Solving Complex Computational Challenges for Advanced Motor Power Control Electronics

Dr. Giulio Corradi

Principal Architect ISM Xilinx

What You Will Learn in this session

> SiC 3-Level and 2-Level inverter platform with Xilinx ZYNQ

- >> Basis for a versatile power system controller for Silicon Carbide –
- >> How to use ZYNQ in modern power system controllers
- Linux, Python and Jupyter-Notebook, Scilab, Matlab, Hardware in the loop possibilities and solutions

- >> ZYNQ7000 TLIMOT inverter features
- >> ZYNQ Ultrascale+ extension
- > Make you familiar with Xilinx open source EDDP and SPYN projects
 - >> The project and PYNQ framework
- > Safety for drives with ZYNQ Ultrascale+

Evolution of Typical Electric Drives

New Technologies - Software Demand on Drives

Incumbency of Mixed Criticality

Integration into Single Hardware Unit

Drive systems integration evolution

SiC Power Switches

Power switches go Wide Band Gap semiconductor

MATERIAL	Band Gap	
Germanium	0.66	
Silicon	1.1	
Gallium Arsenide	1.4	
Silicon Carbide	3.3	
Gallium Nitride	3.4	

Wide-bandgap semiconductors permit to operate:

- At much higher voltages,
- At higher switching frequencies
- At higher temperatures than silicon and gallium arsenide

SiC Advantages

Technology

- Silicon Carbide (SiC) is a power transistor comprised of silicon (Si) and carbon (C)
- It sustains high voltages, with low series resistance, and low conduction losses
- Its high band gap allows it to switch higher voltages and currents at higher temperatures

Benefits

- Smaller inductors
- > Smaller heat sinks
- > Higher switching frequency than IGBT
- > Smaller capacitors

Applications

- Solar inverters
- > Motor drives
- > DC-AC inverters
- > Power Factor Correction

Bandgap (eV)
 Breakdown Field (MV/cm)
 Thermal Conductivity w / (cm2 × K-1)

Tesla Model 3 is using Silicon Carbide MOSFETs for its main inverter - Source PntPower.com (2019)

© Copyright 2019 Xilinx

E XILINX.

General Challenges

> SiC drive challenges

- >> Control of SiC gate rise and fall time
- » Dead time
- Sate charge
- » dV/dt
- > Precise and fast control strategies for best SiC usage
 - » Fast FOC (Field Orientation Control)
 - » Model Predictive Control (MPC)
- > Fast Acquisition and Data Logging for advanced applications
 - >> Predictive maintenance
 - » Machine Learning based diagnostic and optimization

> Power Switches Topology

- >> Selection of proper topology to minimize component
- >> More switches compared to 2-levels
- >> Certain topologies require blocking diodes
 - Additional cost
 - Less reliability

> Power Modulator Stage

- >> Four switches to be controlled per inverter phase instead of just two
- >> More PWM compared to 2-LEVEL
- For equally split dc-link (dc-link/2) is required an actively controlled neutral point
- » Increased control effort to balance dc_link/2
- >> State space vectors 3 times more complex

Xilinx TLIMOT 3-Level and 2-Level Inverter Experience with SiC Since 2014 System View

Xilinx-QDESYS SiC 3-Level, 10kW Inverter (2014)

All trademarks or registered trademarks are property of their respective owners.

- > High speed inverter designed in 2014
 - >> Still a top notch platform
 - >> Extensible to ZYNQ Ultrascale+
- Small switching losses at high frequencies, i.e., from 96 kHz to 625kHz - Tested
- Efficiency of Si-C inverters is found to be 99.25% even at 625kHz for the 10kW inverter - Tested
- > Tested with PMSM motors up to 500,000 RPM.
- > Since 2014 applied in:
 - >> Avionics
 - >> Automotive
 - > Traction
 - > Industrial Drives
 - >> Propulsion
 - Education (Universities, Researchers)
 - >> Lab-tests

QDESYS Zynq-7000 160kW – 2 Level SiC800V 300A

PicoZed SOM

MicroZed SOM

AVNET[®]

