network. 

•	 No single point of failure — Thread is designed to provide secure and reliable operations  
even with the failure or loss of individual devices. 

•	 Low power — Host devices can typically operate for several years on AA batteries using  
suitable duty cycles. 

•	 Responsive - Low latency means faster response times for instant control and automation.
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The Thread standard is based on the IEEE 802.15.4 physical (PHY) and medium access control (MAC) layers 
operating at 250 kbps in the 2.4 GHz band (see Figure 5.12). The MAC layer, used for basic message handling 
and congestion control, includes a carrier sense multiple access (CSMA) mechanism so devices can listen for 
a clear channel. The MAC layer also contains a link layer to handle retries and acknowledgement of messages 
for reliable communications between adjacent devices. 

In a system comprised of devices running the Thread stack, none of these devices represents a single point 
of failure. Though several devices in the system perform special functions,Thread is designed to self-heal by 
re-routing signals when needed so that there is no impact to the ongoing communication within the Thread 
network. Devices in the Thread stack support the IPv6 addressing architecture. Each device that joins the 
Thread network is assigned a 16-bit short address. 

All Thread devices use a communication protocol called IPv6 over Low-Power Wireless Personal Area 
Network (6LoWPAN), which targets low-power devices with limited processing capabilities. Complementary 
to Thread, Matter is another protocol standard that runs over 6LoWPAN to enable home automation. 
Techniques such as header compression are used in the Thread network, and devices transmitting messages 
compress the IPv6 header as much as possible to minimize the size of the transmitted packet. 

The Thread stack supports mesh connectivity between all devices in the Thread network. The actual topology 
is based on the number of devices in the network. Mesh networks increase radio system reliability by allowing 
radios to forward messages for other radios. For example, if a node cannot send a message directly to 
another node, the mesh network forwards the message through one or more intermediary nodes. In the 
Thread network, all router nodes preserve routes and connectivity with each other so the mesh is constantly 
maintained and connected. 



The Thread wireless network features a mesh topology composed of Border Router(s), Routers and End 
Devices. End devices can be battery-powered (sleepy end device) or line-powered (router eligible end 
device). To optimize for low power, sleeping devices poll parents for messages. They are not required to 
check-in which allows lower power operation. Parents hold messages for sleeping devices and will switch 
to another parent device if current connection to is lost.

In a mesh topology, the communication is enhanced by router nodes that implement routing protocols and 
maintain routes in the network. A Thread network automatically assigns one of the routers as the Leader 
which then manages network parameters, coordinates commissioners and makes network decisions. If a 
Leader fails, another Router will automatically be assigned the Leader role. A Leader can also promote 
Router Eligible End Devices to Routers to improve connectivity if required. Implementing the mesh in 
the way means that Thread networks have no single point of failure, will self-heal and reconfigure when a 
device is added or removed. 

A unique aspect of Thread is the Border Router. The Border Router must be a powered device and 
enables Thread devices to be discovered and communicate with devices outside of the Thread network. 
Because Thread is based on IP, translator function/look-up tables are not needed. A Border Router can 
be built into existing devices from any product manufacturer thereby minimizing the need for additional 
dedicated hardware. 
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There are three key roles that are part of the Thread network topology.

End Device is a battery or line-powered device that consumes low energy and only sends and 
receives data; it has no routing capability. A network may have many end devices. 

Border Router provides functionality such as routing traffic and connecting to the cloud or other 
networks. There must be at least one Border Router in a Thread network.

Router is a powered device that forwards messages from it to other devices acting as a range 
extender. A network may have many routers.
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Figure 5.12B. A Thread wireless network.



100

ZIGBEE® 
The Connectivity Standards Alliance (previously known as the Zigbee Alliance) developed a low-cost, 
low-power wireless communication standard that is somewhat simpler and less expensive than 
Bluetooth or Wi-Fi. This makes it suitable for applications such as wireless light switches, building 
automation, smoke detection, office and home energy monitoring, and other consumer and industrial 
applications for which short-range, low-data-rate transfer is acceptable.

Similar to Thread, Zigbee is built on the foundation of the IEEE 802.15.4 protocol: PHY and MAC layers. 
The PHY layer provides connectivity for various market requirements by defining frequency ranges in 
both the 868/915 MHz band (for the European region, the United States or Australia) and the universal 
2.4 GHz band. The MAC layer controls access to the radio channel.

A wireless network comprises a set of nodes that can communicate with each other through radio 
transmissions according to a set of routing rules for passing messages between nodes. A Zigbee 
wireless network includes the following three types of nodes (see Figure 5.13):

End Device
This node only sends and receives data; it has no routing capability. A network may have many 
end devices. 

Coordinator 
This first established node is responsible for forming the network by allowing other nodes to join 
the network through it. Once the network is established, the coordinator’s routing role is to relay 
messages from one node to another and to send/receive data. Every network must have one —  
and only one — coordinator.

Router
This node features routing capability and sends/receives data. It also allows other nodes to join the 
network through it, so it helps extend the network. A network may have many routers.

The Zigbee network layer features star and mesh topologies. In spoke-and-hub star topology, the 
Zigbee coordinator is responsible for initiating the network, maintaining the other nodes and providing 
authorization and authentication mechanisms when it runs the protocol function called Trust Center. In an 
interconnected mesh topology, the communication is enhanced by router nodes that implement routing 
protocols and maintain routes in the network. Zigbee’s advanced routing feature adopts a mesh topology to 
allow self-healing routes between communicating devices, thus avoiding single points of failure and ensuring 
reliable packet delivery.



Co-ordinator

End device

Router

Router

Router

Router

Router

Router

End device

End device

End device

End device

Application A

Output Cluster
(Client)

Commands sent from client to server

Responses returned from server to client
(may contain attribute values read)

Attributes written or read,  
according to command

Input Cluster
(Server)

Application B

Figure 5.14. A Zigbee communication model

101

Figure 5.13. A Zigbee wireless network

To manage and determine the best routes, the Zigbee routers maintain routing tables and compute a path 
cost metric based on the asymmetric link costs associated with each route. The network layer also performs 
security functions. This includes 128-bit-wide AES encryption and application layer encryption services. These 
measures have been incorporated to prevent intrusion from potentially hostile parties and from neighboring 
Zigbee networks. Zigbee also provides privacy for communication between nodes of the same network. 

A Zigbee node may have several applications running on it. For example, a node in a smart home network 
may incorporate an occupancy sensor and a light switch, each of which is an application. Access to application 
instances is provided through endpoints, which act as communication ports for the applications.

A data entity (e.g., temperature measurement) handled by a Zigbee endpoint is referred to as an attribute 
(see Figure 5.14). The application may communicate via a set of attributes. For example, a thermostat 
application may have attributes for temperature, minimum temperature, maximum temperature and 
tolerance. Zigbee applications use the concept of a “cluster” for communicating attribute values. A cluster 
comprises a set of related attributes combined with a set of commands to interact with the attributes, for 
example, commands for reading the attribute values. A cluster corresponds to a specific piece of functionality 
for a device application. The total functionality for the application is determined by the Zigbee device type 
that it implements and the clusters that the device type uses. Thus, clusters are the functional building blocks 
of devices. The output/client and input/server sides of a cluster are illustrated in Figure 5.14.
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The basic Zigbee network stack is shown in Figure 5.15. In this figure, the Zigbee device object (ZDO) is 
the application running as “endpoint 0” within the application layer that controls the network layer and 
performs other important system functions including the following:

•	 Defines the type of network device — coordinator, router or end device

•	 Initializes the node to allow applications to be run

•	 Performs the device discovery and service discovery processes

•	 Implements the processes needed to allow a coordinator to create a network and to allow routers  
and end devices to join and leave a network

•	 Initiates and responds to binding requests (Binding is the relationship where two nodes that were 
found through service discovery to be compatible may be paired so their output is automatically  
routed only to the paired node. For example, a light switch may be paired with a particular light,  
and this light switch must switch on/off only the light that it is intended to control.)

•	 Provides security services that allow secure relationships to be established between applications

•	 Allows remote nodes to retrieve information from the node, such as routing and binding tables,  
and to perform remote management of the node, such as instructing it to leave the network
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SUMMARY
This chapter showed fundamental connectivity protocols for edge processing systems. As shown in 
Figure 5.28, these connectivity technologies provide network flexibility, ambient awareness, simplified 
provisioning and security. These attributes combine to contribute to overall edge processing intelligence.

Figure 5.28. Connectivity technologies for edge processing
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This chapter addresses why the life cycle concept is relevant for today’s edge devices 
and how it’s part of their manufacturing, deployment and management. Examining 
this topic from multiple perspectives (device user, OEM/device provider, cloud/
services provider) provides a high-level definition for the life cycle of an edge device 
and a secure and efficient approach to implementing it.

LIFE CYCLE OVERVIEW
A straightforward definition for the life cycle of any device is the succession of phases the device goes 
through, from manufacturing and configuration to its use in the field and decomissioning. In each of 
these phases, specific procedures are followed and tools are used to provide the necessary product 
components and assets, appropriately configure specific access rights and device functions, and follow 
up on information generated by the device.

Life cycle management for edge devices
Not long ago, especially from an end-user perspective, the life cycle was basically nonexistent. 
A device (even with some firmware running) was purchased, used and then sold/disposed of without 
much concern from the user or the device OEM. The reality is that some users expect things to work 
the same way today, but that is no longer the case. If done correctly, device life cycle management
can be mostly transparent and painless for the user and efficient to deploy for the OEM.

The roles of firmware and software are increasing in each device. They fundamentally define a product, 
the functionality it offers and the way a user interacts with it. Slick graphical user interfaces and 
software drivers for NAND memory have replaced mechanical buttons and tape heads. The firmware 
and software need updates, thus connectivity has been added (best practices advise implementing 
those updates over the air). Security is now a concern, services have moved to the cloud, legislators  
are now protecting consumers’ rights to privacy and so on. The pinnacle of this evolution, shown in 
Figure 6.1, is something that we all carry in our pockets = the ubiquitous mobile phone.

Figure 6.1. The ubiquitous mobile phone 
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Edge devices are connected, and, in many cases, a significant part of their functionality is tied to services 
and capabilities hosted in the cloud. Especially for devices offering paid-for and value-added services, 
the secure deployment, configuration, management of services and association of the user identity 
are important. This is typically a critical and difficult-to-manage phase during product deployment. 
In certain cases, while the device is in use, service consumption should be tracked. The edge device 
must be maintained over its in-use lifetime through software upgrades, bug fixes and new features. 
Its deprecated features and services that the user should no longer access must be disabled.

Not having a solid and secure grip on deployed services and node identity  
can lead to not only lost revenue (pretty obvious) but also excess charges 
when the device-offered services are hosted by the OEM in a third-party  
cloud paid for by the OEM.

OEM and service providers need to comply with legal requirements that imply having and exercising 
control over the user data collected, its manipulation, its accessibility and, very importantly, the 
proper management over device decommissioning and change of ownership (i.e., erasing user data).

The European Union’s General Data Protection Regulation (GDPR, 2018) imposes obligations on any 
entity collecting data related to EU citizens. 

California’s Privacy Rights Act (CPRA, 2020), building on the California Consumer Privacy Act (CCPA, 
2018), imposes obligations on entities that meet certain criteria and process the personal data of 
California residents. 

Quite a few edge devices store (even if for a limited amount of time and for only local processing) user 
information and/or environmental data that can be tied to the user. This leads to the need to protect this 
information and securely handle the “end of life” phase of the device. From a user perspective, that can 
be decommissioning or the transfer of ownership.

These life-cycle phases primarily represent the user perspective; however, additional steps need to be 
considered when looking at the complete process from an OEM perspective: manufacturing the device 
potentially in third-party facilities, provisioning OEM IP and assets and onboarding the device in service 
provider clouds. Extending this view to include the system on chip (SoC) supplier manufacturing the  
MCU or MPU that powers the device (and can be leveraged as the silicon root of trust for the device)  
completes the picture.

Identifying and describing phases with their associated attributes (access rights, available capabilities, 
procedures, etc.), processes and tools to transition between phases is a needed exercise for edge devices. 
This exercise is defining the edge device life cycle. 



107

Life-cycle states and transitions
The life cycle of a device features a number of states, with the device provisioned and configured as expected 
in each state, and several transitions that involve trigger(s) and condition(s) to progress through these states.

The elements of the life cycle are defined as follows:
•	 Provisioning — The process of injecting assets (public and secret data, firmware, etc.)  

into the device and functionality configuration.

•	 Attributes applying to data and functionality:
1.	 [N/A] Unprovisioned — When referring to data, this means that the respective asset is not yet 

provisioned into the device. When referring to functionality, this means that the respective 
functionality is not yet deployed/configured or is not usable in its full capability.

2.	 [X] Access restricted — Access to the respective item is restricted permanently to specific entities 
or requires an authentication process. Access restrictions are applied in a specific manner to 
various items. Restrictions to the same item might vary with the life-cycle state.

3.	 [Y] Item accessible — Data or capability is present and usable/accessible without  
specific restrictions.

•	 Life-cycle state — The combination of assets provisioned to the device, configuration of functionality 
enabled and associated access rights. The life-cycle state is typically retained in nonvolatile memory 
and enforced by hardware and firmware/software.

•	 Transition — The change of the device life-cycle state, resulting in the availability of a different 
combination of assets and functionality as well as access rights for various users of the device.

The edge node life cycle
The edge device life-cycle management can be described from different perspectives that focus on 
specific parts of the life cycle. This section first considers the OEM and user perspective and then 
adds the SoC view. Combining these perspectives generates suggestions for secure and efficient 
implementations. Though the purpose of this exercise is to provide a complete, realistic and 
applicable view, certain assumptions and simplifications are made and noted in the relevant places.

This exercise involves the following generic set of assets, functions and access rights found in life-cycle states:

Assets
1.	 OEM root of trust (RoT)
2.	 OEM keys and certificates
3.	 Device management ID
4.	 Device services ID
5.	 User ID
6.	 User data

Functions
1.	 Secure boot
2.	 Debug platform
3.	 Updates
4.	 Configure services
5.	 Decommission
6.	 Erase user

In a typical life cycle, these assets and functions are adapted to the needs of the specific edge device that 
is being built and its deployment targets (services, environment, usage and user type). This list generally 
works for most applications. 



108

THE OEM AND USER PERSPECTIVE
Figure 6.2 captures the edge device life cycle from the OEM and user perspective. It begins with the 
device being manufactured, depicting the SoC that plays the role of the silicon RoT, and progresses 
through relevant states and transitions leading to the final stage when the user stops using the device. 

The device management (DM) cloud and the services cloud are two key life-cycle entities. Most edge 
devices need some form of management by the OEM, if only for basic capabilities (firmware and 
software updates, remote configuration, etc.). This is implemented in a specific, OEM-controlled 
cloud called the DM cloud. The OEM-controlled cloud can offer additional services on top of those 
related to edge device control, but, from the device life-cycle perspective, delineating how the device 
exposes cloud-based services offered by third-party suppliers is important, and this is represented by 
the services cloud. Figure 6.2 depicts only one services cloud for simplicity, but deploying support for 
and managing multiple services clouds is common.

Figure 6.2. The edge device life cycle from manufacturing to decommissioning

OEM open state

This is the state in which the edge device is assembled; it is practically inherited from the SoC. In this 
state, any firmware/software can be loaded and run on the device. This is typically the state in which 
various tests are performed to ensure that the device, from a hardware perspective, functions correctly 
(memory integrity, interfaces, hardware performance tests, etc.). No OEM assets (public or secret) are 
deployed, but the SoC might contain SoC-specific assets, and these assets should be protected by the 
SoC itself without additional efforts from the OEM/manufacturing facility (more on this later). In this 
state, the device can be freely debugged/tested. OEM and potentially third parties and service providers 
develop firmware/software during this state.

From this state, the device transitions to the OEM closed state or is scrapped. Any sensitive assets 
deployed on the device are erased before scrapping the device.

DM Onboarded

OEM Open

Distributors

OEM Closed

Out of service

Owner 
free-state

Services Onboarded

Device 
Management Services

Services clouds onboarding
Services configuration

OEM or management onboarding
Optionally platform/application 

deployment

Secure OEM processing
Untrusted facilities

Deployment Decommisioning

Monitoring 

Key/certs
updates

Apps/services
updates

Platform updates

Ownership 
change

IoT Device

In Use

3

1

4

2

5 6

7

3rd party MFG
 (Need to ensure trustworthiness)



109

Table 6.1. Device summary in OEM open state

Table 6.2. Device summary in an OEM closed state

Status Asset Status Function

N/A OEM RoT N/A Secure boot

N/A OEM keys&certs Y Debug platform

N/A Device Mgmt ID N/A Updates

N/A Device Services ID N/A Configure services

N/A User ID N/A Erase user

N/A User data N/A Decommission

Status Asset Status Function

X OEM RoT Y Secure boot

X OEM keys&certs X Debug platform

N/A Device Mgmt ID X Updates

N/A Device Services ID N/A Configure services

N/A User ID N/A Erase user

N/A User data N/A Decommission

OEM closed state

This is the state in which the device is fully formed, the OEM RoT is installed and, typically, OEM 
baseline keys and certificates are finalized. The device also runs the OEM platform firmware/software, 
and the secure boot is enabled so the device boots only authorized (i.e., OEM signed) firmware/software. 
This firmware/software can be encrypted to protect any sensitive OEM (or third-party) IP. Debugging is 
restricted because it would likely expose OEM assets and IP. The debugging authentication allows only 
authorized users to debug the provisioned platform. Updates can be made at this point but typically not 
over the air because the device is not yet onboarded to the DM cloud. This means only local updates with 
signed images can be performed.

Out of service
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The transition from the OEM open state to the OEM closed state involves the following steps:

Because this transition is critical from the life-cycle management perspective, it needs to be performed 
with a certain level of security assurance, typically reflected in the following:

•	 SoC authentication is needed to verify the supplier, type and characteristics of the SoC. Ideally, this is 
implemented based on a die individual SoC certificate. Without a genuine SoC, the edge device that 
was built, provisioned and deployed doesn’t instill much confidence.

•	 The installation of the OEM assets usually requires confidentiality. This applies to not only secret keys 
but also firmware/software that contains OEM or third-party IP. This can be ensured in many ways, but 
the typical approach is using a secure manufacturing location. However, this is an expensive approach 
and a business constraint because it limits the flexibility of working with (or having the option of 
changing easily) third-party manufacturing.

•	 The number of actual end devices typically needs to be controlled, especially when using  
third-party manufacturing. 

When the device reaches the OEM closed state, it is ready to be onboarded to the DM cloud.

DM onboarded state

In this state, the fully formed device, running authentic OEM firmware/software, is onboarded to the 
DM cloud controlled by the OEM. The device is assigned a DM identity (typically in the form of a 
certificate), and is able to establish a secure connection to the DM cloud, over which it can receive 
messages, commands and updates. The edge device can verify the authenticity of data received from 
the DM cloud (typically this means that the data can be traced to the OEM or root certification authority) 
before performing any required actions. The device also can send updates and reports to the DM cloud 
to provide the OEM with the desired visibility and control over the device. 

Installing the OEM RoT 
Copying the OEM public keys (or hash of the public keys) in the SoC one-time-programmable (OTP) 
memory that is used to authenticate the images started on the SoC.

Enabling secure boot
Configuring the SoC to boot only OEM-signed firmware/software and, optionally, enable encrypted 
boot (the deployment of the encryption key is necessary). This step also restricts debugging access, 
which can be permanently disabled.

Deploying OEM assets
Deploying OEM keys and certificates as well as OEM-signed (and potentially encrypted) firmware/software.
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Table 6.3. Device summary in DM onboarded state

Status Asset Status Function

X OEM RoT Y Secure boot

X OEM keys&certs X Debug platform

Y Device Mgmt ID X Updates

N/A Device Services ID N/A Configure services

N/A User ID N/A Erase user

N/A User data N/A Decommission

The transition from the OEM closed state to the DM onboarded state is straightforward and contingent 
on the specific mechanisms and tools used, but a possible sequence includes the following steps:
•	 Connect the edge device to the DM cloud over an internet connection.