A CREE COMPANY

CAS300M12BM2 1.2kV, 5.0 mΩ All-Silicon Carbide Half-Bridge Module

C2M MOSFET and Z-RecTM Diode

Features

- Ultra Low Loss
- High-Frequency Operation
- Zero Reverse Recovery Current from Diode
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Ease of Paralleling
- Copper Baseplate and Aluminum Nitride Insulator

System Benefits

- Enables Compact and Lightweight Systems
- High Efficiency Operation
- Mitigates Over-voltage Protection
- Reduced Thermal Requirements
- Reduced System Cost

Package 62mm x 106mm x 30mm

Propulsion Control – 2 Level SiC Inverters (NASA X-57)

- > **QDESYS Motor Control** implemented on Xilinx ZYNQ FPGA+ARM
- > Redundant Architecture: each power train contributes half of the torque
- Alluminium enclosure (EMI schielding) Aerospace connectors for I/O
- Running at 200% of power
- > Software validated
- > Environmental screening (shake and brake) completed

TLIMOT Hardware Details

TLIMOT 3-Level Inverter Block Diagram

Fast Switching Needs a Good Gate Driver

- > Optimization for fast switching is a challenging task.
- > Major contributors to the switching behaviour:
 - >> Gate driver,
 - >> Gate resistor,
 - > Voltage overshoot caused by inductive parasitics
 - >> Bus bar behaviour
 - >> DC-Link capacitors

This is an example only every application has its own specificity – many semiconductor manufacturers produces integrated gate drivers

Lesson learned – gate drivers designed for IGBT perform poorly with SiC – beware!

Power Switch Topology

NPC (Standard) Only 3 levels

- 3L NPC phase leg 10 semiconductors:
 - > 4 SiC
 - > 4 Free-Wheeling Diodes
 - > 2 Clamping Diodes

TNPC (Adopted configuration for TLIMOT) 2 levels and 3 levels

- 3L TNPC phase leg 8 semiconductors:
 - 4 SiC
 - 4 Free-Wheeling Diodes

Maximum DC-link voltages:

- > 400VDC using 650V semiconductors,
- > 800VDC using 1200V semiconductors,
- > 1200VDC using 1700V semiconductors

E XILINX.

Current Sensors Used With SiC and Zynq

To XADC - Sigma-Delta or external ADC

TLIMOT Sensing (Shunt)

Acquires 2 channels simultaneously

Acquires 8 channels simultaneously

E XILINX.

General Architecture TLIMOT

Zynq-7000 SoC 1st Generation

Zynq Ultrascale + 2nd Generation

EXILINX.

General Architecture

Software Architecture – Linux-Based

E XILINX.

GUI and Interfaces

Real Time Observability with the GUI (National Instrument Labstudio)

Stator Currents vs Time M0 : D0 M0 B0 TEP2.0 - Stator Current vs Time - 2019.9.6 15:44:2 0.88 Vsw 0.8 I-A I-B 0.4 Rotor Angle lcc 0.2 123 () **r/i** Iβ -0.2 Ια -0.88 5.0 mS 10.0 mS 15.0 mS 20.0 mS 26.2 mS 259.2 µS

Stator Voltages Vα,Vβ

Stator Voltages vs Time

Real Time Frequency Analysis

416Hz

Motor's Speed

E XILINX.