•	 The DM cloud and edge device establish a secure connection, based on the OEM assets already 
provisioned on the device, and an OEM (ideally device unique) identity is provisioned in the DM cloud.

•	 The DM cloud generates a device-unique identity, which is sent to the edge device over the 	
secure connection.
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Services onboarded state

As mentioned previously, many edge devices expose cloud-based services that are offered by third-party 
suppliers and hosted on non-OEM clouds. Though they can be configured prior to the end user receiving 
the devices, third-party services also may be enabled and disabled on demand. Where a clear association 
between the OEM, end user and service provider is needed (maybe the user is paying separately for the 
service), the respective service(s) must be deployed after the end user is configured on the device. 
For simplicity, consider a case in which the edge device is onboarded before it is available to the end user.

In this state, the device is onboarded in the services cloud, and, consequently, it has a device service  
ID per the services cloud. The services are installed on the edge device, and one or more configuration 
interfaces are available.

Table 6.4. Device summary of services onboarded state

Status Asset Status Function

X OEM RoT Y Secure boot

X OEM keys&certs X Debug platform

Y Device Mgmt ID X Updates

Y Device Services ID X Configure services

N/A User ID N/A Erase user

N/A User data N/A Decommission

The transition from the DM onboarded state to the services onboarded state for the case of configuring 
the services without an end-user association can be easily implemented by the DM management cloud, 
given that services clouds typically offer interfaces (representational state transfer, or REST, application 
programming interfaces (APIs)/resources) for device onboarding:

•	 The DM cloud establishes a secure connection to the services cloud.

•	 The DM cloud onboards the edge device to the services cloud and obtains the device services ID.

•	 The DM cloud establishes a secure connection to the edge device and injects the device services ID.

•	 The right access policies for the edge device are set in the services cloud.

•	 The right configuration for the service(s) offered by the services cloud is set on the edge device.
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In-use state

This is the state in which the device spends most of its lifetime — in the end user’s hands, performing the 
function(s) the OEM intended the device to perform, through a combination of capabilities built in/offered 
by the OEM, and possibly services from third parties.

Edge devices typically have multiple physical users, but they generally have one registered user (think 
about a smart appliance). The fundamentals from the life-cycle management perspective are the same as 
the case in which the edge device has to manage multiple registered users with individual access policies, 
etc. User-relevant data is collected locally (per the device’s functional needs and configuration), stored/
processed and potentially sent to the various cloud-based services. 

Table 6.5. Device summary of in-use state

Status Asset Status Function

X OEM RoT Y Secure boot

X OEM keys&certs X Debug platform

Y Device Mgmt ID X Updates

Y Device Services ID X Configure services

Y User ID X Erase user

X User data X Decommission

From a management perspective, the typical operations that the edge device must support in this life cycle are: 

•	 Monitoring its own health, which can range from very simple (checking that the device started 		
	 correctly) to more complex (monitoring the available hardware resources, response time to the 		
	 user, etc.) to highly sophisticated (using a trusted local entity to monitor the security status of the 		
	 overall device). Reports are created and sent to the DM cloud on demand and/or regularly. 

•	 Updating multiple firmware and software components typically through:

	 1.	 Platform firmware/software — the OS, trusted execution environment (if one is used), 			
		  boot firmware (not always updatable) and various other low-level firmware.

	 2.	 Applications/services — ideally updatable individually; application containerization is 			 
		  recommended to support this.

•	 Updating keys and certificates, which again can range from very simple (OEM identity and secret 		
	 keys, services identity and keys) to more advanced (different keys/certificates per type of operation, 		
	 key revocation based on usage). The policies for keys and certificate updates are driven not only 		
	 by OEM security policies but also, for certain applications, by market-specific practices and even		
	 lawful requirements. 
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The transition from the services onboarded state to the in-use state can be summarized as registering the 
user on the device. Though user registration can be implemented simply based on the physical possession 
of the device (and, for example, using a device-individual password provided with the device), the DM 
cloud can be used for edge devices that need additional security for this process. The below process is just 
one possible option:

•	 The user is registered to the OEM-controlled DM cloud, by its own means or by the reseller of the 		
	 edge device, and receives user- and edge-device-specific credentials.

•	 The DM cloud establishes a secure connection to the edge device and injects the user credentials.

•	 The user can securely authenticate to the edge device to configure and start using the device.

From the in-use state, the device can be decommissioned to the out-of-service state, sold or returned 
to the OEM by moving into the owner-free state.

Out-of-service state

This is typically the terminal state for the edge device; the device is no longer usable and cannot be 
reinitialized to a state in which it performs its functions. It has no user, services cloud or OEM-relevant 
data assets. Ideally, nothing of value, or that can be used for nefarious purposes, is available on the device.

Table 6.6. Device summary of out of service state

Status Asset Status Function

N/A OEM RoT N/A Secure boot

N/A OEM keys&certs N/A Debug platform

N/A Device Mgmt ID N/A Updates

N/A Device Services ID N/A Configure services

N/A User ID N/A Erase user

The move from the in-use state to the out-of-service state can be implemented in several ways, depending 
on the degree of security needed for this operation. For simple devices that do not store valuable assets, 
this transition can be triggered directly through the local available user interfaces. For advanced edge 
devices that integrate cloud-based services and manage sensitive/valuable assets, the DM cloud typically 
coordinates the operation, so it needs to be appropriately secured to make sure that denial of service 
(DoS)/ransomware attacks are prevented. The DM cloud and appropriate support in the edge node system 
architecture can help here. A possible flow involves the following steps:

•	 The user, logged in to the DM cloud, can trigger the transition to the out-of-service state. 			 
	 Alternatively, the DM cloud can trigger the transition based on other driving factors/policies.

•	 The DM cloud establishes a secure connection to the edge device and sends the appropriate command(s).

•	 The edge node performs the authentication and appropriate verification of the request to transition, 		
	 and then it proceeds to erase assets and render itself unusable.
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Figure 6.3. State equivalence for the owner-free state state

The SoC itself can play a significant role in this transition and state. For example, the implementation 
of the OEM RoT support can be through secure OTP memory, so that once the RoT is erased, it cannot 
be replaced. The secure boot process can be hardware enforced so that once it’s enabled, it cannot be 
disabled, and without a valid RoT, the SoC will not start.

This is a terminal state, the device cannot move to another state.

Owner-free state

This is the state in which the edge node, previously registered to a specific user, waits to be registered to 
a new user. Depending on how and when the cloud-based services are associated to the user, this state is 
equivalent to either:
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The services are user assigned/associated. In this case, the services configuration (at least) and association 
with the previous user are removed. For the new user, this association needs to be re-created, thus the 
device transitions again from DM onboarded to services onboarded. Then it is registered to the user.

Services onboarded
The services are not user specific. In this case, services and their configuration can be preserved; just 
the previous user and that user’s data needs to be removed. The new user needs to be registered 
for the device in the DM cloud and, if needed, the device is transmitted to the services clouds before 
moving into the in-use state.

The above equivalence of states is represented in Figure 6.3.
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Vendor support for secure and efficient life-cycle management deployment

Critical security elements for the implementation and efficient deployment of the edge node life cycle 
include the following:

•	 The elements listed as representing the life-cycle state of the device need to be protected.

•	 The life-cycle state transitions need to be protected. 

•	 Securely provisioning assets (and especially secret assets) can be expensive and/or can generate 
stickiness for specific manufacturing services providers. Ideally, this process should be cheap,  
and it should not generate significant dependencies on manufacturing.

•	 The onboarding of devices, if not automated, is tedious, error prone and expensive.  
Ideally, it should be a fully automated, “zero-touch” process.

The following sections describe vendor capabilities that can help with all of the above.

SoC life cycle

When the fundamental aspects of device management have been covered, an actual vendor and its 
products support implementing the edge node life-cycle concepts. 

The edge node uses an SoC to implement its functionality (typically a single main SoC), and it is in this 
SoC and memory managed by the SoC that the assets and functionality that need to be protected reside. 
Thus, the life-cycle concept at the edge node level is easiest to implement and (very importantly) secure 
on an SoC that also has its own life cycle. In reality, it is pretty much impossible to secure an edge node if 
the main SoC does not offer the necessary security support, and the SoC life cycle is a key element of that.

All recent SoCs from the vendor implement a security life cycle that offers a solid base for securing the edge 
node and its life cycle. A short overview of the typical life cycle offered by vendor SoCs is shown in Figure 6.4. 

Figure 6.4. SoC life-cycle supporting example
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From an OEM perspective, the SoC progresses from the OEM_OPEN state, where it contains only a 
vendor RoT and secrets, to the OEM_CLOSED state once the OEM RoT and secrets are provisioned. 
In OEM_CLOSED, the SoC boots only OEM-signed images and closes debugging interfaces by default; 
to open these, a successful authentication needs to be performed with the OEM as the signing entity.

The SoC needs to be in the OEM_CLOSED state while in the field. From there, it can be moved into the 
FIELD_RETURN_OEM state, which allows system debugging more freely (typically when quality issues 
need to be investigated). In this state, any final user data and OEM secrets have been erased, and the 
debugging is opened at the system level. Note that the security subsystem, which still contains vendor 
assets needed to ensure correct system behavior, cannot be debugged.

If the SoC itself needs to be investigated for potential issues, the device needs to be returned to the 
vendor, which can erase all assets from the security subsystem and open it for debugging. This state is 
called FIELD_RETURN_VENDOR.

Two other states can be used for the following purposes:

•	 BRICKED — As the name implies, all assets are erased, and the SoC is not usable anymore; it does not 
boot, and no investigations are possible. This state is used to make sure that a device is completely 
unusable for good.

•	 OEM_LOCKED — Once moved into this state from the OEM_CLOSED state, the SoC cannot be 
moved in any FIELD_RETURN_OEM state for investigations. The only state in which the SoC can 		
be moved is BRICKED.

All SoC life-cycle transitions are secured. Commands to change the life cycle are authenticated, and based 
on the transition, the signing entity is the vendor or the OEM. Additionally, finer-grain capabilities in each 
life cycle fully support the needs of an edge node to secure itself and its final user data and implement its 
own life cycle. 

Vendor trust provisioning and the SoC unique identity

One of the important assets that a vendor provides is a device’s unique identity. Going beyond this, 
for some of a vendor’s most recent products, each SoC has its own unique key pair, with the public 
key available in a vendor-signed certificate and the private key kept in the SoC security subsystem.

As described in the “Edge node life cycle” section, when the device using the SoC is manufactured, it is 
very important to establish that genuine silicon is used, and this is something that the vendor certificate 
allows the OEM to do through the following steps:

Verify the certificate to ensure that the unique SoC identity and public key belong  
to the expected vendor device.

Perform an authentication challenge with the SoC before it is installed on the device to ascertain that 
it owns the private key associated with the public key that is in the certification.

Ensuring that genuine silicon is used provides OEMs with the foundation they need to build the security 
of their products. Using counterfeit silicon runs the risk of adding security backdoors in the system, thus 
compromising the security of the final product. 
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Support for secure OEM provisioning in untrusted facilities

A critical step for the edge node is the OEM provisioning — injecting OEM assets, including certificates 
and potentially secret keys, in the OEM software with differentiating IP, etc. This is also the step that 
can be used to control manufacturing because a physically identical device without the OEM assets 
and software cannot perform its function. It doesn’t have the same, or even any, value for the user. 
At minimum, the device should not be “recognized” by the OEM infrastructure and should not enabled 
with the services and capabilities that a genuine device has.

Several methods can be used to implement the OEM provisioning. Traditionally, for security, the 
location of the provisioning needs to be “trusted”. Whether that’s on the manufacturing line or even 
after manufacturing is complete (i.e., at a trusted reseller), the trusted location typically requires the 
deployment of specific equipment (i.e., hardware security modules or HSMs) with dedicated tools, 
trained personnel and access control. This expensive method takes time to deploy and creates 
nonnegligible stickiness for an OEM to a manufacturing location, a provider of manufacturing services 
or a reseller.

The vendor can help make the secure OEM provisioning possible in untrusted facilities, which reduces cost, 
minimizes the time to deploy this capability and, when third-party manufacturing is used, eliminates the 
“stickiness” to manufacturing services suppliers.

The process involves the following capabilities:

•	 The vendor’s advanced security subsystems found in its recent products, with trust provisioning support

•	 The die individual, vendor-signed certificates available for select products

•	 The EdgeLock® 2GO service platform

EdgeLock 2GO is an online cloud service specifically designed for zero-touch, secure deployment and 
management of IoT devices. It is an example of technology that helps implement critical stages in the edge 
device life cycle when the right hardware support is built into the platform. Though first used with edge 
devices to integrate a secure element, EdgeLock 2GO is being extended to work with devices that have 
the suitable hardware support (such as the SoC life cycle presented in Figure 6.4).

A secure element is a stand-alone integrated circuit designed to store and protect sensitive 
information including various keys and certificates as well as personal data such as fingerprints and 
facial biometrics. It also can be used to perform various cryptographic operations with the contained 
assets. It is primarily used in systems that need a certain (high) level of security/protection for these 
assets. This high level cannot be achieved with the other system capabilities (the main SoC of the 
device, for example).

The following outlines the process for OEM provisioning.

Preconditions

1.	 Through the vendor provisioning process, the EdgeLock 2GO service receives the die  
individual certificate for every supported part that the vendor ships. It can authenticate 
messages/data from the vendor’s SoCs.

2.	 Through the vendor RoT in the security subsystem, every SoC can authenticate the  
EdgeLock 2GO service.

3.	 The OEM can use the EdgeLock 2GO service after providing and configuring the  
relevant OEM provisioning elements.
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Example of a provisioning process with NXP’s EdgeLock 2GO platform 

1.	 After fully forming (i.e., memories and interfaces available), the device runs bootstrap  
firmware in any environment and connects to the EdgeLock 2GO service.

2.	 The vendor SoC and the EdgeLock 2GO service can authenticate each other and establish a 
secure connection. Data and commands exchanged are encrypted in a device-unique manner, 
so the surrounding environment cannot extract anything exchanged over this connection.

3.	 The device sends to EdgeLock 2GO an OEM identifier, typically called the OEM claim code  
that works with several other elements to indicate which OEM this device belongs to and  
which assets should be provisioned. Note: The additional elements that secure this step are  
too detailed for the purposes of this document.

4.	 The OEM RoT is inserted, and the device is “locked” to the OEM RoT (i.e., forward  
looking, it boots only OEM-signed software, but it can be adjusted to boot  
OEM-encrypted software as well).

5.	 The rest of the OEM provisioning elements are injected in the device.

Figure 6.5 shows this process. The OEM RoT and assets configured in the EdgeLock 2GO service  
are represented as state 0.
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Note that the process described here is one example and the actual process can be tailored to the  
OEM requirements. In particular, the keys and certificates can be injected into devices in a nonconnected 
environment (i.e., even if the device has no direct connection to the internet). 

At the end of the process, the device is fully OEM provisioned, with no specific trust or security measures 
required for the location of provisioning. It can be implemented on the manufacturing line, at a reseller or 
by a technician installing the device. It also can be implemented when the final user first starts the device. 
The only requirement is an internet connection, though other solutions for manufacturing lines that don’t 
offer internet connections can be applied with the needed quality/uptime, but these solutions are too 
detailed for the purposes of this book. 

Figure 6.5. OEM secure provisioning in untrusted facilities leveraging EdgeLock 2GO services
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This chapter examines the processes and tools to achieve efficient power usage for edge 
processing applications. Learn how to benefit from low-power implementations, power 
estimators and power monitors.

BASICS OF LOW POWER OPTIMIZATION
When discussing low power optimization, there are two components that need to be considered;
•	 active power
•	 static power 
Power consumption in CMOS circuits including MCUs and MPUs, is described as the sum of these 		
two components;

Active (Dynamic) power refers to what is consumed when doing work. The goal is to minimize this part.
Active power is defined as;

Where;
•	 C = circuit capacitance
•	 f = frequency
•	 V = voltage
•	 N = number of nodes
•	 Iq = quiescent current from transistor leakage
We can reduce active power by lowering frequency and voltage and turning off hardware units when not in use.

We can reduce static power using low leakage process technology and transistors. For example, a smart 
phone uses active power when talking or playing a video. During standby mode, when the smart phone is 
not used, the power consumption is static.

P total = P active + P static

P active = CV^2fN

P static ~ V x Iq

C = Q / V

W = QV
W = CV2

Standby static power is essentially the leakage when not switching. This is hard to avoid completely so the goal 
is to reduce as much as possible. Static power is defined as;

Capacitance (C) is the ability of a circuit to store energy. Work is the act of pushing something (a charge Q) 
across a “distance”— in electrostatic terms pushing Q from 0 to a voltage (V).



122

INCREASING INTEGRATION, PERFORMANCE, FUNCTIONALITY AND ENERGY MANAGEMENT
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Figure 7.1. Multiple Power Domains in iMX8ULP SoC

Power is work over time, or how many times a second the circuit is oscillated.

And with a little substitution; 

So the goal when optimizing for low power is to only use the parts of the SoC that are needed and nothing 
else (reduce C), reduce the voltage if possible (V) and reduce the frequency if possible (F). This can be 
accomplished using hardware as well as software optimization.
An example of this is show in Figure 7.1. NXP’s EnergyFlex architecture shown here can be used to control 
multiple power domains in applications processors. For example, in NXP’s i.MX 8ULP SoC, Energy Flex 
architecture features:

•	 Real time domain
•	 Application domain
•	 Flex domain

In edge applications requiring heterogeneous processing, where different kinds of applications need to be 
run, the chip can be effectively architected to achieve fine-grain power partitioning to reduce power at the 
system level. 

P = W F where F = 1/T (time)

Power = CV^2f
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An application of this architecture is show in Figure 7.2 for a smart watch device. In this example the  
three power domains are controlling three different parts of the application;
•	 Application domain; microprocessor architecture containing Arm® Cortex®-A cores running a rich 		
	 operating system to provide advanced processing.
•	 Flex domain; allowing either application domain or real time domain access to display, low-power 		
	 double data rate (LPDDR), or any other high-performance resources such as GPUs and DSPs.
•	 Real time domain; enables lower processing modes based on Arm Cortex-M core, giving significant 		
	 battery savings. Can be used in conjunction with flex domain for displaying simple watch face (non-3D) 	
	 or other smaller workload.

Figure 7.2. Power domains mapped to different forms of application processing
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Figure 7.3. Power reduction due to dynamic power domain control in a smart watch application
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Figure 7.3 shows how this dynamic power domain control reduces power consumption over time  
by smartly turning on/off the various power domains based on the application processing profile.  
Lower energy consumption leads to longer battery life.
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Power efficiency for IoT applications
As discussed previously, energy efficiency relates to not only battery-powered devices but also line-powered 
devices. Indeed, energy is an expensive commodity that must be optimized to the lowest cost possible. 
During the planning of an internet of things (IoT) application, the power efficiency at multiple levels should 
be considered. This includes the printed circuit board (PCB) design, radio communication protocol, memory 
management, sleep and low power modes, wake-up times, compute power and speed of execution. 

In a battery-powered device such as an insulin pump, the wireless microcontroller manages the communication 
with the mobile phone. The Bluetooth Low Energy (LE) protocol is commonly used in this type of application 
because of its interoperability with mobile phones and its low-power capabilities. Information such as the time 
of use, dose and pump mechanical data can be stored in the wireless microcontroller and transferred to the 
mobile phone when the latter is in the radio range of the device. 

To connect with a mobile phone, the insulin pump needs to advertise to be discovered by the mobile phone 
(see Figure 7.4.)

Figure 7.4. Bluetooth LE connection procedure
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The wireless microcontroller sits in advertising mode for 95% of its lifetime. Consequently, the power 
consumption should be optimized during this mode. 

The user should consider an advertising strategy thoroughly from both the system and application 
perspectives because the device does not need to be connected all the time. A flexible advertising  
interval can be established, and the device can be run in a low-power mode between advertising events. 

Additionally, because the scanner (phone) and advertiser (insulin pump) are in close proximity,  
the output power of the transmitter can be reduced to save current consumption.

Finally, a device like this usually has shelf life before put to use, and it should consume the least possible 
current during this time. Therefore, ensuring the device is running in very low-power modes during which  
it is fully powered off and the consumption is lower than sub nA helps minimize power use.