Jupyter - Notebook

In [1]:	<pre>import time import math import matplotlib import numpy as np import matplotlib.pyplot as plt from mcm2arlib import mcm2arlib</pre>	
In [2]:	mcm=mcm2arlib()	
In [3]:	<pre>mcm.qmx_loadlink("")</pre>	
In [4]:	<pre>mcm.qmx_startup()</pre>	
In [5]:	<pre>print("s/w version = %s" % (mcm.qmgs_sw_version()))</pre>	
	s/w version = 2.1.39	Full
In [6]:	<pre>IVPLOGGER_ACQ_CTRLST_READY=(1<<3) # acquisition ready</pre>	Controllability
In []:		
In [7]:	<pre># LPF1 fcut to K conversion def lpf1_K(Ts,Fcut): tau=1.0/(2.0*np.pi*Fcut) n=tau/Ts T=1.0/(math.exp(1.0/n)-1.0) K=1.0/(1.0+T) return K</pre>	
In [8]:	<pre># arm for ivpl acquisition def startivplacq(motor): mcm.qmpm_ivpl_synmod(motor,1) # 0=free run, 1=sync with electric angle mcm.qmpm_ivpl_automemsz(motor,1) # 0=manual 1=automatic sample eval mcm.qmpm_ivpl_numwaves(motor,4) # num of electric cycles mcm.qmpm_ivpl_numsmp(motor,8192) # num samples mcm.qmpm_ivpl_howmany(motor,-1) # unlimited mcm.qmpm_ivpl_howmany(motor,-1) # unlimited mcm.qmpm_ivpl_sect(rutor) # initiate leas </pre>	
In [9]:	<pre>mcm.qmxm_ivpl_start(motor) # initiate log # display log data def dispivplacq(motor): # get data [iphs_a,iphs_b,iphs_c,ibus_x,vphs_a,vphs_b,vphs_c,vbus_x,vphs_n,angle] = mcm.qmgm_ivpl_data_s(motor)</pre>	

E XILINX.

Useful Links TLIMOT

Information <u>http://www.qdesys.com/pdf/MotorControlSolutions_QDESYS_Material.pdf</u>

> Requests to: info@qdesys.com

EDDP Open Source (No SiC)

EDDP – Electric Drive Demonstration Platform

- PMOD connection between Control Board & EDPS
- Default motor 15W BLDC
- Encoder included

120

• EDPS – Supports Up to 1KW

Python Control – SPYN Project

EDPS (Electric Drive Power Stage)

- Access To Motor Control Parameter
- Request Status Information from the Motor
- Programmatic Control of Motor
- Continuous Status Capture from Motor
- Plots to Visualize Captured Data
- Storing Captured Data for Analytics
- Live Interactive Plots to Investigate
 Data

Predictive Control

> Use system's model for predicting the future behaviour of the controlled variables

> Optimal actuation according to predefined optimization criterion

Finite Control Set Model Predictive Control – SPYN

angle in 4*pi/999

Safety

Safety capabilities

- 6. Logic Built In Self Test (LBIST) for checkers & monitors at power-on
 - Peripherals coverage by end-to-end software protocols

CSU

TMR Core

SLCRs

3

__7. Software Test Library (STL) for GIC, interconnect, SLCRs & error injection

© Copyright 2019 Xilinx

Full Power

Domain

PL

Evaluating Assessor Michael Medoff

Page 1 of 2

Certifying Assessor

The MPSoC shall be used per the requirements described in the Zynq UttraScale+ MPSoC Safety Manual (UG1226) and Software Safety User Guide (UG1220).

Application restrictions:

ion 1.3 August 14, 20 rveillance Audit Due October 1, 2020

ANSI

Architecture of the single chip HFT=1 Drive

Learn More...

- > Learn More about Motor and Inverter Control with Xilinx
 - https://www.xilinx.com/publications/solution-briefs/xilinx-drives-and-motor-control-solutionbrief.pdf
- > Learn More about TLIMOT
 - >> https://www.xilinx.com/products/boards-and-kits/1-6g18zh.html
- > Learn More about EDDP, SPYN (same HW, different designs)
 - https://github.com/Xilinx/IIoT-EDDP
 - <u>https://github.com/Xilinx/IIoT-SPYN</u>

YouTube Videos: Getting Started with the Electric Drives Demo SPYN Quick Take Video on YouTube

Xilinx.com Videos: Available in English (<u>xilinx.com</u>) Chinese (<u>china.xilinx.com</u>) Japanese (<u>japan.xilinx.com</u>) <u>SPYN Quick Take Video on Xilinx.com</u>

© Copyright 2019 Xilinx

Watch Webinar

ON DEMAND

Adaptable. Intelligent.