In this next example, consider an industrial edge application for an Ethernet to Wi-Fi bridge. The final 
application is implemented in a harsh environment where the ambient temperature is above 60 °C. The 
power consumption of the device must be as low as possible to avoid running at the maximum junction 
temperature and impacting the reliability of the part. This compromise is therefore different from the 
previous example. Indeed, the focus is on not only thermal dissipation and the PCB design but also the 
absolute current consumption, which can be reduced by scaling down the CPU clock frequency, peripheral 
clocks or the core voltage.

LOW-POWER IMPLEMENTATION CONSIDERATIONS
As discussed previously, the overall energy consumed by an IoT device depends on its power consumption 
in active mode and low-power mode.

Figure 7.5 shows a typical energy profile of a device, including extended periods of low-power mode  
with periodic wake-ups and relatively shorter active mode periods. 

Figure 7.5. Energy profile for edge device with periodic wake-up
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Active mode features high-power consumption; therefore, the amount of time the device is in this mode should 
be reduced. The time to wake up the system should be as short as possible, but it depends on the low-power 
mode from which the device exits. Obviously, the deepest low-power mode entails the longest wake-up time 
and, consequently, the longest active time. Therefore, depending on the use case, the right compromise among 
low-power mode, random access memory (RAM) retention and active time needs to be determined. 

The device in Figure 7.5 remains in low-power mode for the longest time, so the power consumption is extremely 
limited. In this configuration, usually all the clocks are gated, but the supply domains are also power gated. 

Further, to limit power consumption, only the necessary RAM content should be retained and RAM banks 
that are not useful should be power gated because embedded memories contribute significantly to 
leakage during standby modes when all other logic is shut down.
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Figure 7.6. Energy profile of a Bluetooth LE advertising event

ACTIVE MODE 
Active mode corresponds to a state during which the device has some activity to complete. In active  
mode, the active (dynamic) power is predominant compared to the static power. Therefore, optimizations 
should mainly focus on reducing the time spent in this period (profile) and the active power. The next sections 
will look at the active profile and engineering techniques to optimize the active power consumption. 

Active profile
The Bluetooth LE advertising event in Figure 7.6 is an example of an active period.

The important parameter to consider when designing a low-power application is the area under the curve, 
which presents the total energy consumed by this event. Then it is imperative to reduce both the timing 
and the absolute current consumption.

This active event includes the following phases: 

•	 t1 ≥ t2 - Wake-up period where re-initialization begins.

•	 t2 ≥ t3 - The wake-up event is processed and a radio activity is scheduled. Note that radio activity is 		
	 usually scheduled over a predefined period.

•	 @ t3 - The processor enters a low-power state usually called sleep mode. The processor and 			
	 peripherals are clock-gated to reduce power consumption while the radio is active. In this state, the 		
	 processor executes the wait for interrupt (WFI) instruction. Some RAM, system bus and flash can be 		
	 clock gated to reduce current consumption. And the core voltage can be reduced if it is supported in 		
	 the architecture of the wireless microcontroller. 

•	 t4 ≥ t5 - Radio transmits.

•	 t5 ≥ t6 - The phase represents turnaround time.

•	 t6 ≥ t7 - Radio receives. 

•	 @ t8 - The processor wakes up from sleep when radio activity completes on interrupts.  
	 It then optionally processes the received data (in connection mode, for instance). 

•	 @ t9 - The processor selects the best low-power mode which is suited for the use case when no more 	
	 activity is required. The processor then executes the low-power entry sequence for this mode.
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In addition to frequency scaling, some devices 
implement the voltage scaling in active mode. This can 
reduce the amount of energy consumed by the chip. 
However, reducing the voltage requires a lower clock 
frequency which could impact the time spent during 
active mode. Trade-offs between the voltage and the 
clock may be required to reach optimal power savings. 

Voltage scaling 

Engineering techniques to optimize active power consumption
The dynamic current consumption is the main driving factor in this state. It depends on the operating 
clock frequency and the square of the voltage for a given load.

Using the lowest possible frequency during the active 
period is not necessarily the best option to save power 
because it can increase the time your device spends 
in active mode. If you do not need high-performance 
processing in active mode, you can lower the main clock 
frequency to a minimum without impacting the active 
time. However, during the wake-up sequence or the low-
power entry sequence, increasing momentarily the clock 
frequency helps reduce the wake-up and low-power entry 
time, which reduces the total active time.

Frequency scaling 
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LOW-POWER MODE
Low-power mode corresponds to a state during which the device has no activity; therefore, the current 
consumption needs to be reduced to a minimum. In addition to frequency scaling, some devices implement 
the voltage scaling in active mode. This can reduce the amount of energy consumed by the chip. However, 
reducing the voltage running at lower clock frequency which could impact the time spent during active 
mode. Trade-offs between the voltage and the clock may be required to reach optimal power savings.

Low-power profile 
The edge device implements a variety of clock domains, power domains and voltage domains, so the 
software can disable selectively the domains that are no longer required when activity ends. 

Each power domain can be restored when the system needs to be activated; the restore time depends 
on the deepness of low-power mode. The deeper the low-power mode, the longer the wake-up time. For 
instance, light sleep low-power mode usually disables only a few clocks in the system, so the wake-up time 
is almost instantaneous. However, deep sleep low-power mode disables clocks, the main oscillator, the 
power domain and regulators, so the wake-up time is much longer. 

Therefore, the software power manager of the application constantly needs to make trade-offs between 
the power savings in a deep sleep low-power mode versus wake-up requirements for the particular 
application and the extra power consumption. 

Defining and understanding the use case 

Consider the insulin pump example earlier in the chapter. Before patient use, the insulin pump can be 
stored at a drugstore. This is the shelf mode. The patient or end user then triggers the use mode during 
which the device periodically advertises to discover a Bluetooth phone for a connection. Once the phone 
connection is established, data is exchanged (for example, time, dose and error log). In this case, the end 
user takes a single insulin dose per day. Therefore, once the dose has been administered, the device can 
stay inactive for several hours until the next day. Timers can be used to keep track of time and the device 
can re-enter advertising mode. During this period the chip can be put into the lowest leakage power state.

For all these states, different power modes are used, as shown in Figure 7.7.

Figure 7.7. Power modes according to the usage of an IoT device
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Engineering techniques to optimize low-power consumption

The static current consumption is the main driving factor in the low-power mode. It depends on several 
factors, including power domains and memory bank retention. Therefore, the low-power mode should be 
carefully selected depending on the use case and the application concerns. Some examples to consider for 
low-power mode selection are provided below.

Low-power time duration
The longer the low-power duration, the deeper the low-power mode can be. For short low-power 
periods, the extra activity required to wake up the system can cost more than the savings generated 
by a low-power mode. Remember, the critical parameter is the area under the curve. If the low-power 
duration is very short and the device does not have time to switch into low-power mode before the 
next active period, light sleep low-power mode should be selected instead. 

Wake-up source capabilities 
Another criterion in the selection of a low-power mode is its wake-up source capability. If a device needs 
to wake up from a particular event, then this wake-up event will be supported on the selected low-power 
mode. Most advanced devices provide several wake-up sources for all low-power modes. In this case, 
if a wake-up source capability is requested when going to low-power mode, the software source enable 
the required hardware resources to handle the wake-up detection. For instance, if the device needs to 
wake up when the battery voltage drops, the power domain containing the bandgap reference and the 
analog-to-digital converter (ADC) module should be kept on for the low-voltage detection. 

Smart memory bank usage 
On-chip volatile memories such as SRAM get smaller and faster with process technology scaling, 
but they also get leakier. So SRAM can be partitioned into banks so that the software can selectively 
retain some memory banks and power off some others. This depends on the amount of data that 
needs to be retained. An optimized software architecture helps reduce the amount of memory 
needed by providing a clear split between retained data and unused memory.

Warm boot: Acceleration of wake-up from core power-off low-power mode
When some power domains are turned off, the peripherals and clocks in that domain need to be 
reinitialized to be used by the software. The core power domain containing the processor and the 
interrupt controller also may be powered off in some low-power use cases. However, if the RAM is 
retained, the processor context can be restored and the controller can be interrupted quickly. This low-
power exit sequence is called warm boot, and it features a very fast wake-up. Only some RAM banks 
need to be retained while the complete device, except for the always-on domain, is powered off.

Adjustment of low-power clock 
If a time reference is required in low-power mode, for instance, to trigger timers for radio events 
or application events, then the 32 kHz crystal oscillator can still run albeit consuming a couple of 
hundreds of nanoamps. Optimization to reduce the power consumption could be foreseen by using 
an internal low-power free-running oscillator. However, the accuracy of the free-running oscillator 
usually very low, which can, for example, make a big impact by preventing leader-follower time 
synchronization in Bluetooth LE.
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Other general low-power techniques
An application can be kept in a specific low-power mode, but the smarter move is to dynamically select  
the low-power mode depending on various constraints such as connection interval or a change of event. 
The software low-power policy manager usually handles this task. 

Another way to reduce the power consumption is to use a DC-DC converter. These converters reach 
maximum efficiency at a given operating point and cannot cover the complete current consumption of 
a wireless connectivity application that ranges from 100 nA to 100 mA. Therefore, the biggest power-
consuming event over the lifetime of the device must be identified, and the appropriate operating  
point of the DC-DC converter must be selected. More than one type of regulator can also be used to 
more effectively cover the dynamic power consumption range.

Low-power software architecture overview
All these techniques rely on an optimized low-power software architecture (see Figure 7.8).

A low-power software architecture mainly consists of:

•	 Low-power policy manager — This module gathers all constraints from the upper layer, connectivity 
stacks and applications and then selects the best-suited mode. Low-power constraints include enabling 
the serial peripheral when transitioning to low-power mode because the application still needs to 
receive data from an external device. In this example, the power domain and clock connected to this 
peripheral need to be maintained. However, a lower frequency clock can be used to reduce low power 
if the serial bus frequency can afford reducing the frequency. 

•	 Low-power entry/exit sequence manager — This module receives the selected low-power mode 
from the policy manager and handles low-power entry and exit sequences. 

•	 Low-power wake-up manager — This module receives the wake-up source selection from the upper 
layer and programs the wake-up source before switching to low-power mode. On wake-up, the wake-up 
manager checks the wake-up source and calls the registered callback associated with this wake-up event.
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Figure 7.8. Low-power software architecture example



The low-power exit sequence is triggered on a wake-up event. Once the hardware has restored 
the LDO, DC-DC, memory, flash memory, etc., the software execution restarts either from the WFI 
or WFE instruction, if the core power domain was maintained, or from the reset handler if the core 
power domain was turned off. For RAM retention, the reset handler can execute a warm boot to 
speed up the reinitialization as described in the warm boot section. When the processor restarts, the 
software executes these actions:

1.	 Reconfigures the system clock and restores the processor registers and nested vector interrupt 
control (NVIC) registers for a warm boot. For a normal restart, it directly resumes code execution 
from WFI or WFE instruction by skipping this first step and proceeding to the second step.

2.	 Restores the main clock source and reinitializes the radio drivers and the connectivity  
link layer if required.

3.	 Obtains the wake-up source event from the hardware wake-up unit.
4.	 Obtains the low-power time duration and resynchronizes the internal time base or timer service. 

Optionally, it restores the system ticks if the OS uses it. 
5.	 Calls the peripheral registered callbacks to 1) reinitialize the peripherals’ clocks, 2) restore the 

hardware peripherals’ registers if these were powered off, and 3) reconfigure the pin multiplexing 
setting used by these peripherals.

6.	 Calls the wake-up source callback depending on the wake-up source event.
7.	 Unmasks the interrupt to allow new interrupts to fire.
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Low-power entry/exit sequencer manager
The low-power entry sequence is triggered from the idle task scheduled by the operating system when no 
other activity is required on the chip. The following examples show various tasks the sequencer manager 
should do during low-power entry:

•	 Mask the interrupts — This atomic sequence should not be interrupted by the execution of 		
	 interrupt handler functions.

•	 Obtain the best-suited low-power modes from the policy manager based on next wake-up  
	 time and constraints — As mentioned previously, if the sleep duration is too short, the policy manager 	
	 selects a lighter sleep low-power mode with a shorter wake-up time. 

•	 Call peripheral callbacks — These callbacks are used to uninitialize stacks, peripherals and other 		
	 components by saving the hardware context values to RAM and switching off clocks, if required. 		
	 These also reconfigure the pin multiplexing setting into a low-leakage mode; typically, the output pads 	
	 are reconfigured in an input or a disabled state.

•	 Obtain the next wake-up time event from the timer service and program the low-power timer — 		
	 Optionally, the system ticks are suppressed and replaced by a low-power timer.

•	 Configure the wake-up sources, usually located in the hardware wake-up unit module.

•	 Program the hardware for the selected low-power mode — This involves clock- and power-domain 		
	 settings, RAM retention setting, flash configuration, low-power low-dropout (LDO) settings, DC-DC 		
	 conversion, etc.

•	 Execute WFI or wait for event (WFE) instructions to trigger the hardware to enter low-power mode.

In summary, power efficiency is a key requirement when designing an application for edge devices. As 
discussed previously, it presents challenges that need to be addressed at the beginning of the design stage 
when considering use cases and engineering requirements. Power consumption is an important parameter, 
but the time required to perform the various tasks that make up a complete application is equally important.
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TOOLS TO OPTIMIZE EDGE NODE POWER EFFICIENCY
As mentioned earlier, low-power operation is achieved by reducing voltage, current and timing. 
The most efficient power reduction can be attained by driving the voltage and current to zero as often
as possible. This section discusses the tools and processes that can be used to measure and optimize 
power consumption by monitoring the current and voltage on individual power rails. 

The number of rails monitored depends on the system on chip (SoC). A simple MCU may have one power 
rail, whereas an advanced SOC has multiple rails. The number of rails supplying modern advanced SoCs 
may be large due in part to being split into multiple voltage domains (for example, separate voltages) 
for each processor in a heterogeneous system and for each major functional block, such as the graphics 
processing unit (GPU), vision processing unit (VPU), dynamic random access memory (DRAM) controller and 
various inputs/outputs. This allows shutting off the voltage in unused domains or reducing voltages when 
dynamic voltage and frequency scaling (DVFS) is supported. The more rails that are available to control and 
measure, the more granularity of the overall power consumption can be achieved.

Developing the lowest energy edge device requires the use of a highly efficient computing processor or 
SoC that has distinct functions on separate power rails and drivers or a low-power manager so developers 
can easily take full advantage of these capabilities. Providing developer tools such as power consumption 
estimators, guidelines on how to achieve power-optimized products and power monitoring is the key 
to not only designing power-efficient products but also designing them faster, which leads to reduced 
development time.

The techniques used to minimize both current and execution time require hardware capabilities and a 
low-power-aware software architecture. These strategies to achieve a truly low-power design have been 
examined in a wireless product context. However, the same holds true for other types of applications 
because the principle of reducing the area under the curve is always valid.

The next section covers measuring and monitoring power efficiency.
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ADVERTISING PROFILE

Power estimator tool and optimization guidelines
Tools to help estimate the power consumption of edge devices and guidance on how to improve them are 
key factors for implementing a power-efficient solution, especially for applications requiring connectivity. 
For example, as seen in Chapter 5, “Edge Computing Connectivity,” the Bluetooth LE specification provides 
improved power consumption over the Bluetooth standard. But having a good understanding of the protocol 
and the connectivity devices’ capabilities and performances is required to reach the best power efficiency. 

Companies that provide connectivity devices usually offer simulation tools and guidelines via application 
notes on how to achieve the best performances with their SoCs. These can be used, for example, to assess 
the power consumption and timings of the different Bluetooth LE profiles such as advertising, scanning or 
connection. They provide a complete power consumption estimation breakdown (see Figure 7.9). 

Figure 7.9. Example of Bluetooth LE power consumption breakdown and timings 

ADVERTISING POWER CONSUMPTION BREAKDOWN
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Figure 7.10. Onboard power monitoring

Power monitoring tools
The development of software running on edge devices is started and performed mostly on the selected 
processor’s evaluation kit, typically long before the first device prototypes are available. Embedding power 
monitoring functionalities directly into these evaluation kits enables the user to start writing power-efficient 
code from Day 1. The power impact of any change or new line of code can be monitored immediately.

Efficient board power monitoring requires a combination of hardware and software:

Power monitoring hardware can be used to precisely measure the SoC’s voltages and current variations 

on each power rail. The power measurement application software collects power sample values from the 

ADC and send them to the user in an efficient manner, for example, using a graphical interface with power 

consumption. The application can be stand-alone or embedded into other tools, such as a debugger.

Onboard power monitoring pros 

Power measurement devices are already populated and connected on the rails of interest, so no board 
rework is required. Boards also usually come with power measurement applications for collecting and 
analyzing measurement data already implemented. Collection and analysis can be conducted via a single 
application running, for example, on a remote host, or a separate data collection can be performed using a 
dedicated processor on the board and then transmitting that data to a host for remote analysis. With this 
option, power monitoring and analysis can be performed right out of the box.

Onboard power monitoring cons 

The measurement precision and sampling rate of the onboard monitoring devices may be limited. For use 
cases exceeding onboard hardware capabilities, measurements give only a rough idea of the profiles, so 
connecting with and using external high-precision power monitoring equipment are important. 
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Off-board power monitoring pros

Off-board power monitoring means connecting external power acquisition equipment to the board to 
monitor any rails of interest using equipment that meets sampling and precision requirements. Some 
debuggers also include embedded power monitoring features. In that case, the power monitoring 
application is usually provided by the integrated development environment (IDE) through its power-aware 
debugging capabilities (see Figure 7.12). 

Off-board power monitoring cons

Power measurements cannot be performed right out of the box; they often require planning and effort to 
connect the external power acquisition equipment. Also, 2-pin headers with jumpers are usually populated 
as probing access points on the power rail of interest to easily connect the monitoring equipment in place of 
the jumper. These headers, acting like antennas, can impact radio-sensitive measurements such as those with 
Bluetooth LE. In that case, implementing two different boards, depending on requirements, may be necessary:

•	 One board with no header for radio measurements but no power measurements

•	 One additional board with headers for power measurements but reduced radio performance

Figure 7.11. Off-board power monitoring

Developing the most efficient devices is a team effort between the user and the semiconductor 
manufacturer. Providing high-quality power measurement tools helps developers build the most power-
optimized devices quickly and efficiently. Reducing the time developers spend measuring and optimizing 
the power consumption results in better products and shortens development cycles. 
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Figure 7.12. Example of a power profile provided by a power-aware IDE

Here is a list of useful approaches to optimize power using software techniques;
1.	 Architect the software to have natural “idle” points (inc. low power boot)

2.	 Use interrupt-driven programming (do not use polling, use the operating system to block instead)

3.	 Code and data placement close to processor to minimize off-chip accesses (and overlays from 	
	 non-volatile to fast memory)

4.	 Smart placement to allow frequently accessed code/data close to CPU (and use hierarchical 		
	 memory models)

5.	 Size optimizations to reduce footprint, memory and corresponding leakage

6.	 Optimize for speed for more CPU idle modes or reduced CPU frequency (benchmark and experiment!)

7.	 Don’t over calculate, use minimum data widths, reduce bus activity, smaller multipliers

8.	 Use DMA for efficient transfer (not the CPU)

9.	 Use co-processors to efficiently handle/accelerate frequent/specialized processing

10.	 Use more buffering and batch processing to allow more computation at once and more time  
	 in low power modes

11.	 Use the operating system to scale voltage and frequency where possible
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Edge processing presents new opportunities for human machine interfaces (HMI). 
This chapter explores applications.

DATA VISUALIZATION THROUGH HMIs
Edge processing systems often include data presented to the user. Depending on the use case, different 
data may be exposed from raw data and processed data to intermediate data. Because this data is often 
sensitive, presenting it on the edge device makes more sense than presenting it on another device that is 
less secure because it is connected to the cloud. To support that functionality, edge device system on chip 
(SoC) solutions integrate graphics pipelines.

Figure 8.1. Edge processor simplified HMI diagram 

However, communicating the data to a user can be challenging. Users often can’t make decisions or 
understand processes just by looking at numbers, so data visualization can help them. Data visualization 
consists of presenting data in an arrangement of visual elements, such as charts or maps, so users can 
easily consume the data. 

Gathering data, processing it on the edge (probably using artificial intelligence and machine learning), 
presenting it to the user and/or sending it to the cloud are common activities in almost every industry  
and even everyday life.

In the industrial sector, factory floors are overflowing with panels depicting information created from data 
gathered and artificial intelligence (AI) processed to increase efficiency, product quality and machine control. 
In the medical field, physicians and lab technicians constantly refer to the screens of digital assistants driven 
by AI, real-time data and historical data. 
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In the fitness world, biometric, preference and equipment usage data is gathered by exercise equipment 
while presenting informative dashboards and suggestions to athletes and coaches. Home equipment also 
tracks a variety of data. For example, high-end soundbars that are AI tuned show informative graphics  
of a room’s acoustics. 

In the automotive industry, car cockpits have transformed into an arrangement of digital dashboards 
showing car status, navigation and route information. Soon these dashboards will show personal and local 
information by connecting with other devices. Even wearables, appliances and internet of things (IoT) 
devices gather data, process it and present it on screens.

Consider some common data visualization implementations on edge devices.

REAL-TIME DASHBOARDS
Dashboards grew in importance during the COVID-19 pandemic. Most localities around the world updated 
dashboards daily with useful information such as active cases and hospital occupation percentages. These 
dashboards helped individuals make decisions regarding their personal actions during the pandemic.

Dashboards with edge processors are used to present real-time information updated constantly  
to streamline user decision-making or increase user trust for a variety of applications. 

Consider an industrial use case such as a power plant or an assembly line. In one of these settings,  
edge processors gather data and control processes using AI and machine learning (ML) while presenting  
a dashboard with key sensor and processed data to operators in real time.
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Figure 8.2. VeriSilicon graphics driver architecture

Designers develop dashboards with a UI creation tool that can deploy to edge processors. They use the 
tool to create buttons, sliders and graphs and to load 3D content with lights, particle systems and more. 
The tool exports the content to an application able to run on the edge processor Operating System (OS). 
The application makes use of standard graphics application program interfaces (APIs), such as EGL™, 
OpenGL® ES and Vulkan®, to generate frames through the graphics processing unit (GPU).
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Modern industrial dashboards range from small Extended Graphics Array (XGA) resolutions to 4K displays.
With these requirements in mind, 3D graphics and up to 4K resolution, consider the MPU block diagram  
in Figure 8.3. 

4 Shader
OpenGL®ES 3.1, Vulkan®, OpenCL™ 1.2

4Kp60 HEVC/H.265, H.264
VP9 Decoder

eDP

1 x HDMI 2.0a Tx (w/ HDCP 2.2)

6 x PS/SAI with TDM Support  
(20+ channels, each 32 bits @384 kHz)

DSD512

Dual Independent Display Support up to 4Kp60

HDR10, HLG

1080p60 MPEG-2, MPEG-4p2, VC-1, VP8,  
RV9, AVS, MJPEG, H.263 Decoder

1 x MIPI-DSI (4-lanes)

2 x MIPI-CSI (4-lanes each)

SPDIF Tx and Rx

HDMI Audio Return Channel (ARC)

1 MB L2 Cache

2 x Smart DMA

2 x USB 3.0 Dual Role and PHY 
(support USB Type C)

2 x SDIO 3.0/MMC5.0

HAB, SRTC, SJTAG, TrustZone®

6 x Timer, 3 x Watchdog

1 x Gb Ethernet (with IEEE® 1588, 
EEE and AVB Support)

NAND CTL (SLC/MLC) - BCH62

1 x QuadSPI (XIP)

AES256, RSA 4096, SHA-256, 3DES, DES, 
Elliptic Curve (ECC), ARC4, MDS

Boot ROM

4 x UART 5 Mbit/s

Secure Real Time Clock (RTC)

Resource Domain Controller

4 x I2C

eFuse Key Storage

PMIC Interface

3 x SPI

True Random Number Generator (RNG)

Temp Monitor/Sensor

4 x PWM

32 KB Secure RAM

2 x PCle® 2.0 with L1 Substates (1-lane each)

x 32/x16 LPDDR4/DDR4/DDR3L Up to 3200 MTps

Multimedia Graphics Processing Unit (GPU)

Video Processing Unit (VPU)

Display and Camera I/O

Audio I/O

Display Controller

Core Complex 1

Security

System Control

Core Complex 2

Connectivity and I/O

External Memory

1 x Arm Cortex-M4 core
4 x Arm® Cortex®-A53 cores

256 KB TCM (SRAM)Arm Neon™ FPU

16 KB L1 l-cache
32 KB L1 I-cache

16 KB L1 D-cache
32 KB L1 D-cache

Figure 8.3. i.MX 8M block diagram

MPUs that feature a GPU to create 3D graphics and a display controller are able to support  
up to 4K resolution and are commonly used in industrial applications.
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WEARABLE TRACKING INTERFACES
Fitness wearables generate data while users sleep, walk and move. They also use data visualization 
techniques to show information to the user.

However, these techniques have been adapted to the smaller displays of wearables.  
Figures 8.4 and 8.5 show two Crank Software tracking visualizations.

In addition to their graphics and data collection requirements, wearables and small devices must have  
a reliable, low-power solution with real-time response capability to drive trackers for hours or even days. 
MCUs are an efficient solution for low power, reliability and real-time OS (RTOS) support, while MPUs 
provide effective connectivity and graphics. 

Wearables and small devices need all these features combined into in one solution: crossover MCUs.  
This technology provides the low power and reliability of MCUs and the connectivity and graphics of  
MPUs. Figure 8.6 shows the block diagram of a crossover MCU with graphics and connectivity.
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544 kCal

3.7 km

10:23

Figure 8.4. Running tracker (Source: Crank Software) Figure 8.5. Step tracker (Source: Crank Software)

DURATION

PACE DISTANCE

01:04:2

155bpm

4:32
min/km

15:4
km



CRC Engine

System Control CPU Platform

DSP Processer

Multimedia

External Memory

Connectivity

Timers

Analog

Security

Internal Memory

8-ch. DMC Up to 2 x HS SPI

2 x DMA Up to 2 x eMMC/SD HS USB Host/Device +
DCD w/ PHY

FRO
Up to 12 x FlexComm

(UART/I2C/SPI/I2S 1 x I2C

IRCs FlexIO Up to 2 x MIPI®-I3C

JTAG/SWD GPIOs

Message Unit

OSC OS Event Timer

Cadence® Tensilica® DSP (up to 600 MHz)

FPU

Arm® Cortex®-M33 (up to 300 MHz)

32-bit SCTimer/PWM

(Quad/Octal) FlexSPI with On-The-Fly Decryption

(Quad/Octal) FlexSPI

Pin Interrupt/Pattern Match

Up to 5 MB SRAM

2 x PLL

ROM

PMC

Up to 2 x 32 KB FlexSPI Cache

Semaphone

16 KB USB SRAM

Micro-tick Timer

2D GPU (up to 200 MHz)

12 KB TCM

Crypto Engine

DSP Accelerator

FPU

Analog Comparator

Multi-Rate Timer

RTC

Display LCD controller

12-bit 1MSPS ADC

System Tick Timer

5 x Timer/Counters

2 x Watchdog

MIPI®-DSI (2 lane)

96 KB Cache

MPU

NVIC

TrustZone®-M

Up to 2 x Temp Sensor

AES-256 SHA-1/SHA-2 SRAM PUF TRNG

Crank Software & Qt supported NXP HW

MCU Processors

MPU SoC Processors

146

Instead of a 3D GPU, the crossover MCU has a 2D GPU. 3D GPUs are larger and consume more power, so 
2D GPUs are a sensible choice for crossover MCUs. Like an MPU, the crossover MCU contains a DSP and a 
MIPI-DSI interface. Silicon vendors have worked hard to include all these features on the software develop 
kit (SDK) bare metal and RTOS solutions in crossover MCUs.

For a designer using UI tools that support both MCUs and MPUs, the experience is almost identical — 
practically the same design flow and features are present in both cases except for loading 3D models.

Figure 8.6. Example MCU block diagram

Figure 8.7. UI tools that support MPU and MCU processors
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Figure 8.8. Vector graphics polygon example

However, some MCUs offer new possibilities for embedded UIs by incorporating vector graphics units. 
Vector graphics are defined by points on a Cartesian plane that are connected by lines and/or curves. 

Vector-defined 2D graphics can be modified with matrix transformations that easily can be mapped to  
GPU hardware. This allows scaling, rotations and other manipulations without losing quality or causing 
aliasing, so it is useful for both text and graphics on a wearable or handheld device.

You can apply the same transformations to bitmaps. For example, a perspective transform can be used  
on a bitmap to implement a cover flow interface.
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Designers often combine vector graphics and data visualization tools to create effective HMIs. The most 
popular data visualization tools are vector graphics back ends and JavaScript vector graphics for the web. 
Most of these vector graphics implementations are created with Scalable Vector Graphics (SVG), a markup 
language to describe vector graphics supported by internet browsers.

Figure 8.11. Example vehicle eCockpit display system (Source: Qt Company) 

Figure 8.10. Raster versus SVG graphics (Source: https://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg

A vector graphics GPU in an MCU provides SVG support and ensures that the MPU is up to date with  
current data visualization trends. It also presents the possibility of asset reuse. Many UI tools vendors  
are responding to this demand by incorporating SVG loaders in their tools.

Using SVG results in crisp, zoomable and fluid graphics on wearable devices, which makes data  
consumption even easier for the user.

VEHICLE DATA VISUALIZATION
There are several examples of data visualization on the cockpits of vehicles, from obvious things like an 
inData visualization in the cockpits of vehicles ranges from obvious features like an instrument cluster 
showing gas, speed, and revolutions per minute to an infotainment system showing real-time battery  
usage and charge on a hybrid vehicle (Figure 8.11).

Raster
GIF, JPEG, PNG

Vector
SVG
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Figure 8.12. i.MX 8 block diagram

A vehicle eCockpit consists of a digital instrument cluster and a digital infotainment system. Automotive 
multimedia application processors that can run an eCockpit on a single device are fairly common nowadays. 
Some of these devices also incorporate driver monitoring systems (DMSs) and other AI/ML driver assistants.

Consider the multimedia block of the i.MX 8 block diagram in Figure 8.12. This SoC contains advanced  
3D GPUs and display processors designed for eCockpits. 
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Figure 8.13. Cluster and heads-up display with SafeAssure areas indicated in red

The security standards for instrument clusters require critical information to be periodically checked. 
Speed, revolutions per second and indicators are all critical information. SafeAssure® capabilities allow  
an MCU, which offers high reliability and fast response times, to control the display processor and  
perform periodic security checks on areas of the screen (see Figure 8.13).  

Emerging technologies such as vehicle to everything (V2X) will broaden those possibilities even more by 
enhancing the data presented by navigation systems with information from devices other than the car 
(see Figure 8.14). 

55 MPH0.4 mi Turn
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Figure 8.14. V2X communication (Source: NXP)

Level 3 autonomous vehicles also offer compelling data visualization examples. When vehicles enter a 
condition during which they can self-drive, such as navigating a highway, drivers see a screen showing data 
processed by the advanced driver assistant systems (ADAS) for objects detected, distance to the objects, 
choices made by the car and more (see figures 8.15).

Figure 8.15. ADAS visual representation (Source: NXP)

eCockpit multimedia application processors offer use cases such as these in a secure and reliable way. 

eCockpit single MPU implementations require powerful GPUs and display processors to support several 
high-resolution displays and create complex 3D graphics running on safe virtualized environments. 

HMIs are key to helping users make sense of this new data-driven world, and they are essential for it to reach 
its full potential. Edge processors have functionality to achieve this goal while taking care of sensitive data.
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EXAMPLE: TOUCHLESS CONTROL FOR THE INDUSTRIAL IOT
Many people use HMIs with sleek glass touch screens and ubiquitous buttons daily in homes, vehicles, 
workplaces and public venues. But the recent pandemic raised concerns about multiple people spreading 
the virus by touching the same buttons or screens. The demand has increased for alternative interfaces to 
reduce the need for physical contact. Entering a PIN at an ATM terminal, purchasing a train ticket at a kiosk 
or simply selecting the desired floor in an elevator involve touchable surfaces that hundreds of people have 
used. Touchless alternatives for humans to interact with machines in the workplace, retail and  
hospital settings will be a growing trend.

Touchless controls
The industrial internet of things (IIoT) automates manufacturing and smart machine communications, 
but humans still must interact with machines occasionally. To reduce germ and virus transmission, 
touchless technology needs to replace traditional push-button and touchscreen controls. 

Many users are familiar with voice assistant applications at home or in vehicles. However, this type of 
voice control is unreliable in noisy manufacturing facilities, active outdoor environments or groups of 
people who are speaking. For these cases, speech and gesture can be combined to provide a more 
adaptable and robust multimodal touchless interface.

With voice or vision-controlled systems, machines must quickly and reliably differentiate between 
deliberate user instructions and random or unintended inputs. For example, a machine should turn 
on only when the user intends this response and not simply because a person is standing near it and 
talking. Machine vision systems can recognize gestures such as hand and foot movements, head nods 
and finger pointing. Interpreting body language can become a more natural way for machines to 
respond to visible inputs from human operators.

Gesture-based solution development
The first step in developing a gesture-based solution is to identify which gesture types the system 
must recognize and interpret. For example, will the user communicate using hands only or a full-body 
movement? Will finger movements be easier for the vision system to capture than body movements, 
which could be partially obscured by clothing or other items a person is carrying? 

Gesture complexities are also important design parameters. For instance, opening a door might  
need only a single hand wave, but adjusting environmental controls or changing a production line 
might require a range of intricate gestures.

Finally, the speed of the movement and environmental conditions (for example, lighting levels that 
are too low or too bright) can play a significant role. Understanding all these factors helps determine 
the number and type of camera sensors, field of view, focal length and resolution needed to detect 
and interpret the gesture. 

A backup interface, such as voice control or a physical touch screen, should be offered in case the 
user cannot use the gesture method. For safety-critical functions in industrial environments, the 
application software may need a functional safety assessment and certification, such as IEC 61508  
for industrial systems.
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Use case 1: Door opening by gesture control Machine inference or instruction

Notice a person near the door. Recognize that a person, instead of a cat or car, is in the field of view.

Confirm the person wants to interact with the door. Recognize eye contact.

Communicate that the control panel can accept gesture inputs. Provide a first-time users guide if required.

Focus on the area of interest. Identify the face, hand, foot or other area of interest.

Capture and recognize the gesture to safely open the door. There 
may be more than one type of acceptable gesture to open a door.

Correctly interpret the gesture(s) as a request to open the door.

Use case 2: Fast-food kiosk ordering using hand gestures Machine inference or instruction

Notice a person near the kiosk. Recognize that a person, not a robot floor cleaner, is in the field of view.

Confirm the person wants to interact with the kiosk.
Recognize eye contact for a defined time period or  
a hand approaching the display.

Communicate that gesture inputs can be used to place an order. Provide a first-time users guide as a short video file if necessary.

Display a menu of food options.
Encourage the customer to select from the menu with visible or 
audible cues.

Accept user inputs by tracking the customer’s pointing finger, swiping 
hand and clicking motions that don’t need to touch the display.

Correctly interpret the finger or hand location with respect to each 
selectable menu option, and recognize the gesture to select the 
item, for example, “air” mouse with “air” click.

Capture the food order and request contactless payment. Print, email or text receipt or confirmation.

Table 8.1 shows two use cases for gesture recognition.
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Figure 8.18. Vision solutions

ML for gesture recognition
Once the gesture, environment and camera types are understood, a gesture-recognition ML model 
needs to be acquired or built. The left side of Figure 8.18 shows the steps to convert gesture 
examples into an inference engine, which is the algorithm that recognizes the gesture.  
TensorFlow, ONNX and PyTorch are some commonly used tools for this purpose.

Identifying the hardware and software needed is next. Gesture recognition systems are typically 
built on industrial-grade embedded platforms ranging from a single, smart camera connected to 
a general-purpose computing core to multiple camera sensors feeding multicore processors with 
highly optimized vision and ML accelerators. Figure 8.18 shows two options for a gesture-recognition 
system: a lower cost microcontroller for simpler systems and a higher end system on chip (SoC) 
applications processor for more complex or faster responding gesture and vision systems.

Scalable Machine Learning and Vision Enablement
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Vision solutions range from MCUs with a single Arm® Cortex®-M7 core, to a more performance-centric 
applications processor which integrates a neural processing unit with flexible interface options.

Stereo vision cameras can use either MIPI-CSI, USB or Ethernet connections, together with audio inputs, 
to recognize speech and sound generators and provide audible user feedback. A display panel also can 
deliver visual instructions and feedback to the user. It may incorporate backup touchscreens in case the 
contactless control fails or the user cannot interact with it.

Vision systems require hardware and software components that are often bundled into development kits 
for the user. These include cloud-based tools for object-recognition tasks. This kit can be used to collect 
gesture examples and transfer them to the cloud tools to train the gesture-recognition models. Then the 
resulting inference needs to be loaded onto the same kit to recognize the gestures and inform the machine 
how to respond.

SUMMARY

Touchless controls not only keep users safe but also improve the way humans interact with machines in  
industrial and manufacturing environments. Existing hardware and software submodules can be used to 
build cost-effective gesture-based controls, which are responsive and reliable, and enable a new era of 
touchless UIs that will help industry thrive in the new normal.
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This chapter offers a deeper look at the following edge computing examples that use 
some of the key technologies covered in previous chapters. 

Time-sensitive networking (TSN) and 
distributed real-time computing at the edge

Intelligent connected vehicles

Local voice at the edge optimized 
for power efficiency

5G technology as an enabler for Industry 4.0

Wearables
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Acoustic interface 
The acoustic interface is responsible for translating acoustic signals in the digital domain. 
Most devices use digital microphones. A device’s digital microphone should cover the full acoustic dynamic 
range from lowest speech in far field to the highest sound pressure. The highest sound pressure that needs 
to be supported is mainly coming from audio playback that should be converted without saturation. This 
is known as the acoustic overload point, which could range from +120 dB sound pressure levels to 130 
dB sound pressure levels. In the case of saturation, the non-linearities impact the acoustic echo canceller 
performance. In the lower part, the lowest sound pressure that needs to be supported is mainly coming 
from the talker distance. This is known as the signal-to-noise ratio, which can range from +60 dB to 70 dB.

The overall power budget of one digital microphone (~1 mW) compared with an MCU (~50 mW) running 
at full speed is negligible. However, if the user needs a low-power strategy (idle mode in silence), the MCU 
can sense the microphone every few milliseconds and then return to deep power sleep. In that condition, 
MCU average consumption can dip below 1 mW (some microcontrollers can drop down to 100 µW on 
average in deep sleep mode with some active time for audio sensing), so using the digital microphone’s 
low-power mode by reducing the digital clock is preferable. Microphone manufacturers now have 
dedicated analog front-end technology that can wake up the MCU in case of speech activity.

Edge versus cloud processing of voice commands 
Deploying voice user interface technology that relies only on edge processing provides multiple benefits. 
The local voice system is always functional because users don’t need data access. The latency, which is an 
important perception criterion in the user design, is completely under the user’s control. Also, the system  
is private by design because voice data remains local without the need for sending or storing speech. 

As far as accuracy is concerned, for a limited vocabulary (i.e., fewer than 20 voice commands), a local voice 
approach can be more accurate than the cloud. This is possible by limiting the research space to a few 
words or commands. 

The voice user interface is designed to improve the user experience, the overall chain from acoustic to 
machine learning (ML) model deployment on a platform is important. The chain includes the acoustic 
interface and far-field technology.

NXP MCU/MPU

Audio Front End 
DOA, Beamforming

Wake Word
Engine Voice Commands

>=2 Microphone Array

Figure 9.1. Local voice blocks

EXAMPLE: LOCAL VOICE AT THE EDGE 
OPTIMIZED FOR POWER EFFICIENCY
Voice user interface technology is usually composed of a wake word that wakes up devices and voice 
commands, or a small vocabulary, that is recognized within a few seconds after the wake word event 
(Figure 9.1). This example reviews the acoustic interfaces to deploy voice and undergo speech dataset 
preparation for building a voice wake word.
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Far-field technology 
Far-field technology in voice user interfaces has a clear definition. It is not related to a fixed distance 
between the talker and the device; instead, it is determined by the acoustic properties of the area 
where the device is located. Figure 9.2, shows the speaker source on the left. At any point, the user 
experiences two sound sources: the direct sound from the talker (in green), which is decreasing 
with the distance, and the reverberation in the room (in blue), which is constant no matter the user’s 
position in the room. The distance at which these two sources have some energy is called the critical 
distance. After that distance is the far-field condition. The energy of the reverberation rises higher 
than the direct path. When this happens, the user has more difficulty focusing on the talker because 
the user cannot rely on the energy anymore. This is why supporting a far-field condition is complex.

Performance criteria of the voice user interface
Voice user interface is one industry domain that does not rely on the usual standardization organizations 
such as the European Telecommunications Standards Institute or the International Telecommunication Union. 
It’s mainly driven by Google and Amazon, which have already deployed millions of voice devices.
Performance criteria focus on the true positive rate, the false positive rate and latency. One criterion that 
is difficult to achieve is the false positive rate, which corresponds to the number of times the wake word 
is incorrectly triggered. Assuming the user wants to generate fewer than three false positives per day, 
and given that the speech audio stream is classified every 10 ms, a false positive rate of 34.10-6% must be 
achieved, which means a true negative rate of 99.99996%. Obtaining this performance with ML is challenging 
because ML is often used for resolving an approximately unsolvable problem. This is the overall concept 
of the receiving operating curve (ROC) trade-off. Almost a perfect classifier is needed (see Figure 9.3) for 
rejecting all noises and nontarget speech.
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Figure 9.3. Receiving operating curve
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Developing a wake word and voice command with ML 
The next section examines data feature extraction, data augmentation and data visualization. 

Figure 9.4. Weighted finite-state transducers for pause, play and stop
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Feature extraction
The first processing step is feature extraction. Presenting time-domain data to the neural network 
is unusual despite successful approaches to it14. This is because the time domain is a complex 
representation (gain and phase completely change the data values while the human perception 
is almost identical). Moving from time to frequency domain and using the mel-frequency cepstral 
coefficients (MFCCs) to reduce the data vector size are more practical15,16. Even if training a neural 
network with MFCC representation is possible, transforming MFCCs into another latent space 
for representing a higher level of speech such as phonemes is a better choice (see Figure 9.4). 
Indeed, having a neural network that can extract all the phonemes of one specific language 
guarantees that the user can detect any word and any sentence. 
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14Reference: Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation, Yi Luo, Nima Mesgarani
15Reference: EFFICIENT KEYWORD SPOTTING USING DILATED CONVOLUTIONS AND GATING , Alice Coucke, Mohammed Chlieh, Thibault Gisselbrecht, David Leroy, Mathieu Poumeyrol, Thibaut Lavril - Snips, Paris, France
16Reference: https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html 
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Data augmentation 
The false positive rate is a difficult metric to reach, and the true positive rate (how well a device can 
detect the wake word) is also challenging. As usual in ML, the dataset preparation before neural 
network training is the most important step. To generate the best performance, as much variability 
as possible must be shown to the neural network classifier so that it recognizes speech diversity 
(tones, pitch, speed). This process, called data augmentation, consists of presenting original training 
data with some modifications (noise, speed, reverberation). 

Data visualization 
Before starting the neural network training, the user needs to verify that the features presented to 
the neural network correctly address the problem to solve. The features need to not only accurately 
identify the target class but also separate the target class from the nontarget classes.

Because data features vectors are high dimension, some algorithms, such as principal component 
analysis (PCA), can be used to reduce the dimensionality. In Figure 9.5a, all the target “Alexa” wake 
word feature vectors are well clustered. Figure 9.5b incorporates nontarget speech and noise to 
verify that data features are correctly separating the two classes.

Figure 9.5a. PCA of 1,000 samples of the target wake word 
Figure 9.5b. PCA of the target (light blue) and nontarget samples (brown)

The dataset is now ready to be used for ML training. 

This section mainly focused on data. For the wake word, and in deep learning in general, the algorithm can 
never be blamed — only the data. How the data is augmented and presented to the neural network is key 
to achieving good performances. 

Edge processing expertise in a variety of areas — embedded signal processing, ML on the edge and 
embedded firmware — is required for the successful deployment of this example. Because of this, 
achieving good performance for local voice products is difficult.
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EXAMPLE: 5G TECHNOLOGY AS 
AN ENABLER FOR INDUSTRY 4.0
In many ways, industrial control applications are prime examples of edge computing because of their 
data locality, reliability and latency requirements. Data locality requires that the data stays on the physical 
premises of the industrial setting (for example, a factory) because data (or even meta data) is considered 
a key asset to the corporation. The importance of tight latency requirements is easily understood when 
considering that the settling time of a control loop (for example, to move a robotic arm) is directly related 
to the latency of the feedback loop. Reliability requirements are obvious; the cost of downtime is huge. 

A modern industrial production domain is complex because of the large amount of coordination required 
between devices. This drives requirements for coordination and timing alignment between devices and, 
ideally, for some form of centralized management and control. These requirements, in turn, generated the 
need for wired or wireless communication in the edge computing environment. 

Today’s industrial networking environments incorporate local production domains that are predominantly 
connected through wired Ethernet networks using TSN capable of end-to-end latency in the tens of 
microseconds. This allows support for centralized operational control and coordination (see Figure 9.6). 
Wireless industrial Wi-Fi options are mostly used for links with limited time accuracy and reliability requirements.

Figure 9.6. Traditional (wired) TSN industrial connectivity
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Wired connection concepts don’t align with Industry 4.0 concepts involving the use of smart technology 
and large-scale machine-to-machine (M2M) communication to enable flexible industrial environments with 
limited human intervention. Consider an example of a modern warehouse with unmanned guided vehicles 
(UGVs) or a modern assembly line that is no longer linear but routes work between cells as necessary. 
Both require low-latency, high-reliability connectivity as promised by 5G private networks.

5G replaces the connectivity between production domains and to/from centralized control with a wireless 
(5G) connection, thus enabling deployment flexibility, mobile connectivity and edge computing. 

5G in industrial applications is enabled by several factors:

•	 3GPP standards including ultra-reliable low-latency communication (URLLC) 
•	 Deployment options such as edge computing and software-defined networking (SDN)
•	 Spectral availability supporting private network deployment

3GPP standards
3GPP defines multiple deployment scenarios to guide requirements and protocol specifications  
in TS22.261, as shown in Table 9.1:

Scenario End-to-End Latency (ms) Reliability

Discrete automation 
(motion control)

1 99.9999%

Electricity distribution — 
high voltage

5 99.9999%

Remote control 5 99.999%

Discrete automation 10 99.99%

Intelligent transport systems — 
infrastructure backhaul

10 99.9999%

Process automation — 
remote control

50 99.9999%

Process automation — 
monitoring

50 99.9%

Electricity distribution – 
medium voltage

25 99.9%

Table 9.1. URLLC use cases and requirements
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The following key performance indicators, or KPIs (3GPP TR 38.913), are enabled by targeted  
URLLC 5G standard options:

Latency 
Latency is defined as the (one-way) latency for delivery of an application layer packet/message from 
the radio protocol layer 2/3 service data unit (SDU) ingress point to the radio protocol layer 2/3 SDU 
egress point via the radio interface in both uplink and downlink directions, where neither device nor 
base station reception is restricted by discontinuous reception (DRX). For URLLC, the target for user 
plane latency should be 0.5 ms for both uplink (UL) and downlink (DL) transmission.

Reliability 
Reliability can be evaluated by the success probability of transmitting X bytes within a certain delay, 
which is the time it takes to deliver a small data packet from the radio protocol layer 2/3 SDU ingress 
point to the radio protocol layer 2/3 SDU egress point of the radio interface at a certain channel 
quality (for example, coverage-edge). A general URLLC reliability requirement for one transmission 
of a packet is 10-5 to 10-6 for 32 bytes with a user plane latency of 1 ms.

Availability 
This is the maximum coupling loss (MaxCL) in upload (UL) and download (DL) between the device and 
base station site (antenna connector(s)) for a data rate of 160 bps, where the data rate is observed at 
the egress/ingress point of the radio protocol stack in UL and DL. The target for coverage should be 
164 dB. Link budget and/or link level analysis is used as the evaluation methodology.

Note that the performance-critical scenario involves discrete automation, which demands a 1 ms latency 
and 99.9999% reliability. 

Building blocks to achieve these three KPIs include numerology and frame structure, fast turnaround, efficient 
control and data resource sharing, grant-free uplink transmission and advanced channel coding schemes.

Industrial use support is not limited to building blocks. More capabilities are expected to be standardized 
and developed to support specific market verticals. In this chapter, we try to outline techniques in a 
general way.
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Deployment options
Industrial automation requires the use of private networks that are local to the premises. 
Driving requirements for this include:

Figure 9.7. Combining 5G RAN and TSN

Data locality  
Production data is not allowed to leave the industrial premises for data protection reasons.             
This removes the option of (remote) cloud processing and reliance on public networks.

Latency
Public radio access network (RAN) latency is an order of magnitude higher than private network 
latency even if public networks are optimized toward enhanced Mobile Broadband (eMBB) 
deployment and centralized compute. In an optimal (lightly loaded) environment, public network 
RAN latency alone is a 10 ms order of magnitude.

RAN performance 
When relying on a public network, guaranteeing operational quality of service (QoS) in every location 
may be difficult. Small cells can be used to improve random access network (RAN) performance, but they 
intrude on the IT infrastructure in the industrial environment when they are part of a carrier network.

Cost and (small) scale targets for industrial deployment can be achieved by implementing software-defined 
networking for control plane and core network functions. This removes the need to rely on high-end 
networking equipment designed for use by mobile network operators.

The 5G RAN itself can be physically implemented/partitioned in different ways. For example:

•	 Integrated small cells where RF, the physical layer and 3GPP radio link control/medium access control 
(RLC/MAC) layers are co-located into a single (“small cell”) unit, connecting over sub 1 Gbps links to 
the centralized unit that takes care of 3GPP protocol termination, cell site routing and connectivity to 
edge compute/core network.

•	 Distributed small cells where RF and the lower physical layer are separated from the upper physical 
layer and RLC/MAC functionality. In this case, connectivity between the two is provided by higher 
capacity Ethernet, typically dedicated 10/25 GbE.
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Figure 9.8. A typical 5G deployment enabled with NXP components

These two implementation options present trade-offs in cost, power, programmability/flexibility and other 
factors. Specific URLLC protocol-level features can be implemented more easily in an integrated small cell 
environment (smaller slot times and low hybrid automatic repeat request, or HARQ, turnaround times) 
or in a distributed small cell (coordinated multipoint and interference management). The choice between 
implementation options depends on the use case.

A typical 5G deployment has one 5G user equipment/customer premises equipment per machine 
or station. It relies on wired networking to enable lower latency control loops for motors, drivers 
and actuators. This is where TSN comes in. TSN includes several features that map to 5G to provide 
deterministic communications (see Figure 9.7). It can reach control loops with a period of around 100 µs. 
All relevant components can be enabled using hardware as shown in Figure 9.8.

Spectral availability
The deployment of private 5G networks, including those inside an industrial facility, requires available 
spectrum. Spectrum availability typically defines the deployment format. Spectrum allocation is not 
distributed evenly around the globe, so solutions are focused in regions, for example, the United States, 
Germany and Japan.

United States — The Federal Communications Commission is opening 150 MHz of Citizens Broadband 
Radio Service (CBRS) spectrum in the 3.5 GHz (3550–3700 MHz) band. This spectrum is intended for three 
tiers of users (see Figure 9.9):

•	 Incumbent (orange) — These users can retain the rights to use the band for military and wireless 
internet service provider (WISP) purposes. WISPs will continue to have incumbent access to the 
3650–3700 MHz band under the terms in place, with no modifications needed to deployed equipment. 

•	 Priority Access License or PAL (yellow) — These users are allocated in the 3550–3650 MHz spectrum. 
Spectrum auction is implemented on a per-county basis (~3,200 in the U.S.). Each market has 7X 
10 MHz TDD PALs, with a maximum of four channels assigned per licensee. PALs will mostly drive 
deployments of public networks. 
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Figure 9.9. Spectrum allocation in the United States

Figure 9.10. Spectrum allocation in Germany

•	 General Authorized Access or GAA (green) — All other users can register with a Spectrum Access 
System (SAS) when the SAS determines the spectrum is not in use by incumbent or PAL users with 
higher access priority. Channels throughout the overall band (3550–3700 MHz) are available for GAA. 
Access to 70 MHz is shared with PAL users and subject to availability (PAL users have priority over 
GAA users), and access to the remaining 80 MHz is reserved for GAA users (but PAL users can also use 
this part of the band under the GAA provisions). GAA use requires spectrum sharing using coexistence 
techniques (see below). GAAs will mostly be used for private networks.

This new regulation creates a deployment framework for 4G and 5G in this band, which was  
previously under-utilized. 

Germany — European RF spectrum is defined on a per-country basis, with ongoing harmonization 
efforts. The Alliance for Connected Industries and Automation maintains a list. Germany allocated 
local licensed spectrum in the 3700–3800 MHz band range to industries for their applications in 2019. 
This spectrum is made available for private network use through a transparent and low-cost process 
by the Bundesnetzagentur (Federal Network Agency, or BNetzA). The BNetzA oversees the 
telecommunications industry in Germany (see Figure 9.10).
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Figure 9.11. Spectrum allocation in Japan

Applications for spectrum are implemented in “chunks” of 10 MHz spectrum, with fees defined according 
to the following formula since December 2019. The fee = 1.000 + B * t * 5 * (6a1 + a2) where

•	 1.000 is the base fee in €,

•	 B is the bandwidth in MHz (minimum 10 to maximum 100),

•	 t is the time of allocation in years (for example, 10 years),

•	 and a is the area in km²; differentiation between settlement and transport areas (a1) and other areas 
(a2) -> a1 applies to industrial use, and a2 applies to farming and forestry

Germany does not explicitly limit transmit power, but the regulations stipulate that the local network 
operators are responsible for a reasonable deployment that does not cause interference. 

Note that in Germany, broadband fixed wireless access (BFWA) has been allocated to the 5.8 GHz spectrum 
(5755–5875 MHz) band and as such does not share the private network spectrum like it does in the United States. 

Japan — Spectrum for local 5G was released in Japan at the end of 2019 for local government and 
enterprise use. The country’s goal is to realize “Society 5.0” through state-of-the-art technologies such 
as IoT, artificial intelligence (AI), robots and self-driving vehicles, as well as their incorporation into all 
industries and sectors related to lifestyle (see Figure 9.11).

A harmonized spectrum for private networks around the globe has not yet been defined. Implication, 
equipment choice, RF regulation and cost vary by region. Government harmonization efforts are underway 
but are not expected to solve this challenge in the short-term future. 

This example summarizes the value proposition that 5G delivers to industrial applications and the specific 
options/capabilities that the 5G protocol supports to enable industrial wireless networking as a targeted use 
case. Elements beyond the protocol features make 5G applicable to industrial applications. First, spectrum 
is being made available worldwide specifically for innovative applications such as industrial networking. 
Secondly, hardware and software need to be available to make the required systems available to customers. 
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EXAMPLE: WEARABLES
Wearables are expanding beyond the common activity tracking and fitness use cases found in nearly 
1 billion connected devices today. The evolution of wearable technology can be attributed to the 
improvement of processor performance, sensors, wireless connectivity and tracking capabilities, 
contactless payment/access, extended battery life, and the demand for richer user experiences. 
These all create the ideal foundation for new health and well-being use cases. 

Among edge processing applications for consumer IoT, the convergence of smart homes and smart 
watches (see Figure 9.12) technologies will gain momentum while delivering increased quality of life to 
consumers. The technology enabling the use of smart watches to control security systems, thermostats, 
TVs, coffee machines, lights, ovens, vacuum cleaners, dryers, washing machines, alarms, doorbells and 
so on can easily spread to the edge node. 

The combination of smart watch technology and connected car tools are being introduced. New smart-
watch-integrated apps can give users access to controls, such as the sunroof, seat ventilation and 
temperature, and alerts on speed and vehicle status, among other features. Advances in sensor technologies 
and software capabilities will make smart watches compatible with more devices in the coming years.

The following requirements are driving the trends in this market:

•	 Longer battery life

•	 Constant connection through Bluetooth Low 
Energy, Wi-Fi or Long Term Evolution (LTE)

•	 Intuitive user experience with smartphone- 
like display (organic light emitting diode)  
and exciting graphics and animations

•	 Expanding features such as voice control, greater 
audio, location/positioning and numerous sensors

•	 Reduced form factor that provides more 
functionality in less space

•	 Increased comfort and health

•	 Interoperability with other connected devices



170

Energy consumption, connectivity, human manchine interfaces (HMIs), graphics processing and security 
are optimized by enablement. Energy consumption is optimized by adjusting the system clocks and voltage 
levels on various power rails. It selects the appropriate power mode (run, wait, sleep, deep sleep) based 
on use cases. Software connectivity is enabled through Bluetooth LE, near-field communication (NFC) 
and Wi-Fi stacks. The HMI is enhanced through the graphics processing unit (GPU) software enablement. 
Security is enabled by secure boot, authentication and device management running in the secure 
software domain. Software processing information ranges from touch sensing to event triggering. 
Algorithms extract and analyze data from GPS and ultra-wideband (UWB) to establish positioning. 

Consider these smart watch uses cases and associated technologies.

Localization
UWB technologies can help determine the location of a person with limited mobility who may have fallen. 
This technology also provides accurate localization to position a user in relation to a door lock. With a 
secure element, the system can identify the person standing there, and UWB can detect the distance for 
the door to operate more seamlessly.

Understanding the position of the user can trigger services to optimize travel and return to the point of 
origin. Localization technology also monitors user activity to encourage the user to do more or less to stay 
healthy. UWB provides indoor positioning. For example, homeowners leave, they can power up the GNSS to 
continue helping with positioning, and they can turn off the same GNSS to save power while UWB is active. 

A small IoT device on a pet, powered by some form of energy harvesting and UWB, can help identify  
the position of the pet at any time and even track the pet’s activity. 

Wearables at the edge
As virtual reality and augmented reality glasses and headsets take users to other worlds for 
applications including gaming, travel, education and training, health-related wearables are even more 
ubiquitous. These devices generate a lot of data that require fast and secure processing, which edge 
computing provides.
 
Sensing, processing and acting on the edge ensure data is collected and analyzed instantaneously. 
For simpler use cases, the need for broadband connection and cloud processing is eliminated to 
reduce power and ensure value to the end user.
 
Implantables, fitness trackers, smart jewelry, watches, shoes and clothing provide the following:

•	 Health monitoring, with movement and fall detection, emergency calling and vitals reporting  
(for example, body temperature, oxygen levels and cardiac signs)

•	 Sleep monitoring and therapy

•	 Meal/calorie tracking

•	 Hearing enhancement

•	 Social distancing and contact tracing and tracking

These technologies can be life-saving, especially for cognitively impaired and high-risk patients.  
Edge computing offers the fast processing and security needed to detect, interpret and protect 
crucial and private health data.
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Voice control
The voice control capabilities in many wearable devices leverage a variety of AI technologies — speech 
recognition, natural language processing (NLP), context aware computing and ML — to enable human-
like voice interaction. Users can access news, send messages, track exercise, play music and make flight 
reservations using these platforms without having to access apps manually. To save power and extend 
battery life, local voice technologies are now available. These implement processing at the edge without 
connecting to the cloud or processing data in the cloud. The size of these algorithms is much smaller than 
the cloud-based versions. Voice control technologies are based on three main pillars: 1) The microphone/
audio front panel that reduces environmental noise to provide a clearer voice signal to the 2) wake word 
engine, which indicates to the watch to listen to the owner saying a 3) command word to control a function 
of the watch. All of this must happen in record time with a high level of confidence to recognize the right 
command words and reject the wrong command words. That process is accelerated by a DSP on a chip in 
some edge processors to optimize performance and power use.

Security
Many smart devices connect to systems that exchange data with phones and the cloud, so they are 
susceptible to security attacks. Anyone could potentially hack a home or building system to trigger 
costly damages. The high number of security incidents demonstrates the need for robust security 
software at all layers as well as effective physical security.

Silicon vendors must offer customers the ability to securely boot and trust the embedded software and to 
store data on the device. The processor offers a secure boot with immutable hardware root of trust (RoT), 
unique key storage based on a static random access memory (SRAM) physically unclonable function (PUF), 
acceleration for symmetric (AES-256 and SHA2-256) and asymmetric (elliptic curve cryptography and Rivest-
Shamir-Adleman, or RSA) cryptography and an optional fuse-based root key storage mechanism. Additionally, 
virtualization can be used to protect embedded systems from software attacks after updates, and ciphering 
technologies can be implemented to secure communication links between devices and servers. 

Graphics
The smart home and smart watch markets have different target users, yet both require the ability to 
design tailored graphical user interfaces (GUIs). Today’s kitchens or living rooms change more often than 
in the past while integrating appealing new electronic products with large displays, for example. Buildings 
are becoming more connected and taking advantage of complex electronics thanks to IoT. Maintenance is 
easier and configurations are error free through efficient UIs.

To satisfy the market’s high expectations, silicon vendors provide GPUs that must be fully exploited by 
their customers through a set of ecosystem partners that provide GUIs. The GPU is a type of processing 
technology used to make GUIs as appealing as a smartphone UI by adapting to display size, color depth, 
layering and so on.

Battery life
The capacity of the lithium-ion batteries in smart watches, for example, is a few hundred milliamp hours 
(mAh). Battery size is restricted by the limited physical space on these watches. Today, edge processors 
are optimized to achieve the lowest possible power consumption at the required performance levels. 
Specifically, they offer a variety of reduced power modes and incorporate various low-power design 
techniques to enable long battery life in both active and sleep modes. 
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Consider the following power mode examples (implementations and definitions may vary from  
one vendor to another):

•	 In sleep mode, the CPU clock is stopped. All peripherals and memories enabled while the CPU  
is active are still functional. Any interrupt may resume execution.

•	 In deep sleep mode, the CPU clock is stopped. Nearly all peripherals and memories can be turned off 
via  software. Memory partitions can be individually turned off or retained. Wake-up sources can be 
selected by software before entering deep sleep mode.

•	 In deep power down and full deep power down mode, power and clocks are shut off to the entire chip 
with the exception of the real-time clock (RTC), leaving no configuration options or memory retention.

One example is how a wearable uses FreeRTOS as its real-time OS. The different low-power modes are 
integrated in the “tickless” feature of FreeRTOS. Tickless is the mode an OS enters when it has nothing to 
schedule. It calls an implementation-specific function that stops the tick timer for a given amount of time 
(based on next task scheduler timing) and allows the chip to reduce its power consumption.

From a high-level point of view, this tickless function:

•	 Stops the tick timer (providing ticks to FreeRTOS).
•	 Selects the sleep mode and its configuration based on the expected sleep time provided by the OS 

and the peripherals and memories in use.
•	 Starts the RTC timer and configures it as a wake-up source.
•	 Enters the selected sleep mode.
•	 When waking up, provides the number of ticks skipped during the sleep back to the OS.

Deep power down mode can also be used. In that case, data that should be kept must be backed up in RAM. 
Data can then be retried going out of that power mode. Trade-offs need to be made between the power 
saved during deep power down phases and the extra power consumed for the backup/restore functions.

The wearable, for example, reduces power by remaining in sleep mode as long as possible and refreshing the 
display every second by waking up the chip. Figure 9.13 shows the power on the core and memories supply 
(voltage at drain or Vdd) in this use case.

Figure 9.13. Smart watch power supply during wake-up and deep sleep mode
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Motion
Wearable sensors can be worn by a person performing their daily activities. Sensors such as 
accelerometers, microphones, barometers and GPS sensors can record a person’s physical condition, 
location change and speed. Because of these sensors, smart watches worn on the wrist can run activity-
recognition applications. For those, the deterministic approach is inaccurate because of the large number 
of variables and environmental parameters (user typology, age, body language, behavior, context, etc.) and 
the range of devices and ML methods used in determining/measuring human activities. Different human 
activities can be classified through advanced ML methods by using accelerometer and step counter sensors 
in the smart watch. In addition, a reliable optical heart rate monitor embedded on the back of the watch 
compensates for motion artifacts by using the accelerometer data.
 
The accelerometer is a key sensor for applications that provide step count data, which is the main inputs 
for any advanced classification algorithm. In addition, low power and battery lifetime are critical parameters 
to observe. Therefore, an accelerometer with an embedded low-power step-counting function can improve 
the system power by avoiding computations in the host MCU. Indeed, some silicon vendors are proposing 
an interesting internal function called vector magnitude with related interrupt capabilities. This function, 
fully hardwired in the internal state machine, does not increase the intrinsic power consumption of the 
sensor (typically a few microamps at a 50 Hz sampling frequency, which is a good trade-off frequency for 
step count). The beauty of this function is that — with the right settings — it can provide an ultra-low 
power step count. Each step triggers an interrupt output that is incremented in the low-power register 
of the MCU. The host MCU can be in idle mode most of the time. The interrupt associated with the step 
count event simply needs to increment a counter; therefore, the host MCU contribution to the power 
budget is minimized. 
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Wireless power transfer
Wireless charging works through contactless means. Instead of connecting a cable to a device to transfer 
power, wireless charging allows a device to receive a charge without plugging in anything. The most popular 
of the many wireless power transfer methods is called inductive charging. In this process, two coils are placed 
close to each other and are magnetically coupled. This allows energy to be transferred from one coil to the 
other. This technology is supported by industry standards, the most widely adopted being WPC Qi.

Wireless charging works well with NFC technology to identify a nearby object.

When an optimized hardware and software platform is used, the transmitter ICs implement and 
control the power transfer function. They also monitor and manage overall system states, including
foreign object detection, temperature and system efficiency. With power transfer efficiency exceeding 
75%, the transmitter offers digital demodulation for lower bill-of-material cost, algorithms for foreign 
object detection and low active and standby power modes.

The evolution of smart cities is, in many ways, directly tied to the evolution of contactless solutions. 
First deployed in 1994, NFC ICs were originally developed for automated fare collection in public 
transportation, but that was just the beginning. Since then, these ICs have enabled contactless transit, 
payment and access experiences for people no matter the location or time.

Smart city services can be deployed to NFC-enabled wearables through a cloud service. For example, 
MIFARE 2GO manages digitized MIFARE product-based credentials, and it can enable contactless 
access and micropayments using NFC-enabled wearables.

Part of a contactless solution’s appeal is that it offers something for everyone. Government agencies, 
businesses and service operators use it to lower costs, add flexibility, increase control and deliver better 
consumer interactions. At the same time, these products, on the edge, help people feel safe and secure 
and contribute to sustainable prosperity.

By applying true multi-application functionality, mobile formats and certified Common Criteria security, 
these ICs combine convenience with efficiency. Using these products means choosing a solution that is 
already available in a widespread infrastructure, which reduces startup costs and increases scalability.
Reader ICs on the edge can interact with NFC technology, and communicating through NFC means that 
reader-based products also can be managed and implemented via NFC-enabled mobile devices,  
including smart watches.

A counter IP (hardware block) may be incremented autonomously with an external clock/line without 
even waking up the MCU. Step detection is solely based on detecting the impact of a step without 
considering the user’s height, weight or gender. A classic way to proceed is to calculate the acceleration 
vector magnitude: VM = SQR (X²+Y²+Z²) where X, Y and Z represent a single accelerometer reading, 
normalized at 1 g. When the user is still, the value should be close to 1 g. Then the key two parameters for 
optimization are the vector magnitude threshold and the vector magnitude count, which is the number of 
consecutive samples exceeding the threshold for the “step event” to be raised.

In addition, the sensor for wake-up can be used for motion detection purposes. This configuration, offers 
the flexibility of the significant data change detection, which provides multiple options for absolute or relative 
wake-up. With the right settings, a simple motion or a more specific movement (such as wrist rotation) can 
wake up the device with a minimal power budget. Sample rates of 25 Hz are no longer needed, but using a 
lower sampling frequency around 1 Hz (0.78 Hz, specifically) triggers an acceptable response time for human 
use. In that configuration, the wake-up current consumption typically can drop to 600 nA, so the MCU sleep 
current and other application leakage should be added. The accelerometer can manage an automated wake-
up switching from low sampling frequency to 50 Hz after a wake-up event is detected. 
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Data, analytics and ethics
Smart watches generate lots of data that requires storage and real-time analysis. They have limited storage 
and processing capabilities, so apps can synchronize user data on their respective vendors’ cloud servers. 
By analyzing the server-stored data, vendors can improve their products, services, content and advertising. 
However, with growing privacy and cybersecurity concerns regarding the exchange of data between smart 
watches and cloud platforms, vendors are increasingly providing on-device computation (edge computing). 
GlobalData expects more edge computation on smart watches in the coming years, but vendors will still 
need to transfer some user data to cloud servers for broader analysis and research purposes. Finally, this 
leads to questions about the responsibility of the edge device and its hardware and software suppliers to 
comply with local authorities’ ethics guidelines.

EXAMPLE: TSN AND DISTRIBUTED 
REAL-TIME COMPUTING AT THE EDGE
Now consider a practical example for industrial automation using distributed motor control over  
a time-sensitive network.

Computing at the edge is not limited to stand-alone processing on a single node. Portions of edge 
applications are suited for processing data locally to the edge node, and some applications require several 
edge nodes to act or sense in coordination and in real-time conditions. In these cases, a local network is 
created at the edge to aggregate edge nodes and form a distributed edge element that performs edge 
computing as a single macro component within timed constraints.

The industrial domain includes the systems used to make materials into products, real-time embedded 
systems for process control, workflow management and process monitoring. A factory may use an Industrial 
Ethernet technology that adapts standard Ethernet to deliver real-time response and work with legacy 
industrial communication protocols. Unfortunately, the many Industrial Ethernet protocols interoperate 
neither with each other nor with standard Ethernet, limiting the economies of scale for technology 
suppliers and thus slowing innovation. A single machine in a factory may connect to different Industrial 
Ethernet networks, each running its specific protocol, for different control functions, as Figure 9.14 
shows. The manufacturer must deploy gateways to pass data among the different networks or systems.

With TSN technology, edge micro nodes can be aggregated in a single macro element that can be managed 
with upper layer protocols as a single entity in the edge infrastructure. This can take place in the diverse IoT 
fields including factory, smart grid and building, home and health — anywhere several nodes are required to 
operate in coordination in real time to achieve a common goal at the edge. 
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TSN is based on the IEEE 802.3 Ethernet wired network infrastructure, and it can operate on wireless 
networks because of recent improvements made to the Wi-Fi and 5G standards for achieving precise 
time synchronization. 

TSN standards 
TSN, also called deterministic Ethernet, delivers real-time transport capabilities to Ethernet networks, 
which were originally designed as a best-effort communication method with no guarantee against transit 
delay. Several years ago, industry players who needed real-time networking capabilities in fieldbus 
systems overcame this limitation by defining a variety of proprietary protocols for Ethernet-based 
communications that are widely deployed today: EtherCAT (Beckhoff), PROFINET (Siemens), CC-Link 
(Mitsubishi) and others. As the IoT intensifies, TSN is emerging as an open and new standard defined by 
IEEE® to unify the technologies used at layers 1 and 2 of the Open Systems Interconnection (OSI) model 
for serving data transport in distributed real-time applications. Just as everything in the IoT world has 
become connected, TSN and its generic nature have been applied to many domains, including industrial, 
automotive and consumer systems, which ensures a common technology facilitates interoperability.

TSN is described in a set of IEEE standards, several of which are being incorporated into the more 
general IEEE Std 802.1Q™ that defines MAC services and operating principles for bridged networks. 
TSN improves the timing and synchronization standard by adding packet transmission schemes (time-
aware shaper and frame preemption) to reduce inaccuracy in transmission time, increase the capacity 
to identify stream flows, and improve transport robustness through redundancy techniques.

Figure 9.14 Modern machine networks and systems (Source AVNU)
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Distributed real-time edge computing
A real-time application in a centralized system imposes time constraints on the whole system that hosts 
the application. Peripherals that interact with that application are locally interfaced and managed through 
I/O transactions. In a distributed architecture, peripherals and I/O are delocalized and spread over several 
remote nodes. A typical distributed application architecture splits the centralized application into two 
logical parts, one that manages local control of peripherals and defines a device entity while the other 
manages centralized intelligence and defines a controller entity. A controller may control one or several 
devices through the TSN network. Sophisticated and complex calculation is delegated to the controller, 
leaving the devices to concentrate on computations specific to the I/O transactions they manage. 
This also allows the use of processors with less processing capacity.

Real-time applications in the network — A real-time application relies on some time bases and time 
constraints. Moving to a distributed architecture spreads these time bases and constraints over the end 
nodes participating in the application and, as a result, on the network that connects those end nodes. 

Real-time applications may operate in a cyclic or sporadic manner. A cyclic application is characterized 
by a process repeating over a defined time period. This is common in control and automation. 
A sporadic application, such as alarming, is event driven. Both types of real-time applications 
require different types of transport service quality from the network.

Cyclic applications use a TSN network to control critical traffic by synchronizing the application cycle 
with the network cycle. This is called an “isochronous” application. The TSN IEEE Std 802.1Qbv™ 
Enhancements for Scheduled Traffic standard serves isochronous applications, but sometimes the 
application and network cycles cannot be synchronized, typically when the application and network 
do not operate in the same time domain. One example is a factory where the whole plant is clocked 
by a universal time, but some actions in subdomains of the factory have their own working clock. 
In this case, the application is called “non-isochronous” because it requires transmission services 
from the network that are not aligned with network cycles. The TSN IEEE Std 802.1Qbu™ Frame 
Pre-emption standard serves non-isochronous applications.

Real-time applications in the end node — Real-time constraints for each local end node remain in the 
typical area of centralized configurations. The system must serve each software layer involved in real-
time processing in a timely manner, from the low-layer drivers dealing with peripheral I/O transactions 
to the application layers that process those data to the crossing middleware layers in between. 

The system on chip (SoC) must prevent any congestion or bottleneck at the hardware level that could 
jeopardize real-time reactions or even cause the loss or corruption of critical data. Priorities must be 
ensured for the network and I/O drivers and related interrupt handlers involved in the real-time chain. 

The latency of the upper-layer tasks must be minimal to avoid exceeding the application’s time limits; 
thus, an OS’s task pre-emption capability is integral. Native real-time operating systems (RTOSs) with 
the simplest architectures and less sophisticated services can be used to meet strict real-time applications 
constraints (<1 ms), while more generic OSs such as Linux can serve less time-critical applications.

In all cases the data processing path across layers must be minimized so that it reduces OS 
interventions and the amount of instruction cycles to be executed before reaching the application 
code that processes the critical data. Direct processing path and minimized memory copies are usual 
optimization techniques required by real-time applications.
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A practical example: Distributed motor control over TSN
This section presents an industrial automation use case involving TSN for motor control in a distributed 
environment. In this example, a controller remotely controls I/O devices to synchronize the motion of 
motors. The TSN network connects the controller and controlled devices (followers) as well as supports 
the movement of both time-critical traffic and concurrent background traffic. This illustrates the move 
from a centralized application to a distributed architecture.

The setup (see Figure 9.15) combines endpoint nodes with switch nodes to form a complete TSN solution. 
Both types of unit incorporate microprocessors that comply with the IEEE Std 802.1AS™ (gPTP) Timing 
and Synchronization for Time-Sensitive Applications standard as well as the IEEE Std 802.1Qbv standard. 

This setup characterizes TSN transport and real-time performance in terms of cycle time and associated 
jitter. Noncritical traffic in the background can affect performance stability, so the setup needs to prevent 
concurrent noncritical traffic from disturbing the required transport latency and accuracy of the critical 
traffic. This protects the stability of the motor control process.

Distributed real-time application — In a distributed environment, the motion control algorithm is divided 
into two parts: the follower device interfaced locally to the motor is running the current control loop at a 
31.25 µs cycle time, and the controller is running the speed and position control loops at a 100 µs cycle 
time, exchanging information with the devices through TSN. 

Real-time processing for motor control is performed on the endpoints in synchronization with the  
network cycle time, so this application is isochronous (see Figure 9.16).

Figure 9.15. Distributed motor control setup
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Motor control application network architecture — This architecture uses TSN to transport the data for 
controlling motors between the controller and several follower devices (see Figure 9.17). These exchanges, 
which represent the time-critical traffic, require short and bounded transport latency from the TSN network.

Figure 9.16. Industrial automation isochronous application 

Figure 9.17. Distributed motor control application control loops
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The endpoint application uses a proprietary protocol to transfer control data between the controller and 
follower devices. The controller sends a single multicast frame to propagate commands to the follower 
devices. In the opposite direction, followers use unicast transmission for the traffic directed to the controller.

Ethernet frames with virtual local area network (VLAN) headers prioritize the time-critical information over 
background traffic by using the priority code point (PCP) field of the VLAN header.
 
Each of the nodes participating in this distributed application uses the IEEE Std 802.1AS (gPTP) Timing 
and Synchronization for Time-Sensitive Applications standard to establish a common network time and 
synchronize its local clock to a common time reference. This forms the “working clock” used by both the 
network and application domains.

The TSN IEEE Std 802.1Qbv Enhancements for Scheduled Traffic standard ensures that the motor 
control traffic transmission is scheduled in a guaranteed and periodic time slot that is relative to a 
known timescale, i.e., the working clock established by the generic Precision Time Protocol (gPTP). 

Motor control application distributed architecture — The controller hosts the “intelligent” part of the 
application. It incorporates algorithms that enable the motor to reach a given speed and position and 
ensures the follower devices remain synchronized. The controller processes the position and speed loops 
that output the Iq value, and the follower devices process the current loop locally (see Figure 9.18).
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Followers are responsible for implementing field-oriented control to manage the motor. They use an Iq 
value as input, which is monitored with a P-PI controller and then transformed to concretely apply voltages 
on phases A, B and C of the motor. The followers also determine the actual position and speed of the rotor 
and sends this information back to the controller.

Motor control application timing — The application cycle running on endpoints is set to 100 µs using 
a hardware timer synchronized to the network time established by gPTP. This timer service is made 
available in the RTOS environment by the TSN software stack, which executes gPTP in addition to the 
IEEE 1588 hardware functions supported by the embedded processor. Those functions allow for the 
precise timestamping of the packet transmission and reception operations performed by the Ethernet 
MAC controller. This helps accurately calculate the propagation delay on each Ethernet segment 
interconnecting each node. After the endpoint motor control application registers with this timer service, 
it is scheduled synchronously with each of the other endpoints in the application. Hence, both controller 
and follower nodes are time synchronized to the network time established by gPTP. 

Using that common time reference, the application cycle of the followers is shifted by half of the period to 
reduce the round-trip controller’s/followers’ processing latency (see Figure 9.19).
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Motor control application real-time constraint — The controller must generate an Iq command in a 100 
µs period. To do this, the followers must transmit position and speed information for the rotors to the 
controller. For accurate and reliable control, this information must be delivered by the network before 
the start of the 100 µs application period (see Figure 9.20). 

The shift of the application cycles leaves a 50 µs budget for the application to process data received from 
the previous cycle and for the network to transport the output data to the remote application before the 
next remote application cycle starts. 

The TSN Enhancements for Scheduled Traffic (EST) transmission is programmed to open the gate of the 
time-critical traffic queue 40 µs after the start of the application cycle. This gives the critical traffic full 
priority and bandwidth to cross the network during a period of 3.696 µs (see Figure 9.21) and pauses the 
transmission of any concurrent best-effort traffic. This EST period is set to cover transmissions of a motor 
control frame at 1 Gbps, plus a margin to account for the transit delay in each switch. All the switches 
on the network path between the controller and followers are aligned with the same EST window. 
In this setup, a full load of concurrent best-effort traffic has no impact on the control process integrity. 

Figure 9.21. Application cycle and network cycle mapping

Figure 9.20. Distributed application real-time constraint
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Distributed and real-time applications are building blocks of the edge computing pyramid. TSN is 
positioned as the common standard solution to offer deterministic network services to real-time IoT 
applications in the industrial, automotive and consumer domains. In these distributed environments, the 
real-time constraints propagate to all nodes participating in the end-to-end chain. That includes end nodes 
that host real-time applications and bridge nodes that transport critical data to serve the real-time goal, 
along with noncritical data. 

EXAMPLE: INTELLIGENT CONNECTED VEHICLES 
Intelligent connected vehicles may be considered the ultimate IoT edge devices. They combine multiple, 
high-performance edge compute nodes with high-bandwidth networking and connectivity to dozens of 
sensors. They also feature support for cloud-connected services with ML and over-the-air (OTA) updates 
(see Figure 9.22). 

Intelligent connected vehicles must anticipate and counter security threats, while maintaining a high level 
of functional safety to reduce the risk of hazards caused by malfunctioning systems. Some people refer 
to these vehicles as being smartphones or data centers on wheels, but intelligent connected vehicles 
are significantly more diverse and complex. Their decades of evolutionary development involve many 
specialized computers called electronic control units (ECUs) featuring thousands of parts and hundreds 
of millions of lines of code from hundreds of suppliers.
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THE END OF THE ROAD FOR 
TRADITIONAL VEHICLE ARCHITECTURES
However, vehicle electrical and electronic (E/E) architectures have reached a breaking point that can’t scale 
using incremental ECUs for new functions. They can’t provide the capabilities to address the automotive 
industry megatrends of connected, autonomous, service-oriented and electric (CASE). Connected vehicles 
require secure connectivity and edge processing of vehicle-wide data and support for vehicle-wide OTA 
services. Autonomous vehicles involve mega-sensing, high-performance compute, ML and the highest level  
of functional safety (Automotive Safety Integrity Level D or ASIL D). 

Service-oriented vehicles require new software architectures based on high-level OSs, virtualization, 
containerization and middleware to support new vehicle services such as mobility/ride sharing and 
improved user experiences. Electric vehicles (EVs) demand high-performance real-time processing for 
advanced algorithms to manage electric motor control, vehicle dynamics, battery management, charging 
and energy optimization using virtualization to consolidate these functions on the same device. 
CASE is driving diverse, new edge processing requirements that go far beyond the traditional automotive 
microcontroller-based black box approaches of the past. It features SoC devices that integrate more 
advanced processing and application-specific acceleration to meet modern vehicle production challenges.

Today’s high-end, complex vehicles incorporate over 150 ECUs. The wiring harnesses to support 
connections are the third highest contributor to vehicle weight; they are so thick and complex that they 
impact manufacturing. Weight reduces the fuel efficiency or range of vehicles and complexity increases 
manufacturing and overall cost. As a result, vehicle E/E architectures are evolving to consolidate ECUs into 
more powerful SoC processors that are connected with high-speed interfaces like gigabit Ethernet and PCI 
Express to drastically reduce the number of boxes and wires. New vehicle architectures are more centralized 
using domain control units that consolidate functions with each functional domain. Future zonal vehicle 
architectures may incorporate centralized, high-performance compute with separate compute at different 
vehicle zones to reduce the total number of boxes down to a handful. These new architectural approaches 
support the high-performance computing and high-speed vehicle data sharing needed in the software to 
realize CASE and will transform the automotive industry over the next decade and into the future. 

THE GATEWAY TO FUTURE 
INTELLIGENT CONNECTED VEHICLES
New vehicle architectures are moving to a centralized compute resource called a service-oriented gateway 
(SoG) or, vehicle computer. The SoG provides central access to vehicle-wide data within the vehicle and 
the cloud, host vehicle services and edge processing while working securely and collaboratively with cloud 
services. It is key to enabling the intelligent connected vehicles that will collect vehicle data in the cloud 
for ML and algorithm optimizations and use OTA to deploy updates for continual vehicle improvement 
over their lifetime. These vehicles will get “smarter” over time thanks to a data life cycle that supports ML 
training in the cloud and optimizes inferencing at the vehicle edge. 

Traditionally, a vehicle gateway’s role has been to securely move data from one part of the vehicle to 
another over heterogeneous networks. However, this role has been expanded with the evolution to an 
SoG based on a service-oriented architecture (SoA). Instead of using legacy kilobits to megabits per second 
automotive interfaces like CAN, LIN and FLexRay, SOGs incorporate high-speed gigabit Ethernet to offer 
services that can access high-speed vehicle data while providing vehicle edge processing to support cloud 
services. An SoG requires over 10X higher performance than a traditional gateway microcontroller. This 
performance is achieved by incorporating a multicore SoC-based product with network acceleration such 
as the NXP S32G vehicle network processors optimized for this application.
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As shown in Figure 9.23, the SoG is central to the vehicle and networks with the domain controllers in each of 
the vehicle’s functional domains: ADAS/autonomous driving, in-vehicle experience (infotainment), powertrain 
and vehicle dynamics and body and comfort. Additionally, it interfaces to the wireless connectivity domain, 
or telematics control unit (TCU) to provide a secure communications path to the cloud over cellular or Wi-Fi 
technology. Being central to the vehicle, it has the advantage of access to the vehicle data and the ability 
to efficiently provide vehicle-wide services that are run alongside the other domains’ functions and offer a 
unique location in the vehicle to create new opportunities.

With connectivity to all the functional domains, the SoG serves as the orchestrator for vehicle-wide OTA 
updates that continually improve a connected vehicle for the length of its service. OTA can be used to 
update software, firmware, ML models and more to keep software-defined vehicles at their best. It can 
also be used to provide new services that generate incremental revenue for vehicle OEMs.

Figure 9.23. The service-oriented gateway
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Laying the foundation for software-defined vehicles
SoA is also important to the evolution of software-defined vehicles because it enables a faster way to 
develop, integrate and deploy new software and services. As shown in Figure 9.24, software applications 
called services run on top of middleware such as the Adaptive AUTOSAR® platform that abstracts the 
underlying software and hardware. This is key to software updates; the vehicle provides this SoA that 
enables rapid deployment and portability across processors and even the cloud. An underlying high-level 
Portable Operating System Interface (POSIX) OS with PSE51 profile support such as a Linux OS running on 
an hypervisor provides virtualization and portability across multiple processor cores. Isolation of software is 
important in the SoA so that it can work with mixed-criticality applications as well as trusted and untrusted 
software on the same platform. An additional Trusted Execution Environment (TEE) using hardware 
isolation and access control to provide a secure world may also run in parallel to the Rich Execution 
Environment (REE). Typically, an Ethernet backbone offers cross-vehicle data and control sharing with the 
support of key network protocols including Scalable service-Oriented MiddlewarE over IP (SOME/IP) for 
control and event monitoring; Diagnostics-over-IP (DoIP) for diagnostics; Data Distribution Service (DDS) 
for distributed, real-time data sharing and Message Queuing Telemetry Transport (MQTT) for centralized 
data sharing while using underlying Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) 
transport protocols over IP with TSN for time-sensitive and deterministic network behavior.

In addition to the traditional gateway and new services, the SoG provides a variety of functions including 
real-time applications and security processing that rely on diverse processing power (see Figure 9.25). 
Real-time processing and determinism is required for processing CAN and sensor data traffic as well as 
providing safety monitoring and real-time ECU consolidation functions. Applications processing prepares 
the vehicle for secure transmission to the cloud, manages vehicle-wide OTA updates, performs edge 
ML inferencing and processes higher level Ethernet packets. It also will run future deployed capabilities. 
Security is paramount and supported with a firewalled hardware security engine that is a root of trust
with trusted boot. The RoT provides security services, cryptography and key management. 
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Key for a new generation of intelligent connected vehicles, the SoG is becoming the focal point for 
vehicle edge and cloud-enabled services. Vehicles have been connected since the late 1990s, evolving 
from information sharing and emergency services to vehicle monitoring and the data-driven intelligence 
used to continually improve the vehicle’s performance, efficiency, security and safety.  

Connected vehicles offer many beneficial use cases (see Figure 9.26). Vehicle health management 
applications such as advanced vehicle diagnostics and predictive maintenance are becoming popular 
to determine vehicle component problems before the “Check Engine” light comes on or the vehicle 
breaks down. Vehicle health services are using advanced algorithms and ML to detect anomalies in sensor 
data, which requires machine inferencing support at the edge to reduce traffic to the cloud and send only 
notifications of events. In the end, this support keeps vehicles on the road, streamlines the supply chain  
by identifying needed parts and offers the owner a better user experience.  
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Symbiotic relationship drives significant benefits
The vehicle edge and the cloud can work together to provide significant benefits and new opportunities. 
The vehicle’s SoG delivers key data processing at the vehicle edge to convert raw data to information, 
detect specific anomalies, make decisions locally on data to protect privacy, and compress data to make 
a connected vehicle economically viable since terabytes of data per hour cannot be sent to the cloud. 
Vehicle edge processing is critical to the success of intelligent connected vehicles. Figure 9.27 illustrates 
the processing implemented in the SoG at the vehicle edge and in the cloud. The vehicle edge-to-cloud 
communication is secured with encryption for privacy and authentication to prevent man-in-the-middle or 
unauthorized usage. 

An exciting trend that will extend the use cases of intelligent connected vehicles is the combination of 
5G ultra-low latency cellular networks with multi-access edge computing (MEC) that moves cloud servers 
closer to vehicles at the network’s edge instead of a distant data center. This new approach reduces latency 
to single-digit milliseconds instead of hundreds of milliseconds which creates new real-time opportunities 
for symbiotic compute between vehicles and MEC servers.  

Once data is in the cloud it can be stored in a data lake and combined with other enterprise data to 
provide business intelligence, analyzed across a vehicle fleet to indicate trends, used to feed ML training 
to improve vehicles, used to drive digital twin models to improve product design and much more. It can 
empower many new services from automotive manufacturers or their partners to create new business 
opportunities, reduce operational costs and offer new capabilities and improvements to their customers’ 
vehicles. Automotive OEMs can evolve from being just manufactures to more profitable, vehicle data-
driven service providers.
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Enabling a smart data life cycle
By intelligently capturing and processing vehicle data at the edge and leveraging the cloud for heavy-duty 
processing of the data with access to thousands of CPUs and GPUs, ML training can be used to improve 
vehicles over their lifetimes. This smart data life cycle is key for the realization of intelligent connected vehicles.  
For example, ADAS/autonomous vehicles’ vision processing can be improved for better decisions and safety 
and electric vehicle energy efficiency and battery management can be improved to extend EV range. 

The edge is critical to enabling this life cycle by pre-processing only the data that is required to train 
specific ML models. This in turn can lead to much faster ML training and higher accuracy ML models that  
can run with lower latency at the edge. The benefits of the vehicle edge-to-cloud data life cycle with  
ML (see Figure 9.28) have been demonstrated by The Fusion Project - a collaboration of five  
automotive industry companies that brought together vehicle processing platforms (NXP), intelligent  
edge system software (Wind River), edge data AI (Teraki), cloud data platform (Cloudera) and  
OTA software management (Airbiquity).  

Vehicles generate terabytes of data per vehicle per day from multiple data sources such as sensors 
and internal ECUs that can provide valuable insights. Data is pre-processed on the vehicle edge and 
compressed to a format that maintains data fidelity for later cloud processing. The data is securely sent 
to the cloud for further enrichment, analysis and storage. The cloud provides massively scalable storage 
and compute for ML with model deployment back to vehicles through OTA software updates.  

Figure 9.28– The vehicle edge-to-cloud data life cycle with machine learning
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SECURING THE AUTOMOTIVE EDGE
Security is paramount to realize all the great benefits of intelligent connected vehicles. Being connected to 
the cloud increases the attack surface for a vehicle. Edge security is critical to maintain vehicle integrity and 
safety. Vehicles can cause death and destruction, so extra measures must be taken.

Security starts at the manufacturing of the chips incorporated in vehicle ECUs, and the security level is 
increased at each stage of a vehicle’s development life cycle in a non-reversable and irrevocable manner. 
Security stages enable application development, debugging and failure analysis without compromising 
security in a production vehicle. At the chip manufacturer, unique chip identity and security keys are 
included in the chip. After the ECU assembly, Tier 1 security keys are incorporated into the device and the 
chip’s life cycle is advanced to protect the keys. On the car manufacturer’s product line, the chip inside an 
ECU is installed in a vehicle and provisioned with further configuration information and OEM security keys. 
Before the assembled vehicle leaves the factory, the chip’s life cycle is once again advanced to enable all 
protection mechanisms of the device such as disabling debugging features. These steps are mandatory 
to secure secret keys in the chips that will be used for future encryption and authentication services in 
the vehicle. Figure 9.29 shows the chip security life cycle in automotive applications starting with chip 
provisioning at NXP and then progressing to the Tier 1 delivery, OEM production and in-field deployment 
stages of the life cycle.

With high-end vehicles today surpassing hundreds of millions of lines of codes, inevitably software bugs 
can enable exploits. A variety of security measures and monitoring must be implemented to deal with 
these potential software exploits.  

Figure 9.29 - Chip security life cycle in automotive applications
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In the past, security researchers have demonstrated remote exploits using malicious code that allowed 
them to significantly control vehicles over wireless networks. End-to-end security measures are needed 
to secure data between the cloud and the vehicle to prevent data privacy leaks, data manipulation or 
exploitation of vehicle functions by an unauthorized party. New vehicle cybersecurity initiatives have to 
be considered. The ISO/SAE21434 and the UNECE WP.29 standards regulate new security requirements 
in process, design and operational efforts. 

Multiple layers of end-to-end security from sensor authentication to secure communication to the cloud 
should be implemented. Secure interfaces can use encryption and authentication. Functional domains and 
a gateway can provide isolation with firewall capabilities. Hardware and software isolation within devices is 
important to localize and control potential security issues. Secure boot from an RoT with run-time integrity 
monitoring, tamper detection and side-channel attack preventive measures can help thwart hacking 
attempts of processors and secure elements. Networks can be secured with authentication and secure 
transceivers featuring active intrusion detection capabilities.

On top of all this, active monitoring or intrusion detection and prevention systems (IDPS) with data logging 
will become mandatory to provide real-time notifications of security threats. Also, a security operations 
center will monitor security threats across a fleet of vehicles and provide OTA security vulnerability patches 
to address them.  

Security will always be a top priority for intelligent connected vehicles. Vehicles may someday have security 
star ratings like safety ratings to access their level of security measures against penetration tests.  
A vehicle’s security rating can impact insurance rates and its resale value, so it can have major implications.
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This chapter begins with a discussion of the software development challenges encountered 
during edge computing solution design and the tools to address them, from code 
development to remote debugging. Review techniques to debug real-time applications.
Also see Chapter 2 for hardware and software architectures. 

DEVELOPMENT TOOLS
Edge devices can be small yet complex pieces of equipment with advanced technologies; therefore, developers 
are always interested in any tool that can help them design and control their equipment efficiently.

Developing software for modern applications, including edge computing devices, is more challenging than 
designing a traditional embedded system or MCU development process not only because of the increased 
hardware complexity and the need for more features in the firmware but also because of the changes in 
the development flow to reach higher productivity. Choosing the right process paired with the right tools  
is crucial in developing high-quality applications within budget and time constraints.

Many development tool challenges for edge computing applications are unique because the firmware 
requires complex communication stacks running on multiple devices that are interconnected and 
dependent on each other. The development teams working on these applications tend to be larger 
compared with the teams creating traditional embedded systems. Due to the nature of networked 
hardware and distributed development teams, physical access to the device may be limited, so 
development requires remote access and debugging tools.

To understand the needs and challenges for this type of environment, consider the development flow and 
the typical tools used. Traditionally, the edit-build-debug flow is followed by deployment after the firmware 
is complete (see Figure 10.1). If issues arise during the build or debugging, the firmware goes back to the 
edit phase and starts again until everything is ready for the deployment phase.

DeployDebugBuildEdit

Figure 10.1. Basic edit-build-debug-deploy process
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The exact tools needed depend largely on the complexity of the project and the preferences of the 
development team involved. Figure 10.2 indicates below the dashed line a typical set of tools that might 
be used with a Linux® host for cross development of a basic software project with few files and low 
complexity. The editor, VI (Visual), uses GNU Compiler Collection (GCC) and its associated build tools as 
the compiler, which uses GNU Debugger (GDB) for debugging and finalizing the binary. Then Secure Copy 
Protocol (SCP) is used to copy the file to a networked end device.

As the scope and size of a development team grows for more complex products, more collaboration and 
version control are needed. Using commits in a version control system (VCS) provides more formality and 
adds traceability, which is an important pillar for achieving and maintaining high quality in a development 
process. Another important aspect of a distributed VCS, such as Git, is that it encourages and allows 
cooperation and communication between the developers and teams.

The increasing number of files and project complexity create the need to use tools such as Make or cMake 
to perform the build. The cMake build system features cross-platform capability and is preferred for a 
distributed environment.

Lastly, using a distributed VCS offers the opportunity to deploy the binaries to a Git repository and publish 
them as a system release on GitLab or a similar service from where it can be distributed to the end devices 
(see Figure 10.3).

Deploy

scp

Debug

gdb

Build

gcc

Edit

vi

Figure 10.2. Simple flow with tools used

Figure 10.3. Development with version control
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cmake
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Next, consider debugging a real-time system. Though finding incorrect behavior in the system is important, 
it is often a manual process that is not easily scalable. GDB and other debuggers have an effective scripting 
engine for test automation. 

To increase productivity, an automated test harness with unit and system tests is critical, along with 
continuous integration and continuous deployment. Whenever a developer commits a change into the 
version control repository, it triggers a build (for example, when using Jenkins) and a test through a test 
suite such as Unity that sends feedback to the developer. If the changed version fails the test, the system 
reverts back to the edit phase. If the changed version passes, the test is deployed automatically and can be 
loaded to the edge device using a bootloader and blhost (see Figure 10.4). The blhost application is used 
on a host computer to issue commands to a platform running an implementation of the MCU bootloader.

This continuation of the process is essential for any managed development methodology such as agile. 
Agile processes are effective for new and cutting-edge technologies with unclear requirements at the 
beginning of a project or requirements that change frequently during development. This is often the  
case for edge computing projects.

Running system and unit tests is another way to ensure the quality of the result and avoid regression issues. 
The distributed nature of edge computing devices means they cannot all be updated simultaneously; 
therefore, the system needs to operate with heterogenous firmware versions. So, ensuring compatibility and 
testing interoperability with different versions is key. To ensure that the tests have adequate coverage, tools 
such as cov can be used to collect additional data from instrumented binaries. To extend the dynamic test 
coverage (in addition to its static analysis), tools such as Cppcheck can be integrated into the build process  
to analyze the source code without running it and identify subtle issues that cannot be found otherwise.

Because projects tend to grow larger, traditional Make or cMake ninja or similar build engines can be 
combined to speed up the build process and increase productivity (see Figure 10.5).

Figure 10.4. Development with continuous integration and deployment
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To help further increase productivity and efficiency, an IDE integrates the tool and the development process.

An environment such as Eclipse or Visual Studio provides not only an editor but also the interfaces needed 
to connect with tools and automation scripts. With a plug-in architecture, an environment that meets specific 
project needs and development flow can be adopted. Connectors such as eGit can be added to a VCS and 
team collaboration tools for discussions, issue tracking and source control. Configuration tools also can be 
used for device drivers, clocking or device peripherals, and software development kits (SDKs) with examples 
and driver code just to name a few (see Figure 10.6).

The IDE editor can intelligently parse (IntelliSense) the source code and assist the developer in writing  
or refactoring the firmware (see Figure 10.7).

Figure 10.5. Development with analysis tools

Figure 10.6. Development with an IDE
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Figure 10.7. Code completion and IntelliSense in an IDE

Through CodeAnalysis, the IDE can be configured to detect potential problems while it writes the source 
code (see Figure 10.8).

Figure 10.8. CodeAnalysis

Quality assurance and test tool views also can be integrated in an IDE. For example, running gcov displays 
a graphical view of test harness coverage (see Figure 10.9).

Figure 10.9. Coverage information in an IDE
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With profiling, information is collected about where the application spends its time, so the developer  
can optimize the code and improve program performance (see Figure 10.10).

Figure 10.10. Profiling information in an IDE

Figure 10.11. RTOS information in an IDE

Most edge computing devices run a Linux OS or real-time OS (RTOS). Traditional stop-mode debugging  
is limited in these environments, but IDEs offer both static and dynamic analysis of the running OS  
(see Figure 10.11). Combined with efficient code profiling, this analysis helps users assess and optimize 
the system activity, such as keeping the CPU idle and system in low-power mode as long as possible to 
optimize the power consumption and extend the battery life.



199

Figure 10.12. Wireless pressure sensor node Figure 10.13. Wireless charging

Many edge computing devices do not have a direct physical connection to the outside world that can be 
used for inspection, control or debugging. The device shown in Figure 10.12 uses a printed circuit board 
(PCB) antenna for communication.

The device gets attached on top of spray paint cans or other pressurized cans to check with a  
high-sensitive pressure sensor whether it is leaking. Because the check must be performed while the can  
is moving inside the fab, no wires can be attached. Batteries are not economical because they would need 
to be changed for hundreds of devices every few months. Instead, the energy to power the device is  
transmitted wirelessly, too (see 10.13). The computation is performed on the edge, with hundreds of  
devices running through the production. 

Because the sealed device lacks external connectors, everything needs to be wireless, from programming 
the device to debugging it to updating it over the air (OTA) with a bootloader to remotely accessing it. 
The standard wired debugging connection from a GDB client to a GDB server and a USB debug probe 
connection to the target over a Joint Test Action Group (JTAG) or Serial Wire Debug (SWD) interface  
(see Figure 10.14) are not possible for edge computing devices.

Figure 10.14. Standard wired debugging connection

TargetProbeServerClient
TCP/IP USB JTAG

By default, the client and server run on the same host machine. The architecture in Figure 10.14 allows the 
client and server to run on different machines, which means the server can be moved closer to the physical 
edge device. The socket transmission control protocol/internet protocol (TCP/IP) connection can be used 
over a wireless local area network (WLAN) connection, too. A networking debugging probe can be used to 
achieve a WLAN connection from the client to the probe (see Figure 10.15).
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TargetProbeServerClient
TCP/IP

WLAN WLAN

TCP/IP JTAG

Figure 10.15. WLAN debugging connection

Figure 10.16. Remote target connection with a stub

Figure 10.17. Signal data

Using the connection from the debugging client to the networking debugging probe, an efficient and 
transparent debugging, software push and deployment can be achieved. The disadvantage of this is that it 
still requires either an attached debugging probe or an embedded debugging probe device on the target 
board, which is costly and/or requires too much space on an edge device.

The solution to this is to run a small “stub” or daemon on the target device that is used for debugging  
and communication (see Figure 10.16).

TargetStubServerClient
TCP/IP

WLAN

Wireless

A connection stub is the solution for the wireless pressure sensor edge device. It can use any protocol 
including a proprietary wireless connection. It can be applied not only as a debugging and deployment tool 
but also as a shell interface or a tool to transmit and analyze signal data (see Figure 10.17).



201

By using the right tools and development flow, the barriers to achieving high quality and efficiency during 
edge device development can be minimized. A basic tool collection should include build tools with a fast 
build system and automated building as well as testing and delivery tools with both static and dynamic 
analysis capability. A high-quality IDE can deliver additional productivity by providing content assistance, 
automation and scripting. It also can offer visibility into the system, including the capability of remote 
deployment and debugging. This makes an IDE a key productivity tool for the entire development process.

DEBUGGING REAL-TIME APPLICATIONS
Debugging, a key part of software application development, is the process of identifying and resolving 
bugs, including common coding errors, algorithm errors and other issues that prevent expected operation. 
In edge computing applications and especially in embedded systems, the debugging may evolve into a 
complex activity requiring not only software and debugging expertise but also hardware skills and detailed 
knowledge of the complete system.

Real-time systems typically need to guarantee their ability to generate correct responses to external or 
internal events within a specific amount of time. Missing this timeframe may cause issues ranging from the 
degradation of system operation quality or safety to catastrophic damage and system failure. Intelligent 
critical sensors and motor control are examples of real-time edge applications. 

Debugging real-time systems can be drastically different from debugging non-real-time applications. All 
software debugging tools and techniques can be used in both real-time and non-real-time applications, but 
the dynamic constraints and response-time requirements of the real-time world make standard methods 
impractical for these systems. Consider the most frequently used debugging techniques:

•	 Suspend execution after a breakpoint hit or manually examine the application task’s state,  
	 variables and other data. 

•	 Step over single lines of code or single assembler instructions while observing changes in  
	 variables and register values. 

•	 Change the execution flow by modifying the program counter or variables while suspending  
	 the execution. 

•	 Capture variable values automatically with the debugger tool when code execution hits  
	 defined watchpoints. 

Only the last technique can be used for real-time debugging, and that is only when the overhead of data 
watchpoint processing does not affect the system responsiveness.

In short, the challenge of real-time debugging is to gather as much information about the system as 
possible without pausing or otherwise affecting its code execution timing. Developers and testers of  
real-time applications use different methods to debug and tune their systems for optimum performance.
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A system can be observed passively or actively. Passive observation typically involves special equipment 
such as oscilloscopes, logic analyzers or communication analyzers to monitor:

•	 Hardware event and response I/O signals, analog-to-digital converter (ADC) inputs, pulse-width 		
	 modulation (PWM) or timer outputs, etc. 

•	 Output signals intentionally exercised by the application code to reflect internal algorithm processing, 	
	 the timing of interrupts, idle-time signaling, etc. 

•	 Communication lines between different processing units and other building blocks of the whole system

Active self-diagnosing systems use spare CPU cycles to log various diagnostic data, store it for offline 
analysis or even transmit it to external diagnostic tools in real time. The physical communication and format 
of diagnostic data are often proprietary to the manufacturer, but there are also documented protocols and 
standards such as the CAN Calibration Protocol (CCP) or its successor, the Universal Measurement and 
Calibration Protocol (XCP).

Tool and technique options in the mid-range between raw hardware analyzers and high-end diagnostic 
tools typically do not require deep hardware skills or expensive diagnostic and calibration equipment, 
and they may help users debug applications without pausing the code execution. The following techniques 
are popular with embedded application developers whether they are electronics hobbyists or high-tech 
company employees or both:

•	 Use JTAG or another background debugging interface to read or write the system memory directly. 		
	 This technique may require “stealing” a few CPU cycles to access the memory, so it is not a completely 	
	 passive method. Still, the overhead and probability of affecting the system response time are very low. 

•	 Use a simple request-response communication protocol with minimum run-time overhead to help 		
	 access internal resources, especially the memory. This technique typically involves a standard physical 	
	 interface such as a universal asynchronous receiver-transmitter (UART), a serial peripheral interface 		
	 (SPI) or an I2C. The CPU uses its idle time for protocol processing, so this is one of the active 		
	 debugging methods. However, the trivial task of accessing the memory content can be simple and 		
	 deterministic without affecting system responsiveness.

Accessing the target system memory and variables is the best solution to monitor, control, calibrate or 
debug real-time embedded applications. It is also the least expensive method, considering the overall 
complexity and cost of the equipment needed by other real-time debugging techniques. Reading selected 
variables may provide enough insight into algorithms, tasks and other running processes. Variables can be 
carefully modified to control the system, tune performance or diagnose behavior under specific conditions 
or in corner cases. On the other hand, testers and developers may find that the advantages of this direct 
memory “manipulation” approach are overshadowed by security weaknesses during the development 
phase, so they disable it in a production version of the software.

Using either technique requires some amount of software acting as the tool that provides access to the 
target system memory. This tool needs to know the memory layout and the details of the types and 
locations of the target application variables. All the required information can be read from symbolic 
information embedded in the application executable file (Executable and Linking Format or ELF) produced 
by the compiler and linker tools.

Another aspect that makes direct memory monitoring tools so popular is many semiconductor vendors 
provide these and other tools at no charge with their products. Also, the tools typically offer additional 
capability, advanced visualization and dynamic exchange of the acquired data with third-party applications 
or script languages (see Figure 10.18).
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SUMMARY
In summary, edge devices can be small yet complex pieces of equipment with advanced technologies; 
therefore, developers need a variety of code development, integration, debugging and optimization tools 
that can help them design and control their equipment efficiently.

Developing software for modern applications, including edge computing devices, is more challenging than 
designing a traditional embedded system or MCU development process not only because of the increased 
hardware complexity and the need for more features in the firmware but also because of the changes in 
the development flow to reach higher productivity. Choosing the right process with the right tools is crucial 
to develop quality applications within budget and time constraints.

Figure 10.18. Example of a run-time debugging tool diagnosing for the quad-motor control application
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GLOSSARY
Acronyms, definitions and concepts
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6LoWPAN: IPv6 over Low-Power Wireless Personal Area Network

ADAS: advanced driver assistant systems

ADC: analog-to-digital converter

AEAD: Authenticated Encryption with Additional Data

AES: Advanced Encryption Standard

AI: artificial intelligence

ALU: arithmetic logic unit

AMQP: Advanced Message Queuing Protocol

Anti-rollback: A mechanism that prevents changing an asset (such as 
firmware and key stores) to an earlier version than the one currently 
running in a system (rollback).

Because, in many cases, updates are made to fix security 
vulnerabilities, a system rollback exposes these vulnerabilities again, 
and they can be exploited. Thus, rollbacks need to be prevented for a 
system to be secure.

AOP: acoustic overload point

API: application programming interface

AR: augmented reality

ASIL D: Automotive Safety Integrity Level D

ATT: Attribute Protocol

attestation: The act of verifying (typically cryptographic) evidence 
about a specific claim.

For edge node devices, elements such as the version of various 
firmware/software components (Am I running the latest, known to 
be good, version of the firmware? Or am I running an older version, 
with known and exploitable security issues?) and the authenticity of 
various assets (Is this key store truly provided by the OEM? Or is it 
a “fake” key store, injected in the device by an attacker?) are being 
verified/attested.

You may encounter several types of attestation:

•	 Static attestation refers to the secure boot process and the 
process of cryptographically verifying the signature of the image(s) 
loaded on the edge node.

•	 Remote attestation refers to the process of a remote entity asking 
for and verifying cryptographic proof for some relevant elements of 
an edge node provided by a trustworthy entity on the edge node. 
For example, a cloud-based service asks a secure enclave on an 
edge node to attest the version of the software that is running on 
the edge node (ensuring that it is a “known good version”) and the 
configuration of the edge node (ensuring that it has performed a 
secure boot and that it has not enabled debugging) before sending 
sensitive user data (for example, the results of a medical exam) to 
the edge node.

attacks: A cybersecurity attack targeting an edge node is an effort 
to defeat hardware and software mechanisms that protect assets 
and functionality, to run unauthorized firmware/software (i.e., break 
secure boot) and/or to configure the edge node in an unauthorized, 
exploitable way. 

Edge-node-relevant cybersecurity attacks are classified  
into two groups:

•	 Logical attacks — No hardware means (probes, fault-injecting 
devices, etc.) are used to try and hack the device. Only existing 
software interfaces are used/exploited, and physical access to the 
device might not be needed. For example, a sequence of specifically 
crafted data packets provoke a crash of the edge device networking 
stack, leading to a buffer overflow exploit.

•	 Physical attacks — Hardware means are used to hack the device by 
attacking specific hardware/software mechanisms used by the edge 
node to securely perform its function. 

For example, a voltage-glitching device is used to alter the execution 
flow of the edge node CPU to skip verification instructions for the image 
that is booted, thus potentially defeating the secure boot mechanism.

AWS: Amazon Web Services

BFWA: broadband fixed wireless access

Bluetooth LE: Bluetooth Low Energy

BSS: basic service set

CA: certification authority

CAAM: Cryptographic Accelerator and Assurance Module

CASE: connected, autonomous, shared and services, and electric

certificate: An electronic document containing a public key, the owner 
of the public key and a digital signature over both, provided by a 
signing entity.

The signing entity, a CA, plays the role of a trusted third party; if the user 
of the certificate already trusts the CA, and if the signature verification 
for the certificate is successful, the user also trusts that the listed 
certificate owner identity is truly the owner of the listed public key.

CCM: Cipher Counter Mode

CCP: CAN Calibration Protocol

CCPA: California Consumer Privacy Act

CMAC: cipher-based message authentication code

CMSIS: Cortex Microcontroller Software Interface Standard

CNN: convolutional neural network

CoAP: Constrained Application Protocol

CoMP: coordinated multipoint

CPE: customer premises equipment

CPRA: California Privacy Rights Act

CPU: central processing unit

CSMA: carrier sense multiple access

CST: code signing tool

CVE: Common Vulnerabilities and Exposures

D2D: device to device

DCT: discrete cosine transform

DDS: Data Distribution Service

DL: downlink

DM: device management

DMA: direct memory access
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DMS: driver monitoring system

DoIP: Diagnostics over Internet Protocol

DoS: denial of service

DRAM: dynamic random access memory

DRM: digital rights management

DRX: discontinuous reception

DVFS: dynamic voltage and frequency scaling

ECC: elliptic curve cryptography

ECDSA: Elliptic Curve Digital Signature Algorithm

ECU: electronic control unit

E/E: electrical and electronic

ELF: Executable and Linking Format

emBB: enhanced Mobile Broadband

eMMC: embedded multimedia card

EST: Enhancements for Scheduled Traffic (IEEE standard)

EU: European Union

EV: electric vehicle

FOC: field-oriented control

FFT: fast Fourier transform

FSK: frequency-shift keying

FW: Firmware

GAA: General Authorized Access

GAP: Generic Access Profile

GATT: Generic Attribute Profie

GDPR: General Data Protection Regulation

GUI: graphical user interface

GPU: graphics processing unit

gPTP: generic Precision Time Protocol

HAB: High Assurance Boot

HARQ: hybrid automatic repeat request

HCI: Host Controller Interface

HID: human interface device

HMAC: hashed message authentication code

HMI: human machine interface

HSM: hardware security module

HTTP: Hypertext Transfer Protocol

HW: hardware

IC: integrated circuit

I2C: inter-integrated circuit

ID: identifier

IDE: integrated development environment

IDPS: intrusion detection and prevention systems

IEEE®: Institute of Electrical and Electronics Engineers

IIoT: industrial internet of things

IKM: input key material

IMG: image

IoT: internet of things

IP: intellectual property

IP: Internet protocol

IPSec: Internet protocol security

JADE: joint angle and delay estimation

KDF: key derivation function

KPI: key performance indicator

LDO: low dropout

LF: low frequency

LOS: line of sight

LPWAN: low-power wide-area network

LTE: long-term evolution

M2M: machine-to-machine 

MAC: medium access control 

MAC: multiply-accumulate

MAC: message authentication code

MaxCL: maximum coupling loss

MCU: microcontroller unit

MD5: Message Digest Algorithm Five

MEC: multi-access edge computing

MFC: mel-frequency cepstrum

MFCC: mel-frequency cepstral coefficient

MIPS: million instructions per second

ML: machine learning

mMIMO: massive multiple input, multiple output

mmWave: millimeter wave

MPU: microprocessor unit

MQTT: Message Queue Telemetry Transport

MW: middleware

MWS: mobile wireless system

NAND: not and

NB-IoT: Narrowband Internet of Things

NFC: near-field communication

NIC: network interface controller

NLP: natural language processing

NPU: neural processing unit

NVIC: nested vector interrupt control

OEM: original equipment manufacturer
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OOBE: out of box experience 

onboarding: The process of getting a device registered with a service 
(in this context a cloud-based service).

The registration process requires that the device has valid pre-
provisioned credentials that can be used in the onboarding process.

As part of the process, typically over a secure connection, the device 
receives additional, service-specific credentials and assets.

OFDMA: orthogonal frequency-division multiplexing 

OS: operating system

OSI: Open Systems Interconnection

OTA: over the air

OTP: one-time programmable

PAL: Priority Access License

PCA: principal component analysis

PCB: printed circuit board

PCP: priority code point

PHY: physical layer

PKC: public key cryptography — Cryptography that relies on pairs of 
keys for ensuring data confidentiality:

•	 Each pair contains a public key and a private key.

•	 The public key is used for encryption. As the name implies, it 
is typically shared with entities that need to send confidential 
messages to the owner of the key pair.

•	 The private key is used for decryption. As the name implies, it is 
securely kept by the owner of the key pair, and used to decrypt 
messages encrypted with the public key.

•	 Also called “asymmetric cryptography”, it also allows the 
creation of digital signatures and thus building an authentication 
infrastructure.

PKI: public key infrastructure — An infrastructure (hardware, 
software, tools, policies) that relies on PKC to create digital 
certificates to facilitate the unique identification and authentication 
of entities that are part of the infrastructure and/or using the 
infrastructure services. 

PMIC: power management integrated circuit

POSIX: Portable Operating System Interface

PSA: Platform Security Architecture

PUF: physically unclonable function

PWF: pulse-width modulation

QoS: quality of service

RAM: random access memory

RAN: radio access network

REE: Rich Execution Environment

REST: representational state transfer

RLC/MAC: radio link control/medium access control

RNN: recurrent neural network

ROC: receiving operating curve

ROM: read only memory

RoT: root of trust (in the edge node context) — The entity/asset/element 
inherently trusted (i.e., not verified/authenticated) upon system boot. Its 
purpose is to verify/authenticate at least the first non-inherently trusted 
layer of the firewall (typically a bootloader) that runs in the system.

•	 In a PKI-based system, the root of trust is typically implemented as a 
set of public keys stored in non-volatile memory and secured in the 
best possible way by the systems using it. The corresponding private 
keys are used to sign the images that are authenticated prior to being 
executed on the system.

•	 In NXP systems, the OEM root of trust is typically implemented as 
a hash of the OEM public keys corresponding to the OEM private 
keys used to sign the images that the system will boot. The hash of 
the public keys is stored in one-time-programmable fuses that are 
protected by the SoC infrastructure from various attacks. Because the 
hash is used by the ROM-based secure SoC boot process, it is referred 
to as “silicon root of trust” or “hardware root of trust”.

RPMB: replay protected memory block

RSA: Rivest-Shamir-Adleman

RSSI: received signal strength indication

RTC: real-time clock

RTLS: real-time location system

RTOS: real-time operating system

RTT: round trip time

SAS: Spectrum Access System

SD: Secure Digital

SDK: software development kit

SCP: Secure Copy Protocol

SDU: service data unit

SHA: secure hash algorithm (variants: SHA-1, SHA-2, SHA256…)

SIMD: single instruction, multiple data

SMP: Security Manager Protocol

SNR: signal-to-noise ratio

SoA: service-oriented architecture

SoC: system on chip

SoG: service-oriented gateway

SOME/IP: Scalable service-Oriented MiddlewarE over Internet Protocol

SPI: serial peripheral interface

SPL: sound pressure level

SRAM: static random access memory

SSH: secure shell

SSL: secure socket layer

SVG: Scalable Vector Graphics

SW: software

TCP/IP: Transmission Control Protocol/Internet Protocol
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TCU: telematics control unit 

TDD: time-division multiplexing

TDNN: time delay neural network

TEE: Trusted Execution Environment 

ToF: time of flight

TOPS: tera operations per second

TPM: trusted platform module

TRNG: true random number generator

TSN: time-sensitive networking

TZ: TrustZone

UART: universal asynchronous receiver-transmitter

UDP: User Datagram Protocol UE: user equipment

UGV: unmanned guided vehicle

UHD: ultra-high definition

UL: uplink

URLLC: ultra-reliable low-latency communication

UUID: Universally Unique Identifier

UWB: ultra-wideband

V2X: vehicle to everything

VCS: version control system

VDD: voltage at drain

VLAN: virtual local area network

VLIW: very long instruction word

VPU: vision processing unit

WFE: wait for event

WFI: wait for interrupt

WFST: weighted finite-state transducer

WISP: wireless internet service provider 

WLAN: wireless local area network

WPC: Wireless Power Consortium

XCP: Universal Measurement and Calibration Protocol

XGA: Extended Graphics Array

ZCL: Zigbee Cluster Library

ZDO: Zigbee device object
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